Exercise 4 - Broadband transistor amplifier

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Exercise 4 - Broadband transistor amplifier"

Transcription

1 ANALOG ELECTRONIC CIRCUITS Laboratory work Exercise 4 - Broadband transistor amplifier Task 1: Design a broadband amplifier using a bipolar NPN transistor in a common emitter orientation. For input signal u 1 use sine shaped signal with amplitude U 0 = 100 mv and frequency f = 10 khz. Load the amplifier output with a resistor R L = 10 kω. Use single supply voltage of U CC = 20 V and a BC547B type transistor. Voltage gain (A u = u 2 /u 1 ) should be A u = -20 and low cut-off frequency must be set to f sp = 100 Hz. Design two variants of amplifier, one with the quiescent collector current of I C0 = 1 ma and second with I C0 = 2 ma. Hints: Keep at least 1 V of voltage, U RE0 = 1 V, on the resistor R E due to the temperature stability. Set the bias voltage U C0 to U cc /2. Calculate values of resistors R B1 and R B2 considering transistor's input resistance and transformation of emitter branch into transistor's base branch. Set the voltage gain with the resistor R 3. When calculating capacitors C V1, C V2 and C E take into consideration design rules: f me = f m in f mv = 1/10 f m Circuit schematic:

2 Calculations: DC operating point: R C = R E = R B1 = R B2 = R C = R E = R B1 = R B2 = Voltage gain: A u = (equation) R 3 = R 3 = Low cut-off frequency: f me = (equation) f mv = (equation) C E = C V1 = C V2 = C E = C V1 = C V2 =

3 Task 2: Verify the results of calculations with the simulation in LTspice. Perform DC operating point analysis and establish DC values of currents and voltages. With AC analysis calculate the voltage gain at frequency f = 10 khz and determine lower and upper cut-off frequencies of the amplifier. In the end do the transient analysis and take a look at the picture of output signal. Increase the amplitude of the input signal and examine the distortion of the voltage signal on the load resistor. Establish the k 2 distortion factor with the help of transient analysis and discrete Fourier transform (View FFT) at input signal with the amplitude U 0 = 100 mv and frequency f = 1 khz. Perform the simulations for both versions of the amplifier! DC operating point U B0 = U C0 = U RL0 = I C0 = U E0 = U B0 = U C0 = U RL0 = I C0 = U E0 = Compare the simulation results with the projected and make comments on eventual deviations. Voltage gain (f = 10 khz): A u = A u = db A u = A u = db Is the voltage gain as expected? Make comments on eventual deviations.

4 Low cut-off frequency: f sp = f zg = f sp = f zg = Is the lower cut-off frequency as expected? Make comments on eventual deviations. Distortion: k 2 = k 2 = db k 2 = k 2 = db Make comments on the distortion levels at both values of collector current.

5 Task 3: Construct and test the circuit with the collector current of I C0 = 1 ma on the breadboard. In the first place measure the DC values of voltages and currents in the various points of the circuit. Connect the sine input signal with amplitude U 0 = 100 mv and measure the voltage gain at different input signal frequencies in the interval from 1 Hz to 10 Mhz. Express the voltage gain in db and draw it in the chart. Measure the actual lower and upper cut-off frequencies of the amplifier. Increase the amplitude of input signal (at the frequency f = 10 khz) and determine the maximum value U max where the output signal begins to distort. Measure the k 2 distortion factor at sine input signal of amplitude U 0 = 100 mv and frequency f = 1 khz. Measurements: DC values of currents and voltages: U B0 = U C0 = U RL0 = I C0 = U E0 = Make comments on eventual differences between the designed and measured values of voltages and currents. Voltage gain: f u 1 / mv u 2 / mv A u A u / db 1 Hz 10 Hz 100 HZ 1 khz 10 khz 100 khz 1 MHz 10 MHz Make comments on eventual differences between the designed and measured values of voltage gain.

6 Voltage gain chart: Low cut-off frequency: f sp = f zg = Make comments on eventual differences between the simulated and measured values of cut-off frequencies. Distortion: U max = What is the reason for the distortions of the output signal? k 2 = k 2 = db Make comments on eventual differences between the simulated and measured values of distortion factor.

BJT Circuits & Limitations LTspice

BJT Circuits & Limitations LTspice BJT Circuits & Limitations LTspice Acnowledgements: Neamen, Donald: Microelectronics Circuit Analysis and Design, 3 rd Edition LTspice material by Devon Rosner 13 (6.101 TA), Engineer, Linear Technology

More information

The NPN Transistor Bias and Switching

The NPN Transistor Bias and Switching The NPN Transistor Bias and Switching Transistor Linear Amplifier Equipment Oscilloscope Function Generator (FG) Bread board 9V Battery and leads Resistors:, 10 kω, Capacitors: ( 2) NPN Transistor Potentiometer

More information

Tutorial #5: Designing a Common-Emitter Amplifier

Tutorial #5: Designing a Common-Emitter Amplifier SCHOOL OF ENGINEERING AND APPLIED SCIENCE DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING ECE 2115: ENGINEERING ELECTRONICS LABORATORY Tutorial #5: Designing a Common-Emitter Amplifier BACKGROUND There

More information

LABORATORY 2 THE DIFFERENTIAL AMPLIFIER

LABORATORY 2 THE DIFFERENTIAL AMPLIFIER LABORATORY 2 THE DIFFERENTIAL AMPLIFIER OBJECTIVES 1. To understand how to amplify weak (small) signals in the presence of noise. 1. To understand how a differential amplifier rejects noise and common

More information

AM Modulator. Experiment theory: Experiment # (3) Islamic University of Gaza Faculty of Engineering Electrical Department

AM Modulator. Experiment theory: Experiment # (3) Islamic University of Gaza Faculty of Engineering Electrical Department Islamic University of Gaza Faculty of Engineering Electrical Department Experiment # (3) AM Modulator Communications Engineering I (Lab.) Prepared by: Eng. Omar A. Qarmout Eng. Mohammed K. Abu Foul Experiment

More information

Chapter 7: AC Transistor Amplifiers

Chapter 7: AC Transistor Amplifiers Chapter 7: AC Transistor Amplifiers The transistor amplifiers that we studied in the last chapter have some serious problems for use in AC signals. Their most serious shortcoming is that there is a dead

More information

What is an Amplifier?

What is an Amplifier? Bipolar Junction Transistor Amplifiers Semiconductor Elements 1 What is an Amplifier? An amplifier is a circuit that can increase the peak-to-peak voltage, current, or power of a signal. It allows a small

More information

TRANSISTOR AMPLIFIERS AET 8. First Transistor developed at Bell Labs on December 16, 1947

TRANSISTOR AMPLIFIERS AET 8. First Transistor developed at Bell Labs on December 16, 1947 AET 8 First Transistor developed at Bell Labs on December 16, 1947 Objective 1a Identify Bipolar Transistor Amplifier Operating Principles Overview (1) Dynamic Operation (2) Configurations (3) Common Emitter

More information

EXPERIMENT 5 COMMON - EMITTER TRANSISTOR AMPLIFIER

EXPERIMENT 5 COMMON - EMITTER TRANSISTOR AMPLIFIER DOKUZ EYLUL UNIVERTSITY DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING EED 2012 LAB ANALOG ELECTRONICS EXPERIMENT 5 COMMON - EMITTER TRANSISTOR AMPLIFIER Std. No. Name & Surname: 1 2 3 Group No : Submitted

More information

Fixed-bias circuit Emitter-stabilized bias circuit Collector-emitter loop Voltage divider bias circuit DC bias with voltage feedback

Fixed-bias circuit Emitter-stabilized bias circuit Collector-emitter loop Voltage divider bias circuit DC bias with voltage feedback Chapter 4 Fixed-bias circuit Emitter-stabilized bias circuit Collector-emitter loop Voltage divider bias circuit DC bias with voltage feedback ECET 257 Consumer Power Electronics, PNC 2 1 All analysis

More information

Design the prototype (Week 2 3) 2010 Oregon State University ECE 323 Manual Page 15

Design the prototype (Week 2 3) 2010 Oregon State University ECE 323 Manual Page 15 SECTION TWO Design the prototype (Week 2 3) 2010 Oregon State University ECE 323 Manual Page 15 SECTION OVERVIEW In this section, you will design the schematic for your prototype USB powered audio amplifier.

More information

Laboratory 4: Feedback and Compensation

Laboratory 4: Feedback and Compensation Laboratory 4: Feedback and Compensation To be performed during Week 9 (Oct. 20-24) and Week 10 (Oct. 27-31) Due Week 11 (Nov. 3-7) 1 Pre-Lab This Pre-Lab should be completed before attending your regular

More information

Transistor Amplifiers

Transistor Amplifiers Physics 3330 Experiment #7 Fall 1999 Transistor Amplifiers Purpose The aim of this experiment is to develop a bipolar transistor amplifier with a voltage gain of minus 25. The amplifier must accept input

More information

Lab 3. Transistor and Logic Gates

Lab 3. Transistor and Logic Gates Lab 3. Transistor and Logic Gates Laboratory Instruction Today you will learn how to use a transistor to amplify a small AC signal as well as using it as a switch to construct digital logic circuits. Introduction

More information

Bipolar Transistor Amplifiers

Bipolar Transistor Amplifiers Physics 3330 Experiment #7 Fall 2005 Bipolar Transistor Amplifiers Purpose The aim of this experiment is to construct a bipolar transistor amplifier with a voltage gain of minus 25. The amplifier must

More information

Chapter 6: Transistors and Gain

Chapter 6: Transistors and Gain I. Introduction Chapter 6: Transistors and Gain This week we introduce the transistor. Transistors are three-terminal devices that can amplify a signal and increase the signal s power. The price is that

More information

TRANSISTOR BIASING & STABILIZATION

TRANSISTOR BIASING & STABILIZATION Lecture 20 BJT TRANSISTOR BIASING & STABILIZATION 2 Transistor Biasing The basic function of transistor is amplification. The process of raising the strength of weak signal without any change in its general

More information

Special notes: The transistors we ll use are in a TO-92 package; the leads are arranged like this:

Special notes: The transistors we ll use are in a TO-92 package; the leads are arranged like this: Lab 4: Bipolar transistors and transistor circuits Objectives: investigate the current-amplifying properties of a transistor build a follower and investigate its properties (especially impedances) build

More information

Class AB Output Stage

Class AB Output Stage Class AB Output Stage Class AB amplifier Operation Multisim Simulations - Operation Class AB amplifier biasing Multisim Simulations - Biasing 1 Class AB Operation 2 Basic Class AB Amplifier Circuit Bias

More information

EE320L Electronics I. Laboratory. Laboratory Exercise #10. Frequency Response of BJT Amplifiers. Angsuman Roy

EE320L Electronics I. Laboratory. Laboratory Exercise #10. Frequency Response of BJT Amplifiers. Angsuman Roy EE320L Electronics I Laboratory Laboratory Exercise #10 Frequency Response of BJT Amplifiers By Angsuman Roy Department of Electrical and Computer Engineering University of Nevada, Las Vegas Objective:

More information

LAB 6 BIPOLAR TRANSISTORS AND AMPLIFIERS

LAB 6 BIPOLAR TRANSISTORS AND AMPLIFIERS LAB 6 BIPOLAR TRANSISTORS AND AMPLIFIERS Objective In this experiment you will study the i-v characteristics of an npn bipolar junction transistor. You will bias the transistor at an appropriate point

More information

Bipolar Transistor Amplifiers

Bipolar Transistor Amplifiers Physics 3330 Experiment #7 Fall 2013 Bipolar Transistor Amplifiers Purpose The aim of this experiment is to construct a bipolar transistor amplifier with a voltage gain of minus 25. The amplifier must

More information

Term Project - Audio Amplifier

Term Project - Audio Amplifier Term Project - Audio Amplifier Objectives To understand the principles of a Darlington push-pull power amplifier and its application. To construct an audio power amplifier on a vero board and heatsink,

More information

Electronics The application of bipolar transistors

Electronics The application of bipolar transistors Electronics The application of bipolar transistors Prof. Márta Rencz, Gergely Nagy BME DED October 1, 2012 Ideal voltage amplifier On the previous lesson the theoretical methods of amplification using

More information

ELECTRON AND CURRENT FLOW

ELECTRON AND CURRENT FLOW Lecture 2. Transistors ELECTRON AND CURRENT FLOW When electrons were discovered and were found to flow through a wire, early investigators believed they flowed from a higher potential to a lower one, similar

More information

Tutorial Problems: Bipolar Junction Transistor (DC Biasing)

Tutorial Problems: Bipolar Junction Transistor (DC Biasing) Tutorial Problems: Bipolar Junction Transistor (DC Biasing) 1. Consider the circuit shown in Figure 1. Determine I BQ, I CQ and V CEQ for: (a) β = 75, and (b) β = 150. Assume V BE(on) = 0.7 V. Figure 1

More information

Biasing Circuits and Transistor Amplifier Operation

Biasing Circuits and Transistor Amplifier Operation Biasing Circuits and Transistor Amplifier Operation Base Bias Circuit As was previously seen the circuit below turns a transistor on. The circuit now can be referred to as Base Bias. Operation Initially

More information

Chapter 5. BJT Biasing Circuits. 5.1 The DC Operation Point [5] DC Bias:

Chapter 5. BJT Biasing Circuits. 5.1 The DC Operation Point [5] DC Bias: Chapter 5 BJT Biasing Circuits 5.1 The DC Operation Point [5] DC Bias: Bias establishes the dc operating point for proper linear operation of an amplifier. If an amplifier is not biased with correct dc

More information

Transistor Characteristics and Single Transistor Amplifier Sept. 8, 1997

Transistor Characteristics and Single Transistor Amplifier Sept. 8, 1997 Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 8, 1997 1 Purpose To measure and understand the common emitter transistor characteristic curves. To use the base current gain

More information

Tutorial Problems: Bipolar Junction Transistor (Basic BJT Amplifiers)

Tutorial Problems: Bipolar Junction Transistor (Basic BJT Amplifiers) Tutorial Problems: Bipolar Junction Transistor (Basic BJT Amplifiers) Part A. Common-Emitter Amplifier 1. For the circuit shown in Figure 1, the transistor parameters are β = 100 and V A =. Design the

More information

R f. V i. ET 438a Automatic Control Systems Technology Laboratory 4 Practical Differentiator Response

R f. V i. ET 438a Automatic Control Systems Technology Laboratory 4 Practical Differentiator Response ET 438a Automatic Control Systems Technology Laboratory 4 Practical Differentiator Response Objective: Design a practical differentiator circuit using common OP AMP circuits. Test the frequency response

More information

Programmable Single-/Dual-/Triple- Tone Gong SAE 800

Programmable Single-/Dual-/Triple- Tone Gong SAE 800 Programmable Single-/Dual-/Triple- Tone Gong Preliminary Data SAE 800 Bipolar IC Features Supply voltage range 2.8 V to 18 V Few external components (no electrolytic capacitor) 1 tone, 2 tones, 3 tones

More information

Analog Electronics II Laboratory Exercise 2 Cascade amplifier with BJT

Analog Electronics II Laboratory Exercise 2 Cascade amplifier with BJT Analog Electronics II Laboratory Exercise 2 Cascade amplifier with BJT Aim of the exercise The aim of this laboratory exercise is to become familiar with the operation of the cascade connection of the

More information

Electronics. Discrete assembly of an operational amplifier as a transistor circuit. LD Physics Leaflets P4.2.1.1

Electronics. Discrete assembly of an operational amplifier as a transistor circuit. LD Physics Leaflets P4.2.1.1 Electronics Operational Amplifier Internal design of an operational amplifier LD Physics Leaflets Discrete assembly of an operational amplifier as a transistor circuit P4.2.1.1 Objects of the experiment

More information

Amplitude Modulation and Demodulation

Amplitude Modulation and Demodulation Amplitude Modulation and Demodulation By: Prof.G.Kumar, B.E,M.S Sona College of Technology, Electronics and Communication Engineering, Sona Nagar, Thiagarajar Polytechnic Road, Salem-636005, Tamilnadu,

More information

High-Frequency Behavior of the Bipolar Junction Transistor

High-Frequency Behavior of the Bipolar Junction Transistor High-Frequency Behavior of the Bipolar Junction Transistor Matthew Beckler beck0778@umn.edu EE30 Lab Section 008 December 3, 2006 Abstract The Hybrid-π model for the small-signal operation of the BJT is

More information

ECE-342 Lab 5: BJT Amplifier Sample Lab Report

ECE-342 Lab 5: BJT Amplifier Sample Lab Report ECE-342 Lab 5: BJT Amplifier Sample Lab Report Don Hummels, Someone Else September 9, 2011 This sample report from the 2007 ECE-342 Lab 5 assignment is meant to serve as a guide for lab reports for ECE-342

More information

Class A Amplifier Design

Class A Amplifier Design Module 2 Amplifiers Introduction to Amplifier Design What you ll learn in Module 2. Basic design process. Section 2.0 Introduction to Amplifier Design. Section 2.1 DC Conditions. Design a BJT class A common

More information

Bipolar Junction Transistors. Online Resource for ETCH 213 Faculty: B. Allen

Bipolar Junction Transistors. Online Resource for ETCH 213 Faculty: B. Allen Bipolar Junction Transistors Transistor types NPN Transistor A thin, highly doped p-type region (base) is sandwiched between two n-type regions (emitter and collector). PNP Transistor A thin, highly doped

More information

Chapter 5. Transistor Bias Circuits

Chapter 5. Transistor Bias Circuits Basic Electronic Devices and Circuits EE 111 Electrical Engineering Majmaah University 2 nd Semester 1432/1433 H Chapter 5 Transistor Bias Circuits 1 Introduction As you learned in Chapter 4, a transistor

More information

INTRODUCTION TO BIPOLAR JUNCTION TRANSISTORS

INTRODUCTION TO BIPOLAR JUNCTION TRANSISTORS INTRODUCTION TO BIPOLAR JUNCTION TRANSISTORS s are three port devices used in most integrated circuits, such as amplifiers s are active components (recall that resistors, capacitors and inductors are passive)

More information

Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 13, 2006

Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 13, 2006 Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 13, 2006 1 Purpose To measure and understand the common emitter transistor characteristic curves. To use the base current gain

More information

Lab 6 Transistor Amplifiers

Lab 6 Transistor Amplifiers ECET 242 Electronic Circuits Lab 6 Transistor Amplifiers Page 1 of 5 Name: Objective: Lab Report: Equipment: Students successfully completing this lab exercise will accomplish the following objectives:

More information

Collector I C. Base I B I E. Emitter. NPN transistor

Collector I C. Base I B I E. Emitter. NPN transistor ECE 2210 A.Stolp 3/25/00 rev, 11/21/06 Imagine, if you will, a hydraulic device where the flow in a small pipe controls a valve in a larger pipe. The greater the flow in the small pipe the more it opens

More information

Transistors. Transistor Basics

Transistors. Transistor Basics Transistors Bipolar Junction Transistors (BJT) Transistor Basics A Bipolar Junction Transistor is a three layer (npn or pnp) semiconductor device. There are two pn junctions in the transistor. The three

More information

Chapter 4 DC Biasing BJTs

Chapter 4 DC Biasing BJTs hapter 4 D Biasing BJTs Biasing Biasing: The D voltages applied to a transistor in order to turn it on so that it can amplify the A signal. Operating Point The D input establishes an operating or quiescent

More information

Amplitude Modulation Transmitter Design

Amplitude Modulation Transmitter Design Amplitude Modulation Transmitter Design LAB 5 Introduction The motivation behind this project is to design, implement, and test an Amplitude Modulation (AM) Transmitter. The Transmitter consists of a Balanced

More information

APPLICATION NOTE 29 Testing Capacitors with High DC Bias

APPLICATION NOTE 29 Testing Capacitors with High DC Bias APPLICATION NOTE 29 Testing Capacitors with High DC Bias This application note will describe the process of analysing the impedance of a capacitor when subjected to high DC bias voltages. This particular

More information

More courses at

More courses at More courses at www.cie-wc.edu OBJECTIVES 1. To measure the current, voltage, and power gains of the CC amplifier 2. To measure the input impedance of the CC amplifier CC = Common Collector INTRODUCTION

More information

This is advanced information on a new product now in development or undergoing evaluation. Details are subject to change without notice.

This is advanced information on a new product now in development or undergoing evaluation. Details are subject to change without notice. TDA2050 32W Hi-Fi AUDIO POWER AMPLIFIER HIGH OUTPUT POWER (50W MUSIC POWER IEC 268.3 RULES) HIGH OPERATING SUPPLY VOLTAGE (50V) SINGLE OR SPLIT SUPPLY OPERATIONS VERY LOW DISTORTION SHORT CIRCUIT PROTECTION

More information

Bipolar Junction Transistor Basics

Bipolar Junction Transistor Basics by Kenneth A. Kuhn Sept. 29, 2001, rev 1 Introduction A bipolar junction transistor (BJT) is a three layer semiconductor device with either NPN or PNP construction. Both constructions have the identical

More information

Bipolar Junction Transistors

Bipolar Junction Transistors Chapter 28 Bipolar Junction Transistors Topics Covered in Chapter 28 28-1: Transistor Construction 28-2: Proper Transistor Biasing 28-3: Operating Regions 28-4: Transistor Ratings 28-5: Checking a Transistor

More information

Experiment 4 Common-Source Transistor Amplifiers

Experiment 4 Common-Source Transistor Amplifiers Name and ID: 1 OBJECTIVE Group Number: Date: Experiment 4 Common-Source Transistor Amplifiers To measure DC and AC voltages in common-source amplifier. To obtain measured values of voltage amplification

More information

BASICS OF BJT BIAS DESIGN AND SOME STABILITY

BASICS OF BJT BIAS DESIGN AND SOME STABILITY BASICS OF BJT BIAS DESIGN AND SOME STABILITY CONSIDERATIONS November 18, 2015 J.L. 1 A BJT AMPLIFIER WITH VOLTAGE DIVIDER BIAS 1 In this context a few practical examples are given to demonstrate strategies

More information

Experiment No. 8 Transistor Biasing and Bias Stability

Experiment No. 8 Transistor Biasing and Bias Stability Experiment No. 8 Transistor Biasing and Bias Stability Aim of experiment: To study the Transistor biasing types and bias stability. Theory Notice from the previous load line experiment (Experiment No.6)

More information

Lab 1: The Bipolar Junction Transistor (B.J.T): D.C. and ac Operation.

Lab 1: The Bipolar Junction Transistor (B.J.T): D.C. and ac Operation. Lab 1: The Bipolar Junction Transistor (B.J.T): D.C. and ac Operation. Schedule For This Lab: Week 1: Week 2: Report BJT D.C. Characteristics and the Current Mirror. BJT A.C. Characteristics. Your report

More information

Chapter 4. DC Biasing of BJTs

Chapter 4. DC Biasing of BJTs Chapter 4. Outline: Selection of operating point Various bias circuits Fixed bias Emitter bias Voltage-divider bias Introduction The dc and ac response are necessary to the analysis of a transistor amplifier.

More information

Equivalent Circuit. Operating Characteristics at Ta = 25 C, V CC = ±34V, R L = 8Ω, VG = 40dB, Rg = 600Ω, R L : non-inductive load STK4181V

Equivalent Circuit. Operating Characteristics at Ta = 25 C, V CC = ±34V, R L = 8Ω, VG = 40dB, Rg = 600Ω, R L : non-inductive load STK4181V Ordering number: 2137B Thick Film Hybrid IC STK4181V AF Power Amplifier (Split Power Supply) (45W + 45W min, THD = 0.08%) Features Pin-compatible with the STK4102II series. The STK4101V series use the

More information

ESE 216 LTSpice Quick Guide

ESE 216 LTSpice Quick Guide ESE 216 LTSpice Quick Guide Install the LTSpice from the webpage http://www.linear.com/ltspice and install it on your PC. It is free simulation software which has the SPICE simulator core and has many

More information

BJT Characteristics and Amplifiers

BJT Characteristics and Amplifiers BJT Characteristics and Amplifiers Matthew Beckler beck0778@umn.edu EE2002 Lab Section 003 April 2, 2006 Abstract As a basic component in amplifier design, the properties of the Bipolar Junction Transistor

More information

Chapter #6: Bipolar Junction Transistors. Oxford University Publishing, Microelectronic Circuits by Adel S. Sedra and Kenneth C.

Chapter #6: Bipolar Junction Transistors. Oxford University Publishing, Microelectronic Circuits by Adel S. Sedra and Kenneth C. Chapter #6: Bipolar Junction Transistors, Microelectronic Circuits by Adel S. Sedra and Kenneth C. Smith Introduction IN THIS CHAPTER YOU WILL LEARN The physical structure of the bipolar transistor and

More information

STK4192II. AF Power Amplifier (Split Power Supply) (50W + 50W min, THD = 0.4%)

STK4192II. AF Power Amplifier (Split Power Supply) (50W + 50W min, THD = 0.4%) Ordering number: EN2305C Thick Film Hybrid IC STK4192II AF Power Amplifier (Split Power Supply) (50W + 50W min, THD = 0.4%) Features The STK4102II series (STK4192II) and STK4101V series (high-grade type)

More information

Experiment IX: AM Transistor Radio: The Transistor Amplifier Circuit

Experiment IX: AM Transistor Radio: The Transistor Amplifier Circuit Experiment IX: AM Transistor Radio: The Transistor Amplifier Circuit I. References Horowitz and Hill, The Art of Electronics. Diefenderfer and Holton, Principles of Electronic Instrumentation The American

More information

Biasing Bipolar Junction Transistors Al Ward W5LUA January 31, 2007

Biasing Bipolar Junction Transistors Al Ward W5LUA January 31, 2007 Optical Navigation Division Biasing Bipolar Junction Transistors Al Ward W5LUA January 31, 2007 Various BJT Biasing Networks V BB VCC 1 1 2 2 3 1 4 5 2 Page 2 AT-41486 Page 3 Bipolar Transistor Bias Network

More information

Common Emitter BJT Amplifier Design Current Mirror Design

Common Emitter BJT Amplifier Design Current Mirror Design Common Emitter BJT Amplifier Design Current Mirror Design 1 Some Random Observations Conditions for stabilized voltage source biasing Emitter resistance, R E, is needed. Base voltage source will have finite

More information

STK4182II. AF Power Amplifier (Split Power Supply) (45W + 45W min, THD = 0.4%)

STK4182II. AF Power Amplifier (Split Power Supply) (45W + 45W min, THD = 0.4%) Ordering number: EN2205B Thick Film Hybrid IC STK4182II AF Power Amplifier (Split Power Supply) (45W + 45W min, THD = 0.4%) Features The STK4102II series (STK4182II) and STK4101V series (high-grade type)

More information

Small Signal Amplifier with Bipolar Junction Transistor

Small Signal Amplifier with Bipolar Junction Transistor mall ignal Amplifier with Bipolar Junction Transistor This tutorial will teach you in very easy steps how to design class-a amplifiers tarting with the results of bias point design we get the following

More information

STK4152II. AF Power Amplifier (Split Power Supply) (30W + 30W min, THD = 0.4%)

STK4152II. AF Power Amplifier (Split Power Supply) (30W + 30W min, THD = 0.4%) Ordering number: EN2202B Thick Film Hybrid IC STK4152II AF Power Amplifier (Split Power Supply) (30W + 30W min, THD = 0.4%) Features The STK4102II series (STK4152II) and STK4101V series (high-grade type)

More information

Objective. To design and simulate a cascode amplifier circuit using bipolar transistors.

Objective. To design and simulate a cascode amplifier circuit using bipolar transistors. ascode Amplifier Design. Objective. o design and simulate a cascode amplifier circuit using bipolar transistors. Assignment description he cascode amplifier utilises the advantage of the common-emitter

More information

Lab 4: BJT Amplifiers Part I

Lab 4: BJT Amplifiers Part I Lab 4: BJT Amplifiers Part I Objectives The objective of this lab is to learn how to operate BJT as an amplifying device. Specifically, we will learn the following in this lab: The physical meaning of

More information

Revision on Basic Transistor Amplifiers

Revision on Basic Transistor Amplifiers Electronic Circuits Revision on Basic Transistor Amplifiers Contents Biasing Amplification principles Small-signal model development for BJT Aim of this chapter To show how transistors can be used to amplify

More information

Experiment No. 10 DIGITAL CIRCUIT DESIGN

Experiment No. 10 DIGITAL CIRCUIT DESIGN Experiment No. 10 DIGITAL CIRCUIT DESIGN 1. Objective: The objective of this experiment is to study three fundamental digital circuits. These three circuits form the basis of all other digital circuits,

More information

Lecture 3: Transistors

Lecture 3: Transistors Lecture 3: Transistors Now that we know about diodes, let s put two of them together, as follows: collector base emitter n p n moderately doped lightly doped, and very thin heavily doped At first glance,

More information

LABORATORY EXPERIMENT. Infrared Transmitter/Receiver

LABORATORY EXPERIMENT. Infrared Transmitter/Receiver LABORATORY EXPERIMENT Infrared Transmitter/Receiver (Note to Teaching Assistant: The week before this experiment is performed, place students into groups of two and assign each group a specific frequency

More information

LAB VII. BIPOLAR JUNCTION TRANSISTOR CHARACTERISTICS

LAB VII. BIPOLAR JUNCTION TRANSISTOR CHARACTERISTICS LAB VII. BIPOLAR JUNCTION TRANSISTOR CHARACTERISTICS 1. OBJECTIVE In this lab, you will study the DC characteristics of a Bipolar Junction Transistor (BJT). 2. OVERVIEW You need to first identify the physical

More information

Application of the CA3018 Integrated-Circuit Transistor Array

Application of the CA3018 Integrated-Circuit Transistor Array Authors: G.E. Theriault, A.J. Leidich, and T.H. Campbell Application of the CA3018 Integrated-Circuit Transistor Array The CA3018 integrated circuit consists of four silicon epitaxial transistors produced

More information

Peggy Alavi Application Engineer September 3, 2003

Peggy Alavi Application Engineer September 3, 2003 Op-Amp Basics Peggy Alavi Application Engineer September 3, 2003 Op-Amp Basics Part 1 Op-Amp Basics Why op-amps Op-amp block diagram Input modes of Op-Amps Loop Configurations Negative Feedback Gain Bandwidth

More information

Lab 8: Basic Filters: Low- Pass and High Pass

Lab 8: Basic Filters: Low- Pass and High Pass Lab 8: Basic Filters: Low- Pass and High Pass Names: 1.) 2.) 3.) Objectives: 1. Show students how circuits can have frequency- dependent resistance, and that many everyday signals are made up of many frequencies.

More information

Tutorial Problems: Bipolar Junction Transistor (DC Analysis)

Tutorial Problems: Bipolar Junction Transistor (DC Analysis) Tutorial Problems: Bipolar Junction Transistor (DC Analysis) 1. For the circuit shown in Figure 1, assume β = 50, V BE(on) = 0.7 V and V CE(sat) = 0.2 V. Determine V O, I B, and I C for: (a) V I = 0.2

More information

Diploma in Applied Electronics

Diploma in Applied Electronics DUBLIN INSTITUTE OF TECHNOLOGY KEVIN STREET, DUBLIN 8 Diploma in Applied Electronics YEAR II SUMMER EXAMINATIONS 1999 ELECTRIC CIRCUITS MR. P. Tobin MR. C. Bruce DATE Attempt FIVE questions with a maximum

More information

ANALOG ELECTRONICS EE-202-F IMPORTANT QUESTIONS

ANALOG ELECTRONICS EE-202-F IMPORTANT QUESTIONS ANALOG ELECTRONICS EE-202-F IMPORTANT QUESTIONS 1].Explain the working of PN junction diode. 2].How the PN junction diode acts as a rectifier. 3].Explain the switching characteristics of diode 4].Derive

More information

VI SEM ECE SIMULATION PRACTICAL LAB MANUAL (Diploma L Scheme Lab Manual)

VI SEM ECE SIMULATION PRACTICAL LAB MANUAL (Diploma L Scheme Lab Manual) VI SEM ECE SIMULATION PRACTICAL LAB MANUAL (Diploma L Scheme Lab Manual) S.NO Name of the Experiment Page No. 1. Study of Simulation software using simple circuits. 2. Rectifier circuits ( Half wave, Full

More information

Laboratory 1 Ohm's Law

Laboratory 1 Ohm's Law Laboratory 1 Ohm's Law Key Concepts: Measuring resistance, DC voltage and DC current Investigating Ohmic (I = V/R) and non-ohmic components Equipment Needed: Digital Multimeter (2) Variable DC power supply

More information

1. Measure the characteristics of an emitter follower circuit. 2. Construct and analyze a voltage regulator circuit for a solar panel.

1. Measure the characteristics of an emitter follower circuit. 2. Construct and analyze a voltage regulator circuit for a solar panel. Experiment 3 The Transistor Objectives 1. Measure the characteristics of an emitter follower circuit. 2. Construct and analyze a voltage regulator circuit for a solar panel. Equipment 1. 1 2N2222 NPN bipolar

More information

Transistor Biasing and Thermal Stabilization The operating point & DC load Line: Analysis of Amplifier using d.c. load line :-

Transistor Biasing and Thermal Stabilization The operating point & DC load Line:   Analysis of Amplifier using d.c. load line :- UNIT :7 Transistor Biasing and Thermal Stabilization: - 9 The operating point, The DC and AC load line, Need of transistor biasing and stability of Q point, Thermal instability. Method of Biasing: - Fixed

More information

The George Washington University School of Engineering and Applied Science Department of Electrical and Computer Engineering

The George Washington University School of Engineering and Applied Science Department of Electrical and Computer Engineering The George Washington University School of Engineering and Applied Science Department of Electrical and Computer Engineering Final Design Report Dual Channel Stereo Amplifier By: Kristen Gunia Prepared

More information

How to Bias BJTs for Fun and Profit

How to Bias BJTs for Fun and Profit How to Bias BJTs for Fun and Profit Standard BJT biasing configuration: The standard biasing configuration for bipolar junction transistors, sometimes called the H-bias configuration because the resistors

More information

BJT Circuit Analysis

BJT Circuit Analysis BJT Circuit Analysis Assuming that the transistor is in the active region, solve for the voltages and currents --- why this assumption? In general, the problem requires solution of a set of nonlinear equations:

More information

Phototransistor Switching Time Analysis

Phototransistor Switching Time Analysis A p p l i c at i o n Note AN3009 Phototransistor Switching Time Analysis Authors: Van N. Tran Staff Application Engineer, CEL Opto Semiconductors Robert Stuart, CEL Product Marketing Manager Hardik Bhavsar,

More information

CIRCUITS AND SYSTEMS LABORATORY EXERCISE 6 TRANSIENT STATES IN RLC CIRCUITS AT DC EXCITATION

CIRCUITS AND SYSTEMS LABORATORY EXERCISE 6 TRANSIENT STATES IN RLC CIRCUITS AT DC EXCITATION CIRCUITS AND SYSTEMS LABORATORY EXERCISE 6 TRANSIENT STATES IN RLC CIRCUITS AT DC EXCITATION 1. DEVICES AND PANELS USED IN EXERCISE The following devices are to be used in this exercise: oscilloscope HP

More information

LM 358 Op Amp. If you have small signals and need a more useful reading we could amplify it using the op amp, this is commonly used in sensors.

LM 358 Op Amp. If you have small signals and need a more useful reading we could amplify it using the op amp, this is commonly used in sensors. LM 358 Op Amp S k i l l L e v e l : I n t e r m e d i a t e OVERVIEW The LM 358 is a duel single supply operational amplifier. As it is a single supply it eliminates the need for a duel power supply, thus

More information

LED level meter driver, 12-point, power scale, dot or bar display

LED level meter driver, 12-point, power scale, dot or bar display LED level meter driver, 12-point, power scale, dot or bar display The is a monolithic IC for LED power meter applications. The display level range is 9mVrms to 380mVrms (Typ.) divided into 12 points with

More information

EE 2274 DIODE OR GATE & CLIPPING CIRCUIT

EE 2274 DIODE OR GATE & CLIPPING CIRCUIT Prelab Part I: Diode OR Gate LTspice use 1N4002 EE 2274 DIODE OR GATE & CLIPPING CIRCUIT 1. Design a diode OR gate, Figure 1 in which the maximum current thru R1 I R1 = 9mA assume Vin = 5Vdc. Design the

More information

EXERCISES in ELECTRONICS and SEMICONDUCTOR ENGINEERING

EXERCISES in ELECTRONICS and SEMICONDUCTOR ENGINEERING Department of Electrical Drives and Power Electronics EXERCISES in ELECTRONICS and SEMICONDUCTOR ENGINEERING Valery Vodovozov and Zoja Raud http://learnelectronics.narod.ru Tallinn 2012 2 Contents Introduction...

More information

A Constant-current Source

A Constant-current Source A Constant-current Source Frequently, such as when you want to measure temperature with a silicon diode, it is desirable to have a source of a reproducible, constant current. Many laboratory power supplies

More information

Multi-Stage Amplifiers

Multi-Stage Amplifiers Experiment-4 Multi-Stage Amplifiers Introduction The objectives of this experiment are to examine the characteristics of several multi-stage amplifier configurations. Several of these will be breadboarded

More information

Chapter 5. Transistor bias circuits

Chapter 5. Transistor bias circuits Chapter 5 Transistor bias circuits 1 OJCTS Discuss the concept of dc biasing of a transistor for linear operation Analyze voltage-divider bias, base bias, emitter bias and collector-feedback bias circuits.

More information

Bipolar Junction Transistors

Bipolar Junction Transistors Bipolar Junction Transistors Physical Structure & Symbols NPN Emitter (E) n-type Emitter region p-type Base region n-type Collector region Collector (C) B C Emitter-base junction (EBJ) Base (B) (a) Collector-base

More information

LABORATORY WORK BOOK For The Course EL-236 Amplifiers and Oscillators

LABORATORY WORK BOOK For The Course EL-236 Amplifiers and Oscillators LABORATORY WORK BOOK For The Course EL-236 Amplifiers and Oscillators Name : Roll No. : Batch Year Dept. : : : Department of Electronic Engineering N.E.D. University of Engineering & Technology, Karachi

More information

Laboratory Exercise. Amplitude Modulation and Demodulation

Laboratory Exercise. Amplitude Modulation and Demodulation Laboratory Exercise Amplitude Modulation and Demodulation In this lab you will study electronics for amplitude modulation, and two different techniques for demodulation. Introduction All analog and many

More information