9.1 PYTHAGOREAN THEOREM (right triangles)


 Gilbert Hoover
 2 years ago
 Views:
Transcription
1 Simplifying Rdicls: ) 1 b) 60 c) 11 d) 3 e) 7 Solve: ) x 4 9 b) c) PYTHAGOREAN THEOREM (right tringles) c If tringle is right tringle then b, b re the legs * c is clled the hypotenuse (side opposite the right ngle) * c is lso the longest side b b 5 c h =. r = 1
2 3. Find the re of the tringle. Are = 4.Wht is the length of the digonl shown in the rectngulr box below? Length =
3 9. IS THE CONVERSE TRUE? Yes, If the lengths of the three sides of tringle stisfy the Pythgoren eqution, then the tringle is right tringle. If b, then the tringle is right tringle. The three sides tht work in the Pythgoren formul re clled Pythgoren Triples. Exmples of Pythgoren triples: (remember longest side is the hypotenuse) b b b. Is PYT right tringle? (yes/no) = Double, Triple,... The following re exmples of Pythgoren Primitives (Three lengths of right tringle with no common fctors) : Crete two new right tringle side lengths for ech of the primitives. Double Triple
4 1. Find the re of right tringle with hypotenuse tht mesures 17 cm nd one leg tht mesures 15 cm. 13. How high up on building will 15foot ldder rech if the foot of the ldder is plced five feet from the building?
5 9.3 TWO SPECIAL RIGHT TRIANGLES Number one: Isosceles Right Tringle c 1. c =. q = 1 Number two: tringle 60 Lbel the legs s : Shortest, Middle, Longest 30 Fill in the Angles: X X X X Equilterl X
6 Lets rewrite it without frctions: y y =.Find the re of the tringle below. Are = Find b using the qudrdic formul 30 b b= y y r =
7 4. Wht is the length of the hypotenuse of right tringle with longer leg of length 16 m? 5. Find the re of n isosceles tringle with bse length of 1 cm nd ech of the congruent sides hving lengths 10 cm Are = 6. Find the re of n equilterl tringle with sides mesuring 6 meters 7
8 Isosceles Right Tringle tringle 30 x 3 x x In n Isosceles tringle, the medin from the vertex ngle to the bse is lso perpendiculr bisector, ngle bisector, nd n ltitude. The bse ngles re lso congruent. Vertex Angle Leg Leg Bse Angle Bse Bse Angle 1. The following is n equilterl tringle. find x= y= 10cm 5 3 of cm 1 of y t x Look t the centroid pcket! 5cm 5cm y t x 5cm
9 . Find the re of the equilterl tringle using tringles. 6cm 3. AB = 10 cm, Find the re of the equilterl tringle( ltitude=medin=ngle bisector). Find the re of the circumscribed circle. (Hint: the perpendiculr bisector of ny cord goes through the center of the circle). A B C 4. AB = 5 3 cm, Find the re of the equilterl tringle, the re of the Circumscribed circle, nd the re of the inscribed circle. 9
10 9.4 WORD PROBLEMS A 5foot ldder is plced ginst building. The bottom of the ldder is 7 feet from the building. If the top to the ldder slips down 4 feet, how mny feet will the bottom slide out? No, it is not 4 fet. This is twostep problem, so drw it with two right tringles.
11 9.5 DISTANCE IN COORDINATE GEOMETRY Find the distnce between the points (3, 1) nd (6, 5) using right tringle. Hint: 1. plot the points,. use the line between the two points s the hypotenuse. Now we re goint to find the formul b D Distnce formul: D = 1. Find the distnce between (1, 0) nd (3, ). Leve your nswer in simple rdicl form. D. Find the distnce between (1, ) nd (3, 4). Leve your nswer in simple rdicl form. D 11
12 3.Find the distnce between (0, 5) nd (4, 3). Leve your nswer in simple rdicl form. 4. Find the distnce between (4, 3) nd (3, ). Leve your nswer in simple rdicl form. 5. Find the perimeter of tringle CDF with vertices C(,4), D ( 8,1), nd C(4,0). 6. If the distnce from point (x, 7) to (3,11) is 5, then find x.
13 EQUATION OF A CIRCLE: (x,y) represents ny point on the circle. Wht we re looking for is n eqution for the circle. If the distnce between the points (x, y) nd ( 1, ) is 3, then find x nd y. 1, 3 x, y 1. first mrk the point (1, ) nd find the points tht re 3 units wy. Wht shpe does it mke?. Plug the given informtion into the Pythgoren theorem. This is the eqution tht nswers the question. b x 1 y 3 Eqution for the given info x h y k r Eqution of circle where: h, k = r = 1. Find the eqution of the circle with : ) center t (5,4) nd rdius of 3 b) center t (0,0) nd rdius of 10. A circle with center ( 3, 5) psses through ( 9, 3). Find the circumference. Leve your nswer in terms of. 13
14
15 9.6 CIRCLES AND THE PYTHAGOREAN THEOREM Two previous conjectors tht crete right tringles: 1. A tngent to circle is perpendiculr to. Angles inscribed in semicircle re right ngles. the rdius drwn to the point of tngency. (the two tngents re lso congruent). Find the shded re. AB = 6 3 cm 3. Find the shded re. Are = 15
16
Sect 8.3 Triangles and Hexagons
13 Objective 1: Sect 8.3 Tringles nd Hexgons Understnding nd Clssifying Different Types of Polygons. A Polygon is closed twodimensionl geometric figure consisting of t lest three line segments for its
More informationRIGHT TRIANGLES AND THE PYTHAGOREAN TRIPLETS
RIGHT TRIANGLES AND THE PYTHAGOREAN TRIPLETS Known for over 500 yers is the fct tht the sum of the squres of the legs of right tringle equls the squre of the hypotenuse. Tht is +b c. A simple proof is
More informationPythagoras theorem and trigonometry (2)
HPTR 10 Pythgors theorem nd trigonometry (2) 31 HPTR Liner equtions In hpter 19, Pythgors theorem nd trigonometry were used to find the lengths of sides nd the sizes of ngles in rightngled tringles. These
More informationPROBLEMS 13  APPLICATIONS OF DERIVATIVES Page 1
PROBLEMS  APPLICATIONS OF DERIVATIVES Pge ( ) Wter seeps out of conicl filter t the constnt rte of 5 cc / sec. When the height of wter level in the cone is 5 cm, find the rte t which the height decreses.
More informationThe remaining two sides of the right triangle are called the legs of the right triangle.
10 MODULE 6. RADICAL EXPRESSIONS 6 Pythgoren Theorem The Pythgoren Theorem An ngle tht mesures 90 degrees is lled right ngle. If one of the ngles of tringle is right ngle, then the tringle is lled right
More informationGeometry 71 Geometric Mean and the Pythagorean Theorem
Geometry 71 Geometric Men nd the Pythgoren Theorem. Geometric Men 1. Def: The geometric men etween two positive numers nd is the positive numer x where: = x. x Ex 1: Find the geometric men etween the
More informationTriangles, Altitudes, and Area Instructor: Natalya St. Clair
Tringle, nd ltitudes erkeley Mth ircles 015 Lecture Notes Tringles, ltitudes, nd re Instructor: Ntly St. lir *Note: This M session is inspired from vriety of sources, including wesomemth, reteem Mth Zoom,
More informationRight Triangles LongTerm Memory Review Review 1
Review 1 1. Is the statement true or false? If it is false, rewrite it to make it true. A right triangle has two acute angles. 2 2. The Pythagorean Theorem for the triangle shown would be a b c. Fill in
More informationAddition and subtraction of rational expressions
Lecture 5. Addition nd subtrction of rtionl expressions Two rtionl expressions in generl hve different denomintors, therefore if you wnt to dd or subtrct them you need to equte the denomintors first. The
More informationThe area of the larger square is: IF it s a right triangle, THEN + =
8.1 Pythgoren Theorem nd 2D Applitions The Pythgoren Theorem sttes tht IF tringle is right tringle, THEN the sum of the squres of the lengths of the legs equls the squre of the hypotenuse lengths. Tht
More informationLesson 4.1 Triangle Sum Conjecture
Lesson 4.1 ringle um onjecture Nme eriod te n ercises 1 9, determine the ngle mesures. 1. p, q 2., y 3., b 31 82 p 98 q 28 53 y 17 79 23 50 b 4. r, s, 5., y 6. y t t s r 100 85 100 y 30 4 7 y 31 7. s 8.
More informationLesson 12.1 Trigonometric Ratios
Lesson 12.1 rigonometric Rtios Nme eriod Dte In Eercises 1 6, give ech nswer s frction in terms of p, q, nd r. 1. sin 2. cos 3. tn 4. sin Q 5. cos Q 6. tn Q p In Eercises 7 12, give ech nswer s deciml
More informationTwo special Righttriangles 1. The
Mth Right Tringle Trigonometry Hndout B (length of )  c  (length of side ) (Length of side to ) Pythgoren s Theorem: for tringles with right ngle ( side + side = ) + = c Two specil Righttringles. The
More informationLet us recall some facts you have learnt in previous grades under the topic Area.
6 Are By studying this lesson you will be ble to find the res of sectors of circles, solve problems relted to the res of compound plne figures contining sectors of circles. Ares of plne figures Let us
More informationLesson 8.1 Areas of Rectangles and Parallelograms
Leon 8.1 Are of Rectngle nd Prllelogrm In Eercie 1 4, find the re of the hded region. 1.. 1 cm 1 cm. 17 cm 4. 9 cm 5 cm 1.5 cm 1 cm cm cm 5. Rectngle ABCD h re 684 m nd width 44 m. Find it length. 6. Drw
More informationQuadrilaterals Here are some examples using quadrilaterals
Qudrilterls Here re some exmples using qudrilterls Exmple 30: igonls of rhomus rhomus hs sides length nd one digonl length, wht is the length of the other digonl? 4  Exmple 31: igonls of prllelogrm Given
More informationWorksheet 24: Optimization
Worksheet 4: Optimiztion Russell Buehler b.r@berkeley.edu 1. Let P 100I I +I+4. For wht vlues of I is P mximum? P 100I I + I + 4 Tking the derivtive, www.xkcd.com P (I + I + 4)(100) 100I(I + 1) (I + I
More informationLines and angles. Name. Use a ruler and pencil to draw: a 2 parallel lines. c 2 perpendicular lines. b 2 intersecting lines. Complete the following:
Lines nd s 1 Use ruler nd pencil to drw: 2 prllel lines 2 intersecting lines c 2 perpendiculr lines 2 Complete the following: drw in the digonls on this shpe mrk the interior s on this shpe c mrk equl
More informationGeometry Notes SIMILAR TRIANGLES
Similr Tringles Pge 1 of 6 SIMILAR TRIANGLES Objectives: After completing this section, you shoul be ble to o the following: Clculte the lengths of sies of similr tringles. Solve wor problems involving
More informationSTRAND I: Geometry and Trigonometry. UNIT I2 Trigonometric Problems: Text * * Contents. Section. I2.1 Mixed Problems Using Trigonometry
Mthemtics SKE: STRND I UNIT I Trigonometric Prolems: Text STRND I: Geometry nd Trigonometry I Trigonometric Prolems Text ontents Section * * * I. Mixed Prolems Using Trigonometry I. Sine nd osine Rules
More informationLines and Angles. 2. Straight line is a continuous set of points going on forever in both directions:
Lines nd Angles 1. Point shows position. A 2. Stright line is continuous set of points going on forever in oth directions: 3. Ry is line with one endpoint. The other goes on forever. G 4. Line segment
More informationThe Pythagorean Packet Everything Pythagorean Theorem
Name Date The Pythagorean Packet Everything Pythagorean Theorem Directions: Fill in each blank for the right triangle by using the words in the Vocab Bo. A Right Triangle These sides are called the of
More information11. PYTHAGORAS THEOREM
11. PYTHAGORAS THEOREM 111 Along the Nile 2 112 Proofs of Pythgors theorem 3 113 Finding sides nd ngles 5 114 Semiirles 7 115 Surds 8 116 Chlking hndll ourt 9 117 Pythgors prolems 10 118 Designing
More information1 PRECALCULUS READINESS DIAGNOSTIC TEST PRACTICE
PRECALCULUS READINESS DIAGNOSTIC TEST PRACTICE Directions: Study the smples, work the problems, then check your nswers t the end of ech topic. If you don t get the nswer given, check your work nd look
More informationFor the Final Exam, you will need to be able to:
Mth B Elementry Algebr Spring 0 Finl Em Study Guide The em is on Wednesdy, My 0 th from 7:00pm 9:0pm. You re lloed scientific clcultor nd " by 6" inde crd for notes. On your inde crd be sure to rite ny
More informationGeometry Review. Here are some formulas and concepts that you will need to review before working on the practice exam.
Geometry Review Here are some formulas and concepts that you will need to review before working on the practice eam. Triangles o Perimeter or the distance around the triangle is found by adding all of
More informationBrillouin Zones. Physics 3P41 Chris Wiebe
Brillouin Zones Physics 3P41 Chris Wiebe Direct spce to reciprocl spce * = 2 i j πδ ij Rel (direct) spce Reciprocl spce Note: The rel spce nd reciprocl spce vectors re not necessrily in the sme direction
More informationPark Forest Math Team. Meet #3. Geometry. Selfstudy Packet
Park Forest Math Team Meet #3 Selfstudy Packet Problem Categories for this Meet: 1. Mystery: Problem solving 2. : ngle measures in plane figures including supplements and complements 3. Number Theory:
More informationGeometry SOL G.11 G.12 Circles Study Guide
Geometry SOL G.11 G.1 Circles Study Guide Name Date Block Circles Review and Study Guide Things to Know Use your notes, homework, checkpoint, and other materials as well as flashcards at quizlet.com (http://quizlet.com/4776937/chapter10circlesflashcardsflashcards/).
More informationGeometry Notes PERIMETER AND AREA
Perimeter and Area Page 1 of 17 PERIMETER AND AREA Objectives: After completing this section, you should be able to do the following: Calculate the area of given geometric figures. Calculate the perimeter
More informationGeometry Unit 7 (Textbook Chapter 9) Solving a right triangle: Find all missing sides and all missing angles
Geometry Unit 7 (Textbook Chapter 9) Name Objective 1: Right Triangles and Pythagorean Theorem In many geometry problems, it is necessary to find a missing side or a missing angle of a right triangle.
More informationUse Geometry Expressions to create a more complex locus of points. Find evidence for equivalence using Geometry Expressions.
Lerning Objectives Loci nd Conics Lesson 3: The Ellipse Level: Preclculus Time required: 120 minutes In this lesson, students will generlize their knowledge of the circle to the ellipse. The prmetric nd
More informationQUANTITATIVE REASONING
Guide For Exminees InterUniversity Psychometric Entrnce Test QUNTITTIVE RESONING The Quntittive Resoning domin tests your bility to use numbers nd mthemticl concepts to solve mthemticl problems, s well
More informationGEOMETRY FINAL EXAM REVIEW
GEOMETRY FINL EXM REVIEW I. MTHING reflexive. a(b + c) = ab + ac transitive. If a = b & b = c, then a = c. symmetric. If lies between and, then + =. substitution. If a = b, then b = a. distributive E.
More informationThe Triangle and its Properties
THE TRINGLE ND ITS PROPERTIES 113 The Triangle and its Properties Chapter 6 6.1 INTRODUCTION triangle, you have seen, is a simple closed curve made of three line segments. It has three vertices, three
More informationSquare Roots and the Pythagorean Theorem
4.8 Square Roots and the Pythagorean Theorem 4.8 OBJECTIVES 1. Find the square root of a perfect square 2. Use the Pythagorean theorem to find the length of a missing side of a right triangle 3. Approximate
More informationIntermediate Algebra with Trigonometry. J. Avery 4/99 (last revised 11/03)
Intermediate lgebra with Trigonometry J. very 4/99 (last revised 11/0) TOPIC PGE TRIGONOMETRIC FUNCTIONS OF CUTE NGLES.................. SPECIL TRINGLES............................................ 6 FINDING
More information4 Geometry: Shapes. 4.1 Circumference and area of a circle. FM Functional Maths AU (AO2) Assessing Understanding PS (AO3) Problem Solving HOMEWORK 4A
Geometry: Shpes. Circumference nd re of circle HOMEWORK D C 3 5 6 7 8 9 0 3 U Find the circumference of ech of the following circles, round off your nswers to dp. Dimeter 3 cm Rdius c Rdius 8 m d Dimeter
More informationPlane figure geometry
2 lne figure geometry ontents: E F G H I Turning Mesuring ngles lssifying nd nming ngles omplementry nd supplementry ngles ngles in revolution isecting ngles onstructing 9 ngles to line lne shpes oints
More information4.1 Converse of the Pyth TH and Special Right Triangles
Name Per 4.1 Converse of the Pyth TH and Special Right Triangles CONVERSE OF THE PYTHGOREN THEOREM Can be used to check if a figure is a right triangle. If triangle., then BC is a Eample 1: Tell whether
More informationMathematics Higher Level
Mthemtics Higher Level Higher Mthemtics Exmintion Section : The Exmintion Mthemtics Higher Level. Structure of the exmintion pper The Higher Mthemtics Exmintion is divided into two ppers s detiled below:
More informationNCERT INTRODUCTION TO TRIGONOMETRY AND ITS APPLICATIONS. Trigonometric Ratios of the angle A in a triangle ABC right angled at B are defined as:
INTRODUCTION TO TRIGONOMETRY AND ITS APPLICATIONS (A) Min Concepts nd Results Trigonometric Rtios of the ngle A in tringle ABC right ngled t B re defined s: side opposite to A BC sine of A = sin A = hypotenuse
More information1. A person has 78 feet of fencing to make a rectangular garden. What dimensions will use all the fencing with the greatest area?
1. A person has 78 feet of fencing to make a rectangular garden. What dimensions will use all the fencing with the greatest area? (a) 20 ft x 19 ft (b) 21 ft x 18 ft (c) 22 ft x 17 ft 2. Which conditional
More informationThree squares with sides 3, 4, and 5 units are used to form the right triangle shown. In a right triangle, the sides have special names.
1 The Pythgoren Theorem MAIN IDEA Find length using the Pythgoren Theorem. New Voulry leg hypotenuse Pythgoren Theorem Mth Online glenoe.om Extr Exmples Personl Tutor SelfChek Quiz Three squres with
More informationNUMBER SYSTEMS CHAPTER 1. (A) Main Concepts and Results
CHAPTER NUMBER SYSTEMS Min Concepts nd Results Rtionl numbers Irrtionl numbers Locting irrtionl numbers on the number line Rel numbers nd their deciml expnsions Representing rel numbers on the number line
More informationThe Six Trigonometric Functions
CHAPTER 1 The Six Trigonometric Functions Copyright Cengage Learning. All rights reserved. SECTION 1.1 Angles, Degrees, and Special Triangles Copyright Cengage Learning. All rights reserved. Learning Objectives
More informationUnit 6 Solving Oblique Triangles  Classwork
Unit 6 Solving Oblique Tringles  Clsswork A. The Lw of Sines ASA nd AAS In geometry, we lerned to prove congruence of tringles tht is when two tringles re exctly the sme. We used severl rules to prove
More informationVectors 2. 1. Recap of vectors
Vectors 2. Recp of vectors Vectors re directed line segments  they cn be represented in component form or by direction nd mgnitude. We cn use trigonometry nd Pythgors theorem to switch between the forms
More informationCSU Fresno Problem Solving Session. Geometry, 17 March 2012
CSU Fresno Problem Solving Session Problem Solving Sessions website: http://zimmer.csufresno.edu/ mnogin/mfdprep.html Math Field Day date: Saturday, April 21, 2012 Math Field Day website: http://www.csufresno.edu/math/news
More informationGrade 6 Math Circles March 24/25, 2015 Pythagorean Theorem Solutions
Faculty of Mathematics Waterloo, Ontario NL 3G1 Centre for Education in Mathematics and Computing Grade 6 Math Circles March 4/5, 015 Pythagorean Theorem Solutions Triangles: They re Alright When They
More informationSolutions Section J: Perimeter and Area
Solutions Section J: Perimeter and Area 1. The 6 by 10 rectangle below has semicircles attached on each end. 6 10 a) Find the perimeter of (the distance around) the figure above. b) Find the area enclosed
More informationBasic Math Review. Numbers. Important Properties. Absolute Value PROPERTIES OF ADDITION NATURAL NUMBERS {1, 2, 3, 4, 5, }
ƒ Bsic Mth Review Numers NATURAL NUMBERS {1,, 3, 4, 5, } WHOLE NUMBERS {0, 1,, 3, 4, } INTEGERS {, 3,, 1, 0, 1,, } The Numer Line 5 4 3 1 0 1 3 4 5 Negtive integers Positive integers RATIONAL NUMBERS All
More informationSection 54 Trigonometric Functions
5 Trigonometric Functions Section 5 Trigonometric Functions Definition of the Trigonometric Functions Clcultor Evlution of Trigonometric Functions Definition of the Trigonometric Functions Alternte Form
More informationaddition, there are double entries for the symbols used to signify different parameters. These parameters are explained in this appendix.
APPENDIX A: The ellipse August 15, 1997 Becuse of its importnce in both pproximting the erth s shpe nd describing stellite orbits, n informl discussion of the ellipse is presented in this ppendix. The
More information. At first sight a! b seems an unwieldy formula but use of the following mnemonic will possibly help. a 1 a 2 a 3 a 1 a 2
7 CHAPTER THREE. Cross Product Given two vectors = (,, nd = (,, in R, the cross product of nd written! is defined to e: " = (!,!,! Note! clled cross is VECTOR (unlike which is sclr. Exmple (,, " (4,5,6
More informationCONIC SECTIONS. Chapter 11
CONIC SECTIONS Chpter 11 11.1 Overview 11.1.1 Sections of cone Let l e fied verticl line nd m e nother line intersecting it t fied point V nd inclined to it t n ngle α (Fig. 11.1). Fig. 11.1 Suppose we
More informationIntro to Circle Geometry By Raymond Cheong
Into to Cicle Geomety By Rymond Cheong Mny poblems involving cicles cn be solved by constucting ight tingles then using the Pythgoen Theoem. The min chllenge is identifying whee to constuct the ight tingle.
More informationMathematics in Art and Architecture GEK1518K
Mthemtics in Art nd Architecture GEK1518K Helmer Aslksen Deprtment of Mthemtics Ntionl University of Singpore slksen@mth.nus.edu.sg www.mth.nus.edu.sg/slksen/ The Golden Rtio The Golden Rtio Suppose we
More informationWarmup for Differential Calculus
Summer Assignment Wrmup for Differentil Clculus Who should complete this pcket? Students who hve completed Functions or Honors Functions nd will be tking Differentil Clculus in the fll of 015. Due Dte:
More information2 If a branch is prime, no other factors
Chpter 2 Multiples, nd primes 59 Find the prime of 50 by drwing fctor tree. b Write 50 s product of its prime. 1 Find fctor pir of the given 50 number nd begin the fctor tree (50 = 5 10). 5 10 2 If brnch
More informationPolynomial Functions. Polynomial functions in one variable can be written in expanded form as ( )
Polynomil Functions Polynomil functions in one vrible cn be written in expnded form s n n 1 n 2 2 f x = x + x + x + + x + x+ n n 1 n 2 2 1 0 Exmples of polynomils in expnded form re nd 3 8 7 4 = 5 4 +
More informationGeometry and Measure. 12am 1am 2am 3am 4am 5am 6am 7am 8am 9am 10am 11am 12pm
Reding Scles There re two things to do when reding scle. 1. Mke sure you know wht ech division on the scle represents. 2. Mke sure you red in the right direction. Mesure Length metres (m), kilometres (km),
More information51 Reteaching ( ) Midsegments of Triangles
51 Reteaching Connecting the midpoints of two sides of a triangle creates a segment called a midsegment of the triangle. Point X is the midpoint of AB. Point Y is the midpoint of BC. Midsegments of Triangles
More informationThe Pythagorean Theorem
CHPTER 9 The Pythgoren Theorem CHPTER 9 OBJECTIVES But serving up n ction, suggesting the dynmic in the sttic, hs become hobby of mine....the flowing on tht motionless plne holds my ttention to such degree
More informationb. Create a graph to show how far Maggie and Mike can travel based on the chart above.
Final Exam Review 1. Find the midpoint, the distance and the slope between (4,2) and (5, 3) 2. Jacinta hangs a picture 15 inches from the left side of a wall. How far from the edge of the wall should
More informationMDPT  Geometry Practice Problems. 1. ABC is an isosceles triangle with base BC. L1 and L2 are parallel. 1=80. Find 4.
MDPT  Geometry Practice Problems 1. C is an isosceles triangle with base C. L1 and L are parallel. 1=80. Find 4. L1 1 4 a. 80 b. 50 c. 45 d. 60. In the figure, the measure of arc C is 7 π / 4 and O is
More informationName Period 10/22 11/1 10/31 11/1. Chapter 4 Section 1 and 2: Classifying Triangles and Interior and Exterior Angle Theorem
Name Period 10/22 11/1 Vocabulary Terms: Acute Triangle Right Triangle Obtuse Triangle Scalene Isosceles Equilateral Equiangular Interior Angle Exterior Angle 10/22 Classify and Triangle Angle Theorems
More informationCCGPS UNIT 3 Semester 1 ANALYTIC GEOMETRY Page 1 of 32. Circles and Volumes Name:
GPS UNIT 3 Semester 1 NLYTI GEOMETRY Page 1 of 3 ircles and Volumes Name: ate: Understand and apply theorems about circles M91.G..1 Prove that all circles are similar. M91.G.. Identify and describe relationships
More informationRight Triangles and Trigonometry
9 Right Tringles nd Trigonometry 9.1 The Pythgoren Theorem 9. Specil Right Tringles 9.3 Similr Right Tringles 9.4 The Tngent Rtio 9.5 The Sine nd osine Rtios 9.6 Solving Right Tringles 9.7 Lw of Sines
More information2006 Geometry Form A Page 1
2006 Geometry Form Page 1 1. he hypotenuse of a right triangle is 12" long, and one of the acute angles measures 30 degrees. he length of the shorter leg must be: () 4 3 inches () 6 3 inches () 5 inches
More informationReview Problems for the Final of Math 121, Fall 2014
Review Problems for the Finl of Mth, Fll The following is collection of vrious types of smple problems covering sections.,.5, nd.7 6.6 of the text which constitute only prt of the common Mth Finl. Since
More informationTriangle congruence can be proved by: SAS. Identify the congruence theorem or postulate:
Geometry Week 14 sec. 7.1 sec. 7.3 section 7.1 Triangle congruence can be proved by: SAS ASA SSS SAA Identify the congruence theorem or postulate: SAS ASA SAA SAA SSS or SAS SSA* (*There is no SSA theorem.)
More informationCircle Name: Radius: Diameter: Chord: Secant:
12.1: Tangent Lines Congruent Circles: circles that have the same radius length Diagram of Examples Center of Circle: Circle Name: Radius: Diameter: Chord: Secant: Tangent to A Circle: a line in the plane
More informationSquare Roots Teacher Notes
Henri Picciotto Squre Roots Techer Notes This unit is intended to help students develop n understnding of squre roots from visul / geometric point of view, nd lso to develop their numer sense round this
More informationWarm Up. Use A ( 2, 3) and B (1, 0) 1. Find the slope of AB. 2. Find the midpoint of AB. 3. Find the distance of AB. 4. Simplify.
Use A ( 2, 3) and B (1, 0) 1. Find the slope of AB. 2. Find the midpoint of AB. 3. Find the distance of AB. Warm Up 4. Simplify. 5. Draw an example of vertical angles. GOALS Develop and apply the
More informationSample Problems. 3. Find the missing leg of the right triangle shown on the picture below.
Lecture Notes The Pythagorean Theorem page 1 Sample Problems 1. Could the three line segments given below be the three sides of a right triangle? Explain your answer. a) 6 cm; 10 cm; and 8 cm b) 7 ft,
More informationThe Math Learning Center PO Box 12929, Salem, Oregon 97309 0929 Math Learning Center
Resource Overview Quntile Mesure: Skill or Concept: 1010Q Determine perimeter using concrete models, nonstndrd units, nd stndrd units. (QT M 146) Use models to develop formuls for finding res of tringles,
More informationOperations with Polynomials
38 Chpter P Prerequisites P.4 Opertions with Polynomils Wht you should lern: Write polynomils in stndrd form nd identify the leding coefficients nd degrees of polynomils Add nd subtrct polynomils Multiply
More informationSolve each right triangle. Round side measures to the nearest tenth and angle measures to the nearest degree.
Solve each right triangle. Round side measures to the nearest tenth and angle measures to the nearest degree. 42. The sum of the measures of the angles of a triangle is 180. Therefore, The sine of an angle
More informationThe Parallelogram Law. Objective: To take students through the process of discovery, making a conjecture, further exploration, and finally proof.
The Prllelogrm Lw Objective: To tke students through the process of discovery, mking conjecture, further explortion, nd finlly proof. I. Introduction: Use one of the following Geometer s Sketchpd demonstrtion
More informationAlgebra Geometry Glossary. 90 angle
lgebra Geometry Glossary 1) acute angle an angle less than 90 acute angle 90 angle 2) acute triangle a triangle where all angles are less than 90 3) adjacent angles angles that share a common leg Example:
More informationIsosceles triangles. Key Words: Isosceles triangle, midpoint, median, angle bisectors, perpendicular bisectors
Isosceles triangles Lesson Summary: Students will investigate the properties of isosceles triangles. Angle bisectors, perpendicular bisectors, midpoints, and medians are also examined in this lesson. A
More informationFinal Review Problems Geometry AC Name
Final Review Problems Geometry Name SI GEOMETRY N TRINGLES 1. The measure of the angles of a triangle are x, 2x+6 and 3x6. Find the measure of the angles. State the theorem(s) that support your equation.
More informationTopics Covered on Geometry Placement Exam
Topics Covered on Geometry Placement Exam  Use segments and congruence  Use midpoint and distance formulas  Measure and classify angles  Describe angle pair relationships  Use parallel lines and transversals
More informationUnit 3 Quadrilaterals. Isosceles Right Triangle Reflections
Triner/Instructor Notes: Qudrilterls Isosceles Right Tringles Reflections Unit 3 Qudrilterls Isosceles Right Tringle Reflections Overview: Objective: Prticipnts develop the properties of squres through
More informationPicture. Right Triangle. Acute Triangle. Obtuse Triangle
Name Perpendicular Bisector of each side of a triangle. Construct the perpendicular bisector of each side of each triangle. Point of Concurrency Circumcenter Picture The circumcenter is equidistant from
More informationPicture. Right Triangle. Acute Triangle. Obtuse Triangle
Name Perpendicular Bisector of each side of a triangle. Construct the perpendicular bisector of each side of each triangle. Point of Concurrency Circumcenter Picture The circumcenter is equidistant from
More informationPrealgebra 7* In your group consider the following problems:
Prelger * Group Activit # Group Memers: In our group consider the following prolems: 1) If ever person in the room, including the techer, were to shke hnds with ever other person ectl one time, how mn
More informationFor a solid S for which the cross sections vary, we can approximate the volume using a Riemann sum. A(x i ) x. i=1.
Volumes by Disks nd Wshers Volume of cylinder A cylinder is solid where ll cross sections re the sme. The volume of cylinder is A h where A is the re of cross section nd h is the height of the cylinder.
More informationThe Quadratic Formula and the Discriminant
99 The Qudrtic Formul nd the Discriminnt Objectives Solve qudrtic equtions by using the Qudrtic Formul. Determine the number of solutions of qudrtic eqution by using the discriminnt. Vocbulry discriminnt
More information114 Areas of Regular Polygons and Composite Figures
1. In the figure, square ABDC is inscribed in F. Identify the center, a radius, an apothem, and a central angle of the polygon. Then find the measure of a central angle. Center: point F, radius:, apothem:,
More informationa c Pythagorean Theorem: a 2 + b 2 = c 2
Section 2.1: The Pythagorean Theorem The Pythagorean Theorem is a formula that gives a relationship between the sides of a right triangle The Pythagorean Theorem only applies to RIGHT triangles. A RIGHT
More information(a) 5 square units. (b) 12 square units. (c) 5 3 square units. 3 square units. (d) 6. (e) 16 square units
1. Find the area of parallelogram ACD shown below if the measures of segments A, C, and DE are 6 units, 2 units, and 1 unit respectively and AED is a right angle. (a) 5 square units (b) 12 square units
More informationSolution: Let x be the larger number and y the smaller number.
Problem The sum of two numbers is 00 The lrger number minus the smller number is Find the numbers [Problem submitted by Vin Lee, LACC Professor of Mthemtics Source: Vin Lee] Solution: Let be the lrger
More informationConjectures for Geometry for Math 70 By I. L. Tse
Conjectures for Geometry for Math 70 By I. L. Tse Chapter Conjectures 1. Linear Pair Conjecture: If two angles form a linear pair, then the measure of the angles add up to 180. Vertical Angle Conjecture:
More informationUnit 3 Practice Test. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.
Name: lass: ate: I: Unit 3 Practice Test Multiple hoice Identify the choice that best completes the statement or answers the question. The radius, diameter, or circumference of a circle is given. Find
More informationDETERMINANTS. ] of order n, we can associate a number (real or complex) called determinant of the matrix A, written as det A, where a ij. = ad bc.
Chpter 4 DETERMINANTS 4 Overview To every squre mtrix A = [ ij ] of order n, we cn ssocite number (rel or complex) clled determinnt of the mtrix A, written s det A, where ij is the (i, j)th element of
More informationGEOMETRY CONCEPT MAP. Suggested Sequence:
CONCEPT MAP GEOMETRY August 2011 Suggested Sequence: 1. Tools of Geometry 2. Reasoning and Proof 3. Parallel and Perpendicular Lines 4. Congruent Triangles 5. Relationships Within Triangles 6. Polygons
More informationConjectures. Chapter 2. Chapter 3
Conjectures Chapter 2 C1 Linear Pair Conjecture If two angles form a linear pair, then the measures of the angles add up to 180. (Lesson 2.5) C2 Vertical Angles Conjecture If two angles are vertical
More informationMAT 080Algebra II Applications of Quadratic Equations
MAT 080Algebra II Applications of Quadratic Equations Objectives a Applications involving rectangles b Applications involving right triangles a Applications involving rectangles One of the common applications
More information