RESONANCE AND FILTERS

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "RESONANCE AND FILTERS"

Transcription

1 RESONANCE AND FILTERS Experiment 4, Resonant Frequency and Impedance of a Parallel Circuit, For more courses visit

2 OBJECTIVES: 1. To demonstrate the resonant frequency of a parallel LC circuit can be determined either experimentally (from a working circuit) or theoretically (using circuit component values). 2. To verify by experimental means that the impedance of a parallel resonant circuit is maximum at resonance.

3 3. To show the impedance of a parallel LC circuit at resonance (Z O ) is much greater than either the inductive or capacitance reactance of the branch circuits,

4 INTRODUCTION Parallel Resonance is not as straight forward as series resonance. When the Q is below 10, the circuit resistance makes most circuit calculation inaccurate. When the Q is above 10, the formulas in this experiment are reasonably accurate.

5 At resonance, I L has the same magnitude as X C, and the f O (resonant frequency) is still as shown below:

6 The impedance of a parallel L C circuit at resonance (Z O ) is much greater than the reactance of either branch circuit. Below is the formulas for the impedance at resonance:

7 LC PARALLEL RESONANT PRACTICE CKT

8 LC PARALLEL RESONANT PRACTICE CKT MATH

9 The practical solution in predicting or finding f O in a working circuit is dependent upon the impedance of a parallel circuit at the resonant frequency. Z O is maximum in the previous circuit, so I O will be at its minimum level The following circuit is a good test circuit for determining resonant frequency

10 TEST CIRCUIT / RESONANT FREQUENCY

11 CIRCUIT / RESONANT FREQUENCY PICTORIAL

12 PARTS REQUIRED mh ferrite coil µf disc capacitor (103) kω potentiometer (use the one on the trainer) µf electrolytic capacitor

13 PROCEDURE Note: During this experiment, you will be asked to make both resistance and voltage measurements. Take your time in making the measurements Remember to zero your ohmmeter before taking the resistance measurements

14 1. Construct the circuit shown on the following slide. (previous circuit shown) The component values are as follows: a) C = 0.01 µf b) L = 107 mh c) R 1 = 100 kω (use terminals 1 and 3 of the 100 k potentiometer on the trainer) 2. Turn the trainer on. a) Set the range switch to x 10 b) Set FREQ knob to maximum CCW position

15 3. Set your meter on the 10 VAC scale, and connect it across R 1 4. Rotate the FREQ knob until a dip or null is shown on the multimeter. a) Be very careful to get the exact null point! b) A little variation will cause a large difference in your readings

16 c) Mark this point with a soft lead pencil for future reference. (This is the f O of the circuit) d) Estimate the value of the resonant frequency, and record the data in the Experiment 4 data table e) Shut off the trainer 5. Use the following equation to calculate f O

17 a) Record this value in the data table for experiment 4 b) Compare the theoretical value for f O with the experimental value of f O, obtained in step 4. (The values should be close.) (Steps 6 through 12 will provide the data to determine the impedance of the circuit at resonance.)

18 6. Use the previous circuit except modify it by moving the wire from terminal 3 of the 100 kω potentiometer to pin 2 of 100 kω the potentiometer NOTE: Remember if the voltage drop is the same across two components in a series circuit, the impedances will be equal. Also note the components connected between points A and B are in series with R 1.

19 Therefore, if the voltage drop across points A and B is the same as the voltage drop across R 1, then the resistance of R 1 is the same as the impedance across terminals A and B.

20 7. Turn on the trainer a) Make sure the FREQ knob hasn t moved from the resonant frequency calibration point in step 4. b) The purpose of this procedure is to adjust the variable resistor (potentiometer) so that the voltage drop across the resistor (E R ) and the voltage drop across terminals A and B are equal c) Record their value in the Exp. 4, data table.

21 8. Shut off the trainer. a) Disconnect the variable resistor, and measure the resistance between terminals 1 and 2. b) Record the value in the Exp. 4, data table 9. Repeat steps 7 & 8, except set the FREQ knob to the nearest frequency calibration to the left of the resonant frequency

22 9. Continued a) The data will provide the impedance value at a frequency that is less than the resonant frequency 8. Repeat steps 7 & 8, except set the FREQ knob to the nearest frequency calibration to the right of the resonant frequency a) The data will provide the impedance value at a frequency that is greater than the resonant frequency

23 11. Zero the ohmmeter on the x 1 scale. Disconnect the ferrite coil and measure its resistance. a) Record the value in the Exp. 4, data table 12. Calculate the values of X L and Q of the coil using coil 107mH at the resonant frequency of 4867 Hz. a) Record the value in the Exp. 4, data table

24 13. Calculate the impedance of the circuit using either of the below equations. a) Record the value in the Exp. 4, data table NOTE: Under the best of laboratory conditions, the impedance at resonance is difficult to measure. A realistic ratio between the calculated impedance and the impedance measured above is approximately 10:1. In other words, if the calculated impedance is 500,000W, then a measured impedance of 50,000W is acceptable.

25 14. Compare the data obtained in step 8 (impedance at resonant frequency) to the calculated impedance value. Were your results as expected? If not, why not?

26 CIE RESULTS The data obtained when CIE performed this experiment is listed in the Experiment 4 data table. If you coil resistance is not 120W, your data may be considerably different. Note: The estimated resonant frequency of 5000 Hz compares favorably with the theoretical value of 4867 Hz.

27 1422-1, EXPERIMENT 4, DATA TABLE

28 The impedance of the circuit reaches the maximum at resonance. The data clearly shows that at some frequency below resonance, Z= 6740 W; at resonance, Z O = 65,400 W; and at some frequency greater than resonance, Z = 1640 W.

29 Initially, when one compares the calculated Z O (89 KW) to the measured value of 65.4 KW, it would seem the results are unacceptable. However, when circuit conditions, test equipment, and technique are taken into consideration, the calculated value is quite good.

30 FINAL DISCUSSION Using laboratory techniques, we were able to predict the resonant frequency of a parallel circuit to within 3% of the theoretical value. This prediction was based on the circuit operation. (Z of the circuit is maximum at resonance.)

31 The rise of impedance values to a maximum level was verified by the following data: at some frequency below resonance, Z= 6740 W; at resonance, Z O = 65,400 W; and at some frequency greater than resonance, Z = 1640 W

32 The major discrepancy is the comparison between the calculated impedance and the measured value. This is where certain circuit conditions can sharply reduce the actual circuit impedance. These conditions deal with the value of Q, and with the circuit loading of the meter.

33 QUESTIONS?

34 RESOURCES Rubenstein, C.F. (2001, January). Resonance and Filters. Lesson : Experiment 1, Resonant Frequency and Circuit Impedance. Cleveland: Cleveland Institute of Electronics.

35 THE END Developed and Produced by the Instructors in the CIE Instruction Department. Copyright 08/2012 All Rights Reserved /August 2012

RESONANCE AND FILTERS

RESONANCE AND FILTERS 1422-1 RESONANCE AND FILTERS Experiment 5, Current in a Parallel Resonant Circuit, For more courses visit www.cie-wc.edu OBJECTIVES: 1. To verify by experiment, that the line current (I line ) is at its

More information

RESONANCE AND FILTERS

RESONANCE AND FILTERS 1422-1 RESONANCE AND FILTERS Experiment 1, Resonant Frequency and Circuit Impedance For more courses visit www.cie-wc.edu OBJECTIVES 1. To verify experimentally our theoretical predictions concerning the

More information

More courses at

More courses at More courses at www.cie-wc.edu OBJECTIVES 1. To measure the current, voltage, and power gains of the CC amplifier 2. To measure the input impedance of the CC amplifier CC = Common Collector INTRODUCTION

More information

SERIES-PARALLEL DC CIRCUITS

SERIES-PARALLEL DC CIRCUITS Name: Date: Course and Section: Instructor: EXPERIMENT 1 SERIES-PARALLEL DC CIRCUITS OBJECTIVES 1. Test the theoretical analysis of series-parallel networks through direct measurements. 2. Improve skills

More information

ECE215 Lecture 16 Date:

ECE215 Lecture 16 Date: Lecture 16 Date: 20.10.2016 Bode Plot (contd.) Series and Parallel Resonance Example 1 Find the transfer function H(ω) with this Bode magnitude plot Example 2 Find the transfer function H(ω) with this

More information

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE. Department of Electrical and Computer Engineering

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE. Department of Electrical and Computer Engineering UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering Experiment No. 9 - Resonance in Series and parallel RLC Networks Overview: An important consideration in the

More information

LRC Circuits. Purpose. Principles PHYS 2211L LAB 7

LRC Circuits. Purpose. Principles PHYS 2211L LAB 7 Purpose This experiment is an introduction to alternating current (AC) circuits. Using the oscilloscope, we will examine the voltage response of inductors, resistors and capacitors in series circuits driven

More information

Chapter 13. RLC Circuits and Resonance. Objectives

Chapter 13. RLC Circuits and Resonance. Objectives Chapter 13 RLC Circuits and Resonance Objectives Determine the impedance of a series RLC circuit Analyze series RLC circuits Analyze a circuit for series resonance Analyze series resonant filters Analyze

More information

ALTERNATING CURRENTS

ALTERNATING CURRENTS ALTERNATING CURRENTS VERY SHORT ANSWER QUESTIONS Q-1. What is the SI unit of? Q-2. What is the average value of alternating emf over one cycle? Q-3. Does capacitor allow ac to pass through it? Q-4. What

More information

Electronic Components. Electronics. Resistors and Basic Circuit Laws. Basic Circuits. Basic Circuit. Voltage Dividers

Electronic Components. Electronics. Resistors and Basic Circuit Laws. Basic Circuits. Basic Circuit. Voltage Dividers Electronics most instruments work on either analog or digital signals we will discuss circuit basics parallel and series circuits voltage dividers filters high-pass, low-pass, band-pass filters the main

More information

EXPERIMENT 5: SERIES AND PARALLEL RLC RESONATOR CIRCUITS

EXPERIMENT 5: SERIES AND PARALLEL RLC RESONATOR CIRCUITS EXPERIMENT 5: SERIES AND PARALLEL RLC RESONATOR CIRCUITS Equipment List S 1 BK Precision 4011 or 4011A 5 MHz Function Generator OS BK 2120B Dual Channel Oscilloscope V 1 BK 388B Multimeter L 1 Leeds &

More information

RLC Series Resonance

RLC Series Resonance RLC Series Resonance 11EM Object: The purpose of this laboratory activity is to study resonance in a resistor-inductor-capacitor (RLC) circuit by examining the current through the circuit as a function

More information

Practice Problems - Chapter 33 Alternating Current Circuits

Practice Problems - Chapter 33 Alternating Current Circuits Multiple Choice Practice Problems - Chapter 33 Alternating Current Circuits 4. A high-voltage powerline operates at 500 000 V-rms and carries an rms current of 500 A. If the resistance of the cable is

More information

Lesson 1452, Optoelectronics. Experiment 6, Photodiode and Phototransistor Current Measurements

Lesson 1452, Optoelectronics. Experiment 6, Photodiode and Phototransistor Current Measurements Lesson 1452, Optoelectronics Experiment 6, Photodiode and Phototransistor Current Measurements Objectives 1) To show that current through a photodiode increases as the light falling on the device increases.

More information

Lecture PowerPoints. Chapter 19 Physics: Principles with Applications, 7th edition Giancoli

Lecture PowerPoints. Chapter 19 Physics: Principles with Applications, 7th edition Giancoli Lecture PowerPoints Chapter 19 Physics: Principles with Applications, 7th edition Giancoli This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching

More information

EXPERIMENT 4:- MEASUREMENT OF REACTANCE OFFERED BY CAPACITOR IN DIFFERENT FREQUENCY FOR R-C CIRCUIT

EXPERIMENT 4:- MEASUREMENT OF REACTANCE OFFERED BY CAPACITOR IN DIFFERENT FREQUENCY FOR R-C CIRCUIT Kathmandu University Department of Electrical and Electronics Engineering BASIC ELECTRICAL LAB (ENGG 103) EXPERIMENT 4:- MEASUREMENT OF REACTANCE OFFERED BY CAPACITOR IN DIFFERENT FREQUENCY FOR R-C CIRCUIT

More information

Experiment 10 Inductors in AC Circuits

Experiment 10 Inductors in AC Circuits Experiment 1 Inductors in AC Circuits Preparation Prepare for this week's experiment by looking up inductors, self inductance, enz's aw, inductive reactance, and R circuits Principles An inductor is made

More information

PHY 101 Lab 7 on Electric circuits: Direct current circuits Your name: Other team members:

PHY 101 Lab 7 on Electric circuits: Direct current circuits Your name: Other team members: PHY 101 Lab 7 on Electric circuits: Direct current circuits Your name: Other team members: Goals: To explore the basic principles of electric circuits, and how to measure them. Materials: Electrical resistors

More information

Ohm s and Kirchhoff s Circuit Laws. Abstract. Introduction and Theory. EE 101 Fall 2007 Date: Lab Section #: Lab #2

Ohm s and Kirchhoff s Circuit Laws. Abstract. Introduction and Theory. EE 101 Fall 2007 Date: Lab Section #: Lab #2 EE 101 Fall 2007 Date: Lab Section #: Lab #2 Name: Ohm s and Kirchhoff s Circuit Laws Abstract Rev. 20070725JPB Partner: Electrical circuits can be described with mathematical expressions. In fact, it

More information

Equipment: Power Supply, DAI, Variable resistance (8311), Variable inductance (8321)

Equipment: Power Supply, DAI, Variable resistance (8311), Variable inductance (8321) Lab 4: 3-phase circuits. Objective: to study voltage-current relationships in 3-phase circuits; to learn to make delta and Y connections; to calculate and measure real, apparent, and reactive powers. Equipment:

More information

CIRCUITS AND SYSTEMS LABORATORY EXERCISE 6 TRANSIENT STATES IN RLC CIRCUITS AT DC EXCITATION

CIRCUITS AND SYSTEMS LABORATORY EXERCISE 6 TRANSIENT STATES IN RLC CIRCUITS AT DC EXCITATION CIRCUITS AND SYSTEMS LABORATORY EXERCISE 6 TRANSIENT STATES IN RLC CIRCUITS AT DC EXCITATION 1. DEVICES AND PANELS USED IN EXERCISE The following devices are to be used in this exercise: oscilloscope HP

More information

Series and Parallel Circuits

Series and Parallel Circuits Series and Parallel Circuits Ver. 1.2 In this experiment we will investigate the properties of several resistors connected in series and parallel. Our purpose is to verify the simple equations for the

More information

R A _ + Figure 2: DC circuit to verify Ohm s Law. R is the resistor, A is the Ammeter, and V is the Voltmeter. A R _ +

R A _ + Figure 2: DC circuit to verify Ohm s Law. R is the resistor, A is the Ammeter, and V is the Voltmeter. A R _ + Physics 221 Experiment 3: Simple DC Circuits and Resistors October 1, 2008 ntroduction n this experiment, we will investigate Ohm s Law, and study how resistors behave in various combinations. Along the

More information

Q26.1 Which of the two arrangements shown has the smaller equivalent resistance between points a and b? A. the series arrangement B.

Q26.1 Which of the two arrangements shown has the smaller equivalent resistance between points a and b? A. the series arrangement B. Q26.1 Which of the two arrangements shown has the smaller equivalent resistance between points a and b? A. the series arrangement B. the parallel arrangement C. The equivalent resistance is the same for

More information

Lab #2: Parallel and Series Resistors

Lab #2: Parallel and Series Resistors Fall 2013 EELE 250 Circuits, Devices, and Motors Lab #2: Parallel and Series Resistors Scope: Use a multimeter to measure resistance, DC voltage, and current Use the color code for resistors. Use the prototype-board

More information

L-C-R Series and parallel Resonance

L-C-R Series and parallel Resonance Page o 6 L-C-R Series and parallel Resonance Aim :- To study the requency response and to ind resonant requencies o L-C-R series and parallel circuits. Also to ind the quality actor and band width in L-C-R

More information

Basic AC Reactive Components IMPEDANCE

Basic AC Reactive Components IMPEDANCE Basic AC Reactive Components Whenever inductive and capacitive components are used in an AC circuit, the calculation of their effects on the flow of current is important. EO 1.9 EO 1.10 EO 1.11 EO 1.12

More information

ELECTRICAL MEASURMENTS & MEASURING INSTRUMENTS (EE-211-F) Experiment 1

ELECTRICAL MEASURMENTS & MEASURING INSTRUMENTS (EE-211-F) Experiment 1 Experiment Name: Experiment 1 To Study construction of different types of meters & study how to connect them in a circuit. Objective: Study of the operation of Moving Coil type, Moving Iron type and Dynamometer

More information

Resonance. Objectives

Resonance. Objectives Resonance Objectives Determine the impedance of a series RLC circuit Analyze series RLC circuits Analyze a circuit for series resonance Analyze series resonant filters Analyze parallel RLC circuits Analyze

More information

Chapter 15 10/14/2014

Chapter 15 10/14/2014 Chapter 15 Analyze series and parallel ac circuits to find Voltage Current Power Total impedance, admittance Apply known circuit theories Kirchhoff s current, voltage laws Voltage or current divider rule

More information

Teacher s Guide Physics Labs with Computers, Vol C P52: LRC Circuit. Teacher s Guide - Activity P52: LRC Circuit (Voltage Sensor)

Teacher s Guide Physics Labs with Computers, Vol C P52: LRC Circuit. Teacher s Guide - Activity P52: LRC Circuit (Voltage Sensor) Teacher s Guide Physics Labs with Computers, Vol. 2 012-06101C P52: LRC Circuit Teacher s Guide - Activity P52: LRC Circuit (Voltage Sensor) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win)

More information

Three phase circuits

Three phase circuits Three phase circuits THREE PHASE CIRCUITS THREE-PHASE ADVANTAGES 1. The horsepower rating of three-phase motors and the kva rating of three-phase transformers are 150% greater than single-phase motors

More information

EXPERIMENT 6 CHARGE SHARING BY CAPACITORS

EXPERIMENT 6 CHARGE SHARING BY CAPACITORS 60 6- I. THEORY EXPERIMENT 6 HARGE SHARING BY APAITORS The purpose of this experiment is to test the theoretical equations governing charge sharing by capacitors and to measure the capacitance of an "unknown"

More information

Kirchhoff s Laws. Kirchhoff's Law #1 - The sum of the currents entering a node must equal the sum of the currents exiting a node.

Kirchhoff s Laws. Kirchhoff's Law #1 - The sum of the currents entering a node must equal the sum of the currents exiting a node. Kirchhoff s Laws There are two laws necessary for solving circuit problems. For simple circuits, you have been applying these equations almost instinctively. Kirchhoff's Law #1 - The sum of the currents

More information

Experiment #11: LRC Circuit (Power Amplifier, Voltage Sensor)

Experiment #11: LRC Circuit (Power Amplifier, Voltage Sensor) Experiment #11: LRC Circuit (Power Amplifier, Voltage Sensor) Concept: circuits Time: 30 m SW Interface: 750 Windows file: RLC.SWS EQUIPMENT NEEDED Science Workshop Interface Power Amplifier (2) Voltage

More information

Equipment: Power Supply, DAI, Transformer (8341), Variable resistance (8311), Variable inductance (8321), Variable capacitance (8331)

Equipment: Power Supply, DAI, Transformer (8341), Variable resistance (8311), Variable inductance (8321), Variable capacitance (8331) Lab 5: Single-phase transformer operations. Objective: to examine the design of single-phase transformers; to study the voltage and current ratios of transformers; to study the voltage regulation of the

More information

PHYSICS 176. Experiment 3. Kirchhoff's Laws. Three resistors (Nominally: 1 Kilohm, 2 Kilohm, 3 Kilohm).

PHYSICS 176. Experiment 3. Kirchhoff's Laws. Three resistors (Nominally: 1 Kilohm, 2 Kilohm, 3 Kilohm). PHYSICS 176 Experiment 3 Kirchhoff's Laws Equipment: Supplies: Digital Multimeter, Power Supply (0-20 V.). Three resistors (Nominally: 1 Kilohm, 2 Kilohm, 3 Kilohm). A. Kirchhoff's Loop Law Suppose that

More information

Rectifiers and filters

Rectifiers and filters Page 1 of 7 Rectifiers and filters Aim : - To construct a DC power supply and to find the percentage of ripple-factor and percentage of regulation. Apparatus :- Transformer 230/15 ( step-down), four IN

More information

Filters and Waveform Shaping

Filters and Waveform Shaping Physics 333 Experiment #3 Fall 211 Filters and Waveform Shaping Purpose The aim of this experiment is to study the frequency filtering properties of passive (R, C, and L) circuits for sine waves, and the

More information

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE. Department of Electrical and Computer Engineering

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE. Department of Electrical and Computer Engineering UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering Experiment No. 6 Precision Resistance Measurements Introduction: It is sometimes necessary to make resistance

More information

EXPERIMENT 7 OHM S LAW, RESISTORS IN SERIES AND PARALLEL

EXPERIMENT 7 OHM S LAW, RESISTORS IN SERIES AND PARALLEL 260 7- I. THEOY EXPEIMENT 7 OHM S LAW, ESISTOS IN SEIES AND PAALLEL The purposes of this experiment are to test Ohm's Law, to study resistors in series and parallel, and to learn the correct use of ammeters

More information

Step response of an RLC series circuit

Step response of an RLC series circuit School of Engineering Department of Electrical and Computer Engineering 332:224 Principles of Electrical Engineering II Laboratory Experiment 5 Step response of an RLC series circuit 1 Introduction Objectives

More information

PHYSICS 111 LABORATORY Experiment #3 Current, Voltage and Resistance in Series and Parallel Circuits

PHYSICS 111 LABORATORY Experiment #3 Current, Voltage and Resistance in Series and Parallel Circuits PHYSCS 111 LABORATORY Experiment #3 Current, Voltage and Resistance in Series and Parallel Circuits This experiment is designed to investigate the relationship between current and potential in simple series

More information

RLC Resonant Circuits

RLC Resonant Circuits C esonant Circuits Andrew McHutchon April 20, 203 Capacitors and Inductors There is a lot of inconsistency when it comes to dealing with reactances of complex components. The format followed in this document

More information

Episode 118: Potential dividers

Episode 118: Potential dividers Episode 118: Potential dividers This episode introduces the use of a potential divider as a source of variable pd. Students will also learn to use potential dividers to detect temperature or light levels.

More information

Characterizing Resonant Series RLC Circuits : Two Challenging Experiments Using Either LabView. Software of National Instruments or VEE of Hewlett

Characterizing Resonant Series RLC Circuits : Two Challenging Experiments Using Either LabView. Software of National Instruments or VEE of Hewlett Characterizing Resonant Series RLC Circuits : Two Challenging Experiments Using Either LabView Software of National Instruments or VEE of Hewlett Packard Software for Data Acquisition Via the GPIB Bus

More information

VALLIAMMAI ENGINEERING COLLEGE SRM NAGAR, KATTANKULATHUR

VALLIAMMAI ENGINEERING COLLEGE SRM NAGAR, KATTANKULATHUR VALLIAMMAI ENGINEERING COLLEGE SRM NAGAR, KATTANKULATHUR-603 203 DEPARTMENT OF ELECTRONICS AND INSTRUMENTATION ENGINEERING EI6301-ELECTRICAL MEASUREMENTS QUESTION BANK UNIT I MEASUREMNET OF VOLTAGE AND

More information

ECE201 Laboratory 1 Basic Electrical Equipment and Ohm s and Kirchhoff s Laws (Created by Prof. Walter Green, Edited by Prof. M. J.

ECE201 Laboratory 1 Basic Electrical Equipment and Ohm s and Kirchhoff s Laws (Created by Prof. Walter Green, Edited by Prof. M. J. ECE201 Laboratory 1 Basic Electrical Equipment and Ohm s and Kirchhoff s Laws (Created by Prof. Walter Green, Edited by Prof. M. J. Roberts) Objectives The objectives of Laboratory 1 are learn to operate

More information

ECE207 Electrical Engineering Fall Lab 1 Nodal Analysis, Capacitor and Inductor Models

ECE207 Electrical Engineering Fall Lab 1 Nodal Analysis, Capacitor and Inductor Models Lab 1 Nodal Analysis, Capacitor and Inductor Models Objectives: At the conclusion of this lab, students should be able to: use the NI mydaq to power a circuit using the power supply and function generator

More information

Experiment 8 Series-Parallel Circuits

Experiment 8 Series-Parallel Circuits Experiment 8 Series-Parallel Circuits EL 111 - DC Fundamentals By: Walter Banzhaf, E.K. Smith, and Winfield Young University of Hartford Ward College of Technology Objectives: 1. For the student to measure

More information

The current that flows is determined by the potential difference across the conductor and the resistance of the conductor (Ohm s law): V = IR P = VI

The current that flows is determined by the potential difference across the conductor and the resistance of the conductor (Ohm s law): V = IR P = VI PHYS1000 DC electric circuits 1 Electric circuits Electric current Charge can move freely in a conductor if an electric field is present; the moving charge is an electric current (SI unit is the ampere

More information

BASIC ELECTRONICS PROF. T.S. NATARAJAN DEPT OF PHYSICS IIT MADRAS LECTURE-4 SOME USEFUL LAWS IN BASIC ELECTRONICS

BASIC ELECTRONICS PROF. T.S. NATARAJAN DEPT OF PHYSICS IIT MADRAS LECTURE-4 SOME USEFUL LAWS IN BASIC ELECTRONICS BASIC ELECTRONICS PROF. T.S. NATARAJAN DEPT OF PHYSICS IIT MADRAS LECTURE-4 SOME USEFUL LAWS IN BASIC ELECTRONICS Hello everybody! In a series of lecture on basic electronics, learning by doing, we now

More information

First Year (Electrical & Electronics Engineering)

First Year (Electrical & Electronics Engineering) Z PRACTICAL WORK BOOK For The Course EE-113 Basic Electrical Engineering For First Year (Electrical & Electronics Engineering) Name of Student: Class: Batch : Discipline: Class Roll No.: Examination Seat

More information

Chapter 12. RL Circuits. Objectives

Chapter 12. RL Circuits. Objectives Chapter 12 RL Circuits Objectives Describe the relationship between current and voltage in an RL circuit Determine impedance and phase angle in a series RL circuit Analyze a series RL circuit Determine

More information

Lesson 27. (1) Root Mean Square. The emf from an AC generator has the time dependence given by

Lesson 27. (1) Root Mean Square. The emf from an AC generator has the time dependence given by Lesson 27 () Root Mean Square he emf from an AC generator has the time dependence given by ℇ = ℇ "#$% where ℇ is the peak emf, is the angular frequency. he period is he mean square value of the emf is

More information

PHYSICS LAB. Capacitor. Date: GRADE: PHYSICS DEPARTMENT JAMES MADISON UNIVERSITY. Revision November 2002. Capacitor 21

PHYSICS LAB. Capacitor. Date: GRADE: PHYSICS DEPARTMENT JAMES MADISON UNIVERSITY. Revision November 2002. Capacitor 21 PHYSICS LAB Capacitor Printed Names: Signatures: Date: Lab Section: Instructor: GRADE: PHYSICS DEPARTMENT JAMES MADISON UNIVERSITY Revision November 2002 Capacitor 21 Blank page Capacitor 22 CHARGING AND

More information

Basic Electrical Theory

Basic Electrical Theory Basic Electrical Theory Impedance PJM State & Member Training Dept. PJM 2014 10/24/2013 Objectives Identify the components of Impedance in AC Circuits Calculate the total Impedance in AC Circuits Identify

More information

PHYS 2426 Engineering Physics II (Revised July 7, 2011) AC CIRCUITS: RLC SERIES CIRCUIT

PHYS 2426 Engineering Physics II (Revised July 7, 2011) AC CIRCUITS: RLC SERIES CIRCUIT PHYS 2426 Engineering Physics II (Revised July 7, 2011) AC CIRCUITS: RLC SERIES CIRCUIT INTRODUCTION The objective of this experiment is to study the behavior of an RLC series circuit subject to an AC

More information

Extra Questions - 1. 1. What current will flow in a 20Ω resistor when it is connected to a 50V supply? a) 0.4A b) 1.6A c) 2.5A

Extra Questions - 1. 1. What current will flow in a 20Ω resistor when it is connected to a 50V supply? a) 0.4A b) 1.6A c) 2.5A Extra Questions - 1 1. What current will flow in a 20Ω resistor when it is connected to a 50V supply? a) 0.4A b) 1.6A c) 2.5A 2. A current of 500mA flows in a resistance of 12Ω. What power is dissipated

More information

Reactance and Impedance

Reactance and Impedance Reactance and Impedance Capacitance in AC Circuits Professor Andrew H. Andersen 1 Objectives Describe capacitive ac circuits Analyze inductive ac circuits Describe the relationship between current and

More information

Circuits with inductors and alternating currents. Chapter 20 #45, 46, 47, 49

Circuits with inductors and alternating currents. Chapter 20 #45, 46, 47, 49 Circuits with inductors and alternating currents Chapter 20 #45, 46, 47, 49 RL circuits Ch. 20 (last section) Symbol for inductor looks like a spring. An inductor is a circuit element that has a large

More information

LAB 4: The Capacitor and Capacitors Combinations

LAB 4: The Capacitor and Capacitors Combinations University of Waterloo Electrical and Computer Engineering Department Physics of Electrical Engineering 2 ECE-106 Lab manual LAB 4: The Capacitor and Capacitors Combinations Winter 2016 Electrical and

More information

Physics 6C, Summer 2006 Homework 2 Solutions

Physics 6C, Summer 2006 Homework 2 Solutions Physics 6C, Summer 006 Homework Solutions All problems are from the nd edition of Walker. Numerical values are different for each student. Chapter 3 Problems. Figure 3-30 below shows a circuit containing

More information

Fig. 1 Analogue Multimeter Fig.2 Digital Multimeter

Fig. 1 Analogue Multimeter Fig.2 Digital Multimeter ELECTRICAL INSTRUMENT AND MEASUREMENT Electrical measuring instruments are devices used to measure electrical quantities such as electric current, voltage, resistance, electrical power and energy. MULTIMETERS

More information

ε: Voltage output of Signal Generator (also called the Source voltage or Applied

ε: Voltage output of Signal Generator (also called the Source voltage or Applied Experiment #10: LR & RC Circuits Frequency Response EQUIPMENT NEEDED Science Workshop Interface Power Amplifier (2) Voltage Sensor graph paper (optional) (3) Patch Cords Decade resistor, capacitor, and

More information

Diodes have an arrow showing the direction of the flow.

Diodes have an arrow showing the direction of the flow. The Big Idea Modern circuitry depends on much more than just resistors and capacitors. The circuits in your computer, cell phone, Ipod depend on circuit elements called diodes, inductors, transistors,

More information

Eðlisfræði 2, vor 2007

Eðlisfræði 2, vor 2007 [ Assignment View ] [ Pri Eðlisfræði 2, vor 2007 31. Alternating Current Circuits Assignment is due at 2:00am on Wednesday, March 21, 2007 Credit for problems submitted late will decrease to 0% after the

More information

Chapt ha e pt r e r 12 RL Circuits

Chapt ha e pt r e r 12 RL Circuits Chapter 12 RL Circuits Sinusoidal Response of RL Circuits The inductor voltage leads the source voltage Inductance causes a phase shift between voltage and current that depends on the relative values of

More information

Resistors in Series and Parallel

Resistors in Series and Parallel Resistors in Series and Parallel INTRODUCTION Direct current (DC) circuits are characterized by the quantities current, voltage and resistance. Current is the rate of flow of charge. The SI unit is the

More information

Basic Ohm s Law & Series and Parallel Circuits

Basic Ohm s Law & Series and Parallel Circuits 2:256 Let there be no compulsion in religion: Truth stands out clear from Error: whoever rejects evil and believes in Allah hath grasped the most trustworthy hand-hold that never breaks. And Allah heareth

More information

Kirchhoff s Laws Physics Lab IX

Kirchhoff s Laws Physics Lab IX Kirchhoff s Laws Physics Lab IX Objective In the set of experiments, the theoretical relationships between the voltages and the currents in circuits containing several batteries and resistors in a network,

More information

Chapter 13. RLC Circuits and Resonance

Chapter 13. RLC Circuits and Resonance Chapter 13 RLC Circuits and Resonance Impedance of Series RLC Circuits A series RLC circuit contains both inductance and capacitance Since X L and X C have opposite effects on the circuit phase angle,

More information

Experiment 2: AC and DC Transistor Gain. For more courses visit

Experiment 2: AC and DC Transistor Gain. For more courses visit Experiment 2: AC and DC Transistor Gain For more courses visit www.cie-wc.edu 1. To show how to determine the AC and DC current gain values of a transistor from its characteristics curves 2. To give more

More information

EELE 354 Lab Assignment 3: Series and Parallel Resistors, Ohm s Law and Kirchhoff s Circuit Laws

EELE 354 Lab Assignment 3: Series and Parallel Resistors, Ohm s Law and Kirchhoff s Circuit Laws EELE 354 Lab Assignment 3: Series and Parallel Resistors, Ohm s Law and Kirchhoff s Circuit Laws EELE 354 Lab Assignment 3 1 Lab Overview: Many electric loads such as electric heaters and light bulbs can

More information

Introduction to the Smith Chart for the MSA Sam Wetterlin 10/12/09 Z +

Introduction to the Smith Chart for the MSA Sam Wetterlin 10/12/09 Z + Introduction to the Smith Chart for the MSA Sam Wetterlin 10/12/09 Quick Review of Reflection Coefficient The Smith chart is a method of graphing reflection coefficients and impedance, and is often useful

More information

ε rms ε substation HOMEWORK #11 Chapter 29

ε rms ε substation HOMEWORK #11 Chapter 29 HOMEWOK # hapter 9 5 f the frequency in the circuit in Figure 9-8 is doubled, the capacitive reactance of the circuit will (a) double, (b) not change, (c) halve, (d) quadruple. Determine the oncept The

More information

LABORATORY 1 WRITEUP - PHYSICS 517/617. Prof. L. S. Durkin July 5, 1992

LABORATORY 1 WRITEUP - PHYSICS 517/617. Prof. L. S. Durkin July 5, 1992 LABORATORY 1 WRITEUP - PHYSICS 517/617 Prof. L. S. Durkin July 5, 1992 DISCLAIMER: There are many ways to write up a lab report, none of them superior to any other. Below is an example of an acceptable

More information

Parallel Inductor-Resistor-Capacitor (RLC) Circuits

Parallel Inductor-Resistor-Capacitor (RLC) Circuits Parallel Inductor-Resistor-Capacitor (RLC) Circuits Session 4b for Basic Electricity A Fairfield University E-Course Powered by LearnLinc 7/9/2002 Basic Electricity 1 Module: Basic Electronics (AC Circuits

More information

Series and Parallel Circuits

Series and Parallel Circuits Pre-Laboratory Assignment Series and Parallel Circuits ECE 2100 Circuit Analysis Laboratory updated 16 May 2011 1. Consider the following series circuit. Derive a formula to calculate voltages V 1, V 2,

More information

Lab E1: Introduction to Circuits

Lab E1: Introduction to Circuits E1.1 Lab E1: Introduction to Circuits The purpose of the this lab is to introduce you to some basic instrumentation used in electrical circuits. You will learn to use a DC power supply, a digital multimeter

More information

Experiment 8 Series-Parallel Circuits

Experiment 8 Series-Parallel Circuits Experiment 8 Series-Parallel Circuits EL 111 - DC Fundamentals By: Walter Banzhaf, E.K. Smith, and Winfield Young University of Hartford Ward College of Technology Objectives: 1. For the student to measure

More information

Digital Multimeter Guide Mastech M9803R

Digital Multimeter Guide Mastech M9803R Mastech M9803R Version 2008-Jan-1 Dept. of Electrical & Computer Engineering Portland State University Copyright 2008 Portland State University 1 Basic Information This guide provides basic instructions

More information

3 DC Circuits, Ohm's Law and Multimeters

3 DC Circuits, Ohm's Law and Multimeters 3 DC Circuits, Ohm's Law and Multimeters Theory: Today's lab will look at some basics of electricity and how these relate to simple circuit diagrams. Three basic terms are important to a study of electricity.

More information

Questions. Question 1

Questions. Question 1 Question 1 Questions Explain why transformers are used extensively in long-distance power distribution systems. What advantage do they lend to a power system? file 02213 Question 2 Are the transformers

More information

LCR Series Circuits. AC Theory. Introduction to LCR Series Circuits. Module 9. What you'll learn in Module 9. Module 9 Introduction

LCR Series Circuits. AC Theory. Introduction to LCR Series Circuits. Module 9. What you'll learn in Module 9. Module 9 Introduction Module 9 AC Theory LCR Series Circuits Introduction to LCR Series Circuits What you'll learn in Module 9. Module 9 Introduction Introduction to LCR Series Circuits. Section 9.1 LCR Series Circuits. Amazing

More information

Henry Lin, Department of Electrical and Computer Engineering, California State University, Bakersfield Lecture 3 (Electric Circuits) July 16 th, 2013

Henry Lin, Department of Electrical and Computer Engineering, California State University, Bakersfield Lecture 3 (Electric Circuits) July 16 th, 2013 Henry Lin, Department of Electrical and Computer Engineering, California State University, Bakersfield Lecture 3 (Electric Circuits) July 16 th, 2013 1 What is an electrical circuit? An electrical network

More information

UNIVERSITY of PENNSYLVANIA DEPARTMENT of ELECTRICAL and SYSTEMS ENGINEERING ESE206 - Electrical Circuits and Systems II Laboratory.

UNIVERSITY of PENNSYLVANIA DEPARTMENT of ELECTRICAL and SYSTEMS ENGINEERING ESE206 - Electrical Circuits and Systems II Laboratory. UNIVERSITY of PENNSYLVANIA DEPARTMENT of ELECTRICAL and SYSTEMS ENGINEERING ESE06 - Electrical Circuits and Systems II Laboratory. Objectives: Transformer Lab. Comparison of the ideal transformer versus

More information

Electric Circuits II

Electric Circuits II Electric Circuits II Experiment 4: Resistances in Circuits Equipment needed: - AC/DC Electronic Lab Board: Resistors - Multimeter Purpose The purpose of this lab is to begin experimenting with the variables

More information

ConcepTest 25.1 Capacitors

ConcepTest 25.1 Capacitors ConcepTest 25.1 Capacitors Capacitor C 1 is connected across a battery of 5 V. An identical capacitor C 2 is connected across a battery of 10 V. Which one has the most charge? 1) C 1 2) C 2 3) both have

More information

45. The peak value of an alternating current in a 1500-W device is 5.4 A. What is the rms voltage across?

45. The peak value of an alternating current in a 1500-W device is 5.4 A. What is the rms voltage across? PHYS Practice Problems hapters 8- hapter 8. 45. The peak value of an alternating current in a 5-W device is 5.4 A. What is the rms voltage across? The power and current can be used to find the peak voltage,

More information

Goals. Introduction R = DV I (7.1)

Goals. Introduction R = DV I (7.1) Lab 7. Ohm s Law Goals To understand Ohm s law, used to describe the behavior of electrical conduction in many materials and circuits. To calculate the electrical power dissipated as heat in electrical

More information

Meters - Ohm s Law R 2 R 1 APPARATUS INTRODUCTION R 1 R 2 A

Meters - Ohm s Law R 2 R 1 APPARATUS INTRODUCTION R 1 R 2 A Meters - Ohm s Law APPARATUS 1. Board on which two wires are mounted, each 1 m long, equipped with a sliding contact 2. Rheostat (variable resistance), 0... 7 Ω 3. DC ammeter (full scale: 2 A) 4. Voltmeter

More information

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering EXPERIMENT 5 PARALLEL AND SERIES-PARALLEL CIRCUIT CHARACTERISTICS OBJECTIVES This experiment will have the student

More information

Intro to Circuits Lab #1

Intro to Circuits Lab #1 Intro to Circuits Lab #1 Anatomy of a Breadboard: The breadboard is where you will be assembling your circuits. The breadboard is composed of rows and columns of metal clips. These clips are housed in

More information

Chapter 3. Simulation of Non-Ideal Components in LTSpice

Chapter 3. Simulation of Non-Ideal Components in LTSpice Chapter 3 Simulation of Non-Ideal Components in LTSpice 27 CHAPTER 3. SIMULATION OF NON-IDEAL COMPONENTS IN LTSPICE 3.1 Pre-Lab The answers to the following questions are due at the beginning of the lab.

More information

Module Title: Electrotechnology for Mech L7

Module Title: Electrotechnology for Mech L7 CORK INSTITUTE OF TECHNOLOGY INSTITIÚID TEICNEOLAÍOCHTA CHORCAÍ Autumn Examinations 2012 Module Title: Electrotechnology for Mech L7 Module Code: ELEC7007 School: School of Mechanical, Electrical and Process

More information

Physics 260 Calculus Physics II: E&M. RC Circuits

Physics 260 Calculus Physics II: E&M. RC Circuits RC Circuits Object In this experiment you will study the exponential charging and discharging of a capacitor through a resistor. As a by-product you will confirm the formulas for equivalent capacitance

More information

Lecture 24. Inductance and Switching Power Supplies (how your solar charger voltage converter works)

Lecture 24. Inductance and Switching Power Supplies (how your solar charger voltage converter works) Lecture 24 Inductance and Switching Power Supplies (how your solar charger voltage converter works) Copyright 2014 by Mark Horowitz 1 Roadmap: How Does This Work? 2 Processor Board 3 More Detailed Roadmap

More information

Slide 1 / 26. Inductance. 2011 by Bryan Pflueger

Slide 1 / 26. Inductance. 2011 by Bryan Pflueger Slide 1 / 26 Inductance 2011 by Bryan Pflueger Slide 2 / 26 Mutual Inductance If two coils of wire are placed near each other and have a current passing through them, they will each induce an emf on one

More information

AP* Electric Circuits Free Response Questions

AP* Electric Circuits Free Response Questions AP* Electric Circuits Free Response Questions 1996 Q4 (15 points) A student is provided with a 12.0-V battery of negligible internal resistance and four resistors with the following resistances: 100 Ω,

More information