# 206 MATHEMATICS CIRCLES

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 206 MATHEMATICS 10.1 Introduction 10 You have studied in Class IX that a circle is a collection of all points in a plane which are at a constant distance (radius) from a fixed point (centre). You have also studied various terms related to a circle like chord, segment, sector, arc etc. Let us now examine the different situations that can arise when a circle and a line are given in a plane. So, let us consider a circle and a line PQ. There can be three possibilities given in Fig below: Fig CIRCLES In Fig (i), the line PQ and the circle have no common point. In this case, PQ is called a non-intersecting line with respect to the circle. In Fig (ii), there are two common points A and B that the line PQ and the circle have. In this case, we call the line PQ a secant of the circle. In Fig (iii), there is only one point A which is common to the line PQ and the circle. In this case, the line is called a tangent to the circle.

2 CIRCLES 207 You might have seen a pulley fitted over a well which is used in taking out water from the well. Look at Fig Here the rope on both sides of the pulley, if considered as a ray, is like a tangent to the circle representing the pulley. Is there any position of the line with respect to the circle other than the types given above? You can see that there cannot be any other type of position of the line with respect to the circle. In this chapter, we will study about the existence of the tangents to a circle and also study some of their properties. Fig Tangent to a Circle In the previous section, you have seen that a tangent* to a circle is a line that intersects the circle at only one point. To understand the existence of the tangent to a circle at a point, let us perform the following activities: Activity 1 : Take a circular wire and attach a straight wire AB at a point P of the circular wire so that it can rotate about the point P in a plane. Put the system on a table and gently rotate the wire AB about the point P to get different positions of the straight wire [see Fig. 10.3(i)]. In various positions, the wire intersects the circular wire at P and at another point Q 1 or Q 2 or Q 3, etc. In one position, you will see that it will intersect the circle at the point P only (see position A B of AB). This shows that a tangent exists at the point P of the circle. On rotating further, you can observe that in all other positions of AB, it will intersect the circle at P and at another point, say R 1 or R 2 or R 3, etc. So, you can observe that there is only one tangent at a point of the circle. Fig (i) While doing activity above, you must have observed that as the position AB moves towards the position A B, the common point, say Q 1, of the line AB and the circle gradually comes nearer and nearer to the common point P. Ultimately, it coincides with the point P in the position A B of A B. Again note, what happens if AB is rotated rightwards about P? The common point R 3 gradually comes nearer and nearer to P and ultimately coincides with P. So, what we see is: The tangent to a circle is a special case of the secant, when the two end points of its corresponding chord coincide. *The word tangent comes from the Latin word tangere, which means to touch and was introduced by the Danish mathematician Thomas Fineke in 1583.

3 208 MATHEMATICS Activity 2 : On a paper, draw a circle and a secant PQ of the circle. Draw various lines parallel to the secant on both sides of it. You will find that after some steps, the length of the chord cut by the lines will gradually decrease, i.e., the two points of intersection of the line and the circle are coming closer and closer [see Fig. 10.3(ii)]. In one case, it becomes zero on one side of the secant and in another case, it becomes zero on the other side of the secant. See the positions P Q and P Q of the secant in Fig (ii). These are the tangents to the circle parallel to the given secant PQ. This also helps you to see that there cannot Fig (ii) be more than two tangents parallel to a given secant. This activity also establishes, what you must have observed, while doing Activity 1, namely, a tangent is the secant when both of the end points of the corresponding chord coincide. The common point of the tangent and the circle is called the point of contact [the point A in Fig (iii)]and the tangent is said to touch the circle at the common point. Now look around you. Have you seen a bicycle or a cart moving? Look at its wheels. All the spokes of a wheel are along its radii. Now note the position of the wheel with respect to its movement on the ground. Do you see any tangent anywhere? (See Fig. 10.4). In fact, the wheel moves along a line which is a tangent to the circle representing the wheel. Also, notice that in all positions, the radius through the point of contact with the ground appears to be at right angles to the tangent (see Fig. 10.4). We shall Fig now prove this property of the tangent. Theorem 10.1 : The tangent at any point of a circle is perpendicular to the radius through the point of contact. Proof : We are given a circle with centre O and a tangent XY to the circle at a point P. We need to prove that OP is perpendicular to XY.

4 CIRCLES 209 Take a point Q on XY other than P and join OQ (see Fig. 10.5). The point Q must lie outside the circle. (Why? Note that if Q lies inside the circle, XY will become a secant and not a tangent to the circle). Therefore, OQ is longer than the radius OP of the circle. That is, OQ > OP. Since this happens for every point on the line XY except the point P, OP is the shortest of all the distances of the point O to the points of XY. So OP is perpendicular to XY. (as shown in Theorem A1.7.) Fig Remarks : 1. By theorem above, we can also conclude that at any point on a circle there can be one and only one tangent. 2. The line containing the radius through the point of contact is also sometimes called the normal to the circle at the point. 1. How many tangents can a circle have? 2. Fill in the blanks : EXERCISE 10.1 (i) A tangent to a circle intersects it in point (s). (ii) A line intersecting a circle in two points is called a. (iii) A circle can have parallel tangents at the most. (iv) The common point of a tangent to a circle and the circle is called. 3. A tangent PQ at a point P of a circle of radius 5 cm meets a line through the centre O at a point Q so that OQ = 12 cm. Length PQ is : (A) 12 cm (B) 13 cm (C) 8.5 cm (D) 119 cm. 4. Draw a circle and two lines parallel to a given line such that one is a tangent and the other, a secant to the circle Number of Tangents from a Point on a Circle To get an idea of the number of tangents from a point on a circle, let us perform the following activity:

5 210 MATHEMATICS Activity 3 : Draw a circle on a paper. Take a point P inside it. Can you draw a tangent to the circle through this point? You will find that all the lines through this point intersect the circle in two points. So, it is not possible to draw any tangent to a circle through a point inside it [see Fig (i)]. Next take a point P on the circle and draw tangents through this point. You have already observed that there is only one tangent to the circle at such a point [see Fig (ii)]. Finally, take a point P outside the circle and try to draw tangents to the circle from this point. What do you observe? You will find that you can draw exactly two tangents to the circle through this point [see Fig (iii)]. We can summarise these facts as follows: Case 1 : There is no tangent to a circle passing through a point lying inside the circle. Case 2 : There is one and only one tangent to a circle passing through a point lying on the circle. Case 3 : There are exactly two tangents to a circle through a point lying outside the circle. In Fig (iii), T 1 and T 2 are the points of contact of the tangents PT 1 and PT 2 respectively. The length of the segment of the tangent from the external point P and the point of contact with the circle is called the length of the tangent from the point P to the circle. Note that in Fig (iii), PT 1 and PT 2 are the lengths of the tangents from P to the circle. The lengths PT 1 and PT 2 have a common property. Can you find this? Measure PT 1 and PT 2. Are these equal? In fact, this is always so. Let us give a proof of this fact in the following theorem. (i) (ii) (iii) Fig. 10.6

6 CIRCLES 211 Theorem 10.2 : The lengths of tangents drawn from an external point to a circle are equal. Proof : We are given a circle with centre O, a point P lying outside the circle and two tangents PQ, PR on the circle from P (see Fig. 10.7). We are required to prove that PQ = PR. For this, we join OP, OQ and OR. Then OQP and ORP are right angles, because these are angles between the radii and tangents, and according to Theorem 10.1 they are right Fig angles. Now in right triangles OQP and ORP, OQ = OR (Radii of the same circle) OP = OP (Common) Therefore, Δ OQP Δ ORP (RHS) This gives PQ = PR (CPCT) Remarks : 1. The theorem can also be proved by using the Pythagoras Theorem as follows: PQ 2 = OP 2 OQ 2 = OP 2 OR 2 = PR 2 (As OQ = OR) which gives PQ = PR. 2. Note also that OPQ = OPR. Therefore, OP is the angle bisector of QPR, i.e., the centre lies on the bisector of the angle between the two tangents. Let us take some examples. Example 1 : Prove that in two concentric circles, the chord of the larger circle, which touches the smaller circle, is bisected at the point of contact. Solution : We are given two concentric circles C 1 and C 2 with centre O and a chord AB of the larger circle C 1 which touches the smaller circle C 2 at the point P (see Fig. 10.8). We need to prove that AP = BP. Let us join OP. Then, AB is a tangent to C 2 at P and OP is its radius. Therefore, by Theorem 10.1, OP AB Fig. 10.8

7 212 MATHEMATICS Now AB is a chord of the circle C 1 and OP AB. Therefore, OP is the bisector of the chord AB, as the perpendicular from the centre bisects the chord, i.e., AP = BP Example 2 : Two tangents TP and TQ are drawn to a circle with centre O from an external point T. Prove that PTQ = 2 OPQ. Solution : We are given a circle with centre O, an external point T and two tangents TP and TQ to the circle, where P, Q are the points of contact (see Fig. 10.9). We need to prove that Let PTQ = 2 OPQ PTQ = θ Now, by Theorem 10.2, TP = TQ. So, TPQ is an isosceles triangle. Therefore, TPQ = TQP = 1 (180 θ ) = 90 1 θ 2 2 Also, by Theorem 10.1, OPT = 90 1 So, OPQ = OPT TPQ = θ 2 This gives = 1 θ= 1 PTQ 2 2 PTQ = 2 OPQ Example 3 : PQ is a chord of length 8 cm of a circle of radius 5 cm. The tangents at P and Q intersect at a point T (see Fig ). Find the length TP. Solution : Join OT. Let it intersect PQ at the point R. Then Δ TPQ is isosceles and TO is the angle bisector of PTQ. So, OT PQ and therefore, OT bisects PQ which gives PR = RQ = 4 cm Also, OR = OP PR = 5 4 cm = 3 cm. Fig Fig

8 CIRCLES 213 Now, TPR + RPO = 90 = TPR + PTR (Why?) So, RPO = PTR Therefore, right triangle TRP is similar to the right triangle PRO by AA similarity. This gives TP PO = RP TP, i.e., RO 5 = 4 3 or TP = 20 3 cm. Note : TP can also be found by using the Pythagoras Theorem, as follows: Let TP = x and TR = y. Then x 2 = y (Taking right Δ PRT) (1) x = (y + 3) 2 (Taking right Δ OPT) (2) Subtracting (1) from (2), we get = 6y 7 or y = = 6 3 Therefore, x 2 = or x = = (16 + 9) = EXERCISE 10.2 In Q.1 to 3, choose the correct option and give justification. [From (1)] 1. From a point Q, the length of the tangent to a circle is 24 cm and the distance of Q from the centre is 25 cm. The radius of the circle is (A) 7 cm (B) 12 cm (C) 15 cm (D) 24.5 cm 2. In Fig , if TP and TQ are the two tangents to a circle with centre O so that POQ = 110, then PTQ is equal to (A) 60 (B) 70 (C) 80 (D) 90 Fig If tangents PA and PB from a point P to a circle with centre O are inclined to each other at angle of 80, then POA is equal to (A) 50 (B) 60 (C) 70 (D) 80

9 214 MATHEMATICS 4. Prove that the tangents drawn at the ends of a diameter of a circle are parallel. 5. Prove that the perpendicular at the point of contact to the tangent to a circle passes through the centre. 6. The length of a tangent from a point A at distance 5 cm from the centre of the circle is 4 cm. Find the radius of the circle. 7. Two concentric circles are of radii 5 cm and 3 cm. Find the length of the chord of the larger circle which touches the smaller circle. 8. A quadrilateral ABCD is drawn to circumscribe a circle (see Fig ). Prove that AB + CD = AD + BC Fig Fig In Fig , XY and X Y are two parallel tangents to a circle with centre O and another tangent AB with point of contact C intersecting XY at A and X Y at B. Prove that AOB = Prove that the angle between the two tangents drawn from an external point to a circle is supplementary to the angle subtended by the line-segment joining the points of contact at the centre. 11. Prove that the parallelogram circumscribing a circle is a rhombus. 12. A triangle ABC is drawn to circumscribe a circle of radius 4 cm such that the segments BD and DC into which BC is divided by the point of contact D are of lengths 8 cm and 6 cm respectively (see Fig ). Find the sides AB and AC. 13. Prove that opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the centre of the circle. Fig

10 CIRCLES Summary In this chapter, you have studied the following points : 1. The meaning of a tangent to a circle. 2. The tangent to a circle is perpendicular to the radius through the point of contact. 3. The lengths of the two tangents from an external point to a circle are equal.

### NCERT. Choose the correct answer from the given four options:

CIRCLES (A) Main Concepts and Results The meaning of a tangent and its point of contact on a circle. Tangent is perpendicular to the radius through the point of contact. Only two tangents can be drawn

### Tangents and Secants to a Circle

9 Tangents and Secants to a ircle 9.1 INTRDUTIN We have seen two lines mostly intersect at a point or do not intersect in a plane. In some situations they coincide with each other. Similarly, what happens

### Chapter 6 Quiz. Section 6.1 Circles and Related Segments and Angles

Chapter 6 Quiz Section 6.1 Circles and Related Segments and Angles (1.) TRUE or FALSE: The center of a circle lies in the interior of the circle. For exercises 2 4, use the figure provided. (2.) In O,

### Chapter 6 Notes: Circles

Chapter 6 Notes: Circles IMPORTANT TERMS AND DEFINITIONS A circle is the set of all points in a plane that are at a fixed distance from a given point known as the center of the circle. Any line segment

### Chapters 6 and 7 Notes: Circles, Locus and Concurrence

Chapters 6 and 7 Notes: Circles, Locus and Concurrence IMPORTANT TERMS AND DEFINITIONS A circle is the set of all points in a plane that are at a fixed distance from a given point known as the center of

### Circle geometry theorems

Circle geometry theorems http://topdrawer.aamt.edu.au/geometric-reasoning/big-ideas/circlegeometry/angle-and-chord-properties Theorem Suggested abbreviation Diagram 1. When two circles intersect, the line

### NCERT. The coordinates of the mid-point of the line segment joining the points P (x 1. which is non zero unless the points A, B and C are collinear.

COORDINATE GEOMETRY CHAPTER 7 (A) Main Concepts and Results Distance Formula, Section Formula, Area of a Triangle. The distance between two points P (x 1 ) and Q (x, y ) is ( x x ) + ( y y ) 1 1 The distance

### Section 9-1. Basic Terms: Tangents, Arcs and Chords Homework Pages 330-331: 1-18

Chapter 9 Circles Objectives A. Recognize and apply terms relating to circles. B. Properly use and interpret the symbols for the terms and concepts in this chapter. C. Appropriately apply the postulates,

### Angles in a Circle and Cyclic Quadrilateral

130 Mathematics 19 Angles in a Circle and Cyclic Quadrilateral 19.1 INTRODUCTION You must have measured the angles between two straight lines, let us now study the angles made by arcs and chords in a circle

### Class-10 th (X) Mathematics Chapter: Tangents to Circles

Class-10 th (X) Mathematics Chapter: Tangents to Circles 1. Q. AB is line segment of length 24 cm. C is its midpoint. On AB, AC and BC semicircles are described. Find the radius of the circle which touches

### Circle Name: Radius: Diameter: Chord: Secant:

12.1: Tangent Lines Congruent Circles: circles that have the same radius length Diagram of Examples Center of Circle: Circle Name: Radius: Diameter: Chord: Secant: Tangent to A Circle: a line in the plane

### CONSTRUCTIONS MODULE - 3 OBJECTIVES. Constructions. Geometry. Notes

MODULE - 3 Constructions 18 CONSTRUCTIONS One of the aims of studying is to acquire the skill of drawing figures accurately. You have learnt how to construct geometrical figures namely triangles, squares

### MATHEMATICS Grade 12 EUCLIDEAN GEOMETRY: CIRCLES 02 JULY 2014

EUCLIDEAN GEOMETRY: CIRCLES 02 JULY 2014 Checklist Make sure you learn proofs of the following theorems: The line drawn from the centre of a circle perpendicular to a chord bisects the chord The angle

### Geometry SOL G.11 G.12 Circles Study Guide

Geometry SOL G.11 G.1 Circles Study Guide Name Date Block Circles Review and Study Guide Things to Know Use your notes, homework, checkpoint, and other materials as well as flashcards at quizlet.com (http://quizlet.com/4776937/chapter-10-circles-flashcardsflash-cards/).

### STRAIGHT LINES. , y 1. tan. and m 2. 1 mm. If we take the acute angle between two lines, then tan θ = = 1. x h x x. x 1. ) (x 2

STRAIGHT LINES Chapter 10 10.1 Overview 10.1.1 Slope of a line If θ is the angle made by a line with positive direction of x-axis in anticlockwise direction, then the value of tan θ is called the slope

### EUCLIDEAN GEOMETRY: (±50 marks)

ULIN GMTRY: (±50 marks) Grade theorems:. The line drawn from the centre of a circle perpendicular to a chord bisects the chord. 2. The perpendicular bisector of a chord passes through the centre of the

### Geometry in a Nutshell

Geometry in a Nutshell Henry Liu, 26 November 2007 This short handout is a list of some of the very basic ideas and results in pure geometry. Draw your own diagrams with a pencil, ruler and compass where

### CIRCLE COORDINATE GEOMETRY

CIRCLE COORDINATE GEOMETRY (EXAM QUESTIONS) Question 1 (**) A circle has equation x + y = 2x + 8 Determine the radius and the coordinates of the centre of the circle. r = 3, ( 1,0 ) Question 2 (**) A circle

### ABC is the triangle with vertices at points A, B and C

Euclidean Geometry Review This is a brief review of Plane Euclidean Geometry - symbols, definitions, and theorems. Part I: The following are symbols commonly used in geometry: AB is the segment from the

### 39 Symmetry of Plane Figures

39 Symmetry of Plane Figures In this section, we are interested in the symmetric properties of plane figures. By a symmetry of a plane figure we mean a motion of the plane that moves the figure so that

### Practical Geometry. Chapter Introduction

Practical Geometry Chapter 14 14.1 Introduction We see a number of shapes with which we are familiar. We also make a lot of pictures. These pictures include different shapes. We have learnt about some

### STRAIGHT LINE COORDINATE GEOMETRY

STRAIGHT LINE COORDINATE GEOMETRY (EXAM QUESTIONS) Question 1 (**) The points P and Q have coordinates ( 7,3 ) and ( 5,0), respectively. a) Determine an equation for the straight line PQ, giving the answer

### Name Date Class. Lines and Segments That Intersect Circles. AB and CD are chords. Tangent Circles. Theorem Hypothesis Conclusion

Section. Lines That Intersect Circles Lines and Segments That Intersect Circles A chord is a segment whose endpoints lie on a circle. A secant is a line that intersects a circle at two points. A tangent

### 1 Solution of Homework

Math 3181 Dr. Franz Rothe February 4, 2011 Name: 1 Solution of Homework 10 Problem 1.1 (Common tangents of two circles). How many common tangents do two circles have. Informally draw all different cases,

### NCERT. In examples 1 and 2, write the correct answer from the given four options.

MTHEMTIS UNIT 2 GEOMETRY () Main oncepts and Results line segment corresponds to the shortest distance between two points. The line segment joining points and is denoted as or as. ray with initial point

### Circle Geometry. Properties of a Circle Circle Theorems:! Angles and chords! Angles! Chords! Tangents! Cyclic Quadrilaterals

ircle Geometry Properties of a ircle ircle Theorems:! ngles and chords! ngles! hords! Tangents! yclic Quadrilaterals http://www.geocities.com/fatmuscle/hs/ 1 Properties of a ircle Radius Major Segment

### Math 531, Exam 1 Information.

Math 531, Exam 1 Information. 9/21/11, LC 310, 9:05-9:55. Exam 1 will be based on: Sections 1A - 1F. The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/531fa11/531.html)

### Education Resources. This section is designed to provide examples which develop routine skills necessary for completion of this section.

Education Resources Circle Higher Mathematics Supplementary Resources Section A This section is designed to provide examples which develop routine skills necessary for completion of this section. R1 I

### NCERT. Area of the circular path formed by two concentric circles of radii. Area of the sector of a circle of radius r with central angle θ =

AREA RELATED TO CIRCLES (A) Main Concepts and Results CHAPTER 11 Perimeters and areas of simple closed figures. Circumference and area of a circle. Area of a circular path (i.e., ring). Sector of a circle

### 1. Find the length of BC in the following triangles. It will help to first find the length of the segment marked X.

1 Find the length of BC in the following triangles It will help to first find the length of the segment marked X a: b: Given: the diagonals of parallelogram ABCD meet at point O The altitude OE divides

### Definitions, Postulates and Theorems

Definitions, s and s Name: Definitions Complementary Angles Two angles whose measures have a sum of 90 o Supplementary Angles Two angles whose measures have a sum of 180 o A statement that can be proven

### The measure of an arc is the measure of the central angle that intercepts it Therefore, the intercepted arc measures

8.1 Name (print first and last) Per Date: 3/24 due 3/25 8.1 Circles: Arcs and Central Angles Geometry Regents 2013-2014 Ms. Lomac SLO: I can use definitions & theorems about points, lines, and planes to

### Circle Theorems. This circle shown is described an OT. As always, when we introduce a new topic we have to define the things we wish to talk about.

Circle s circle is a set of points in a plane that are a given distance from a given point, called the center. The center is often used to name the circle. T This circle shown is described an OT. s always,

### Inversion. Chapter 7. 7.1 Constructing The Inverse of a Point: If P is inside the circle of inversion: (See Figure 7.1)

Chapter 7 Inversion Goal: In this chapter we define inversion, give constructions for inverses of points both inside and outside the circle of inversion, and show how inversion could be done using Geometer

### C1: Coordinate geometry of straight lines

B_Chap0_08-05.qd 5/6/04 0:4 am Page 8 CHAPTER C: Coordinate geometr of straight lines Learning objectives After studing this chapter, ou should be able to: use the language of coordinate geometr find the

### 0810ge. Geometry Regents Exam 0810

0810ge 1 In the diagram below, ABC XYZ. 3 In the diagram below, the vertices of DEF are the midpoints of the sides of equilateral triangle ABC, and the perimeter of ABC is 36 cm. Which two statements identify

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Tuesday, August 13, 2013 8:30 to 11:30 a.m., only.

GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Tuesday, August 13, 2013 8:30 to 11:30 a.m., only Student Name: School Name: The possession or use of any communications

### CIRCLE DEFINITIONS AND THEOREMS

DEFINITIONS Circle- The set of points in a plane equidistant from a given point(the center of the circle). Radius- A segment from the center of the circle to a point on the circle(the distance from the

### Geometry Unit 5: Circles Part 1 Chords, Secants, and Tangents

Geometry Unit 5: Circles Part 1 Chords, Secants, and Tangents Name Chords and Circles: A chord is a segment that joins two points of the circle. A diameter is a chord that contains the center of the circle.

### GEOMETRIC MENSURATION

GEOMETRI MENSURTION Question 1 (**) 8 cm 6 cm θ 6 cm O The figure above shows a circular sector O, subtending an angle of θ radians at its centre O. The radius of the sector is 6 cm and the length of the

### Unit 3: Circles and Volume

Unit 3: Circles and Volume This unit investigates the properties of circles and addresses finding the volume of solids. Properties of circles are used to solve problems involving arcs, angles, sectors,

### www.sakshieducation.com

LENGTH OF THE PERPENDICULAR FROM A POINT TO A STRAIGHT LINE AND DISTANCE BETWEEN TWO PAPALLEL LINES THEOREM The perpendicular distance from a point P(x 1, y 1 ) to the line ax + by + c 0 is ax1+ by1+ c

### Lesson 13: Proofs in Geometry

211 Lesson 13: Proofs in Geometry Beginning with this lesson and continuing for the next few lessons, we will explore the role of proofs and counterexamples in geometry. To begin, recall the Pythagorean

### 1) Perpendicular bisector 2) Angle bisector of a line segment

1) Perpendicular bisector 2) ngle bisector of a line segment 3) line parallel to a given line through a point not on the line by copying a corresponding angle. 1 line perpendicular to a given line through

### 4 BASIC GEOMETRICAL IDEAS

4 BASIC GEOMETRICAL IDEAS Q.1. Use the figure to name. (a) Five points (b) A line (c) Four rays (d) Five line segments Ans. (a) O, B, C, D and E. (b) DB, OB etc. (c) OB, OC, OD and ED Exercise 4.1 (d)

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY

GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Wednesday, June 20, 2012 9:15 a.m. to 12:15 p.m., only Student Name: School Name: Print your name and the name

### POTENTIAL REASONS: Definition of Congruence:

Sec 6 CC Geometry Triangle Pros Name: POTENTIAL REASONS: Definition Congruence: Having the exact same size and shape and there by having the exact same measures. Definition Midpoint: The point that divides

### Geometry Unit 7 (Textbook Chapter 9) Solving a right triangle: Find all missing sides and all missing angles

Geometry Unit 7 (Textbook Chapter 9) Name Objective 1: Right Triangles and Pythagorean Theorem In many geometry problems, it is necessary to find a missing side or a missing angle of a right triangle.

### A. 3y = -2x + 1. y = x + 3. y = x - 3. D. 2y = 3x + 3

Name: Geometry Regents Prep Spring 2010 Assignment 1. Which is an equation of the line that passes through the point (1, 4) and has a slope of 3? A. y = 3x + 4 B. y = x + 4 C. y = 3x - 1 D. y = 3x + 1

### QUADRILATERALS CHAPTER 8. (A) Main Concepts and Results

CHAPTER 8 QUADRILATERALS (A) Main Concepts and Results Sides, Angles and diagonals of a quadrilateral; Different types of quadrilaterals: Trapezium, parallelogram, rectangle, rhombus and square. Sum of

### BC AB = AB. The first proportion is derived from similarity of the triangles BDA and ADC. These triangles are similar because

150 hapter 3. SIMILRITY 397. onstruct a triangle, given the ratio of its altitude to the base, the angle at the vertex, and the median drawn to one of its lateral sides 398. Into a given disk segment,

### DEFINITIONS. Perpendicular Two lines are called perpendicular if they form a right angle.

DEFINITIONS Degree A degree is the 1 th part of a straight angle. 180 Right Angle A 90 angle is called a right angle. Perpendicular Two lines are called perpendicular if they form a right angle. Congruent

### Selected practice exam solutions (part 5, item 2) (MAT 360)

Selected practice exam solutions (part 5, item ) (MAT 360) Harder 8,91,9,94(smaller should be replaced by greater )95,103,109,140,160,(178,179,180,181 this is really one problem),188,193,194,195 8. On

### MATHEMATICS: PAPER II

NATIONAL SENIOR CERTIFICATE EXAMINATION NOVEMBER 2015 MATHEMATICS: PAPER II EXAMINATION NUMBER Time: 3 hours 150 marks PLEASE READ THE FOLLOWING INSTRUCTIONS CAREFULLY 1. This question paper consists of

### Basics of Circles 9/20/15. Important theorems:

Basics of ircles 9/20/15 B H P E F G ID Important theorems: 1. A radius is perpendicular to a tangent at the point of tangency. PB B 2. The measure of a central angle is equal to the measure of its intercepted

### Geometry Regents Review

Name: Class: Date: Geometry Regents Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. If MNP VWX and PM is the shortest side of MNP, what is the shortest

### Angles that are between parallel lines, but on opposite sides of a transversal.

GLOSSARY Appendix A Appendix A: Glossary Acute Angle An angle that measures less than 90. Acute Triangle Alternate Angles A triangle that has three acute angles. Angles that are between parallel lines,

### INFORMATION FOR TEACHERS

INFORMATION FOR TEACHERS The math behind DragonBox Elements - explore the elements of geometry - Includes exercises and topics for discussion General information DragonBox Elements Teaches geometry through

### Test to see if ΔFEG is a right triangle.

1. Copy the figure shown, and draw the common tangents. If no common tangent exists, state no common tangent. Every tangent drawn to the small circle will intersect the larger circle in two points. Every

### SAMPLE QUESTION PAPER (Set - II) Summative Assessment II. Class-X (2015 16) Mathematics. Time: 3 hours M. M. : 90. Section A

SAMPLE QUESTION PAPER (Set - II) Summative Assessment II Class-X (2015 16) Mathematics Time: 3 hours M. M. : 90 General Instructions: 1. All questions are compulsory. 2. The question paper consists of

### CHAPTER 6 LINES AND ANGLES. 6.1 Introduction

CHAPTER 6 LINES AND ANGLES 6.1 Introduction In Chapter 5, you have studied that a minimum of two points are required to draw a line. You have also studied some axioms and, with the help of these axioms,

### Circle theorems CHAPTER 19

352 CHTE 19 Circle theorems In this chapter you will learn how to: use correct vocabulary associated with circles use tangent properties to solve problems prove and use various theorems about angle properties

### PROBLEMS 04 - PARABOLA Page 1

PROBLEMS 0 - PARABOLA Page 1 ( 1 ) Find the co-ordines of the focus, length of the lus-rectum and equion of the directrix of the parabola x - 8. [ Ans: ( 0, - ), 8, ] ( ) If the line x k 0 is a tangent

### Unit 3 Circles and Spheres

Accelerated Mathematics I Frameworks Student Edition Unit 3 Circles and Spheres 2 nd Edition March, 2011 Table of Contents INTRODUCTION:... 3 Sunrise on the First Day of a New Year Learning Task... 8 Is

### Geometry Vocabulary. Created by Dani Krejci referencing:

Geometry Vocabulary Created by Dani Krejci referencing: http://mrsdell.org/geometry/vocabulary.html point An exact location in space, usually represented by a dot. A This is point A. line A straight path

### Equation of a Line. Chapter H2. The Gradient of a Line. m AB = Exercise H2 1

Chapter H2 Equation of a Line The Gradient of a Line The gradient of a line is simpl a measure of how steep the line is. It is defined as follows :- gradient = vertical horizontal horizontal A B vertical

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, August 13, 2009 8:30 to 11:30 a.m., only.

GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, August 13, 2009 8:30 to 11:30 a.m., only Student Name: School Name: Print your name and the name of your

### CHAPTER 7 TRIANGLES. 7.1 Introduction. 7.2 Congruence of Triangles

CHAPTER 7 TRIANGLES 7.1 Introduction You have studied about triangles and their various properties in your earlier classes. You know that a closed figure formed by three intersecting lines is called a

### Angle Bisectors in a Triangle

346/ ANGLE BISECTORS IN A TRIANGLE Angle Bisectors in a Triangle I. F. Sharygin In this article, we have collected some geometric facts which are directly or tangentially related to the angle bisectors

### Contents. 2 Lines and Circles 3 2.1 Cartesian Coordinates... 3 2.2 Distance and Midpoint Formulas... 3 2.3 Lines... 3 2.4 Circles...

Contents Lines and Circles 3.1 Cartesian Coordinates.......................... 3. Distance and Midpoint Formulas.................... 3.3 Lines.................................. 3.4 Circles..................................

### Lesson 2: Circles, Chords, Diameters, and Their Relationships

Circles, Chords, Diameters, and Their Relationships Student Outcomes Identify the relationships between the diameters of a circle and other chords of the circle. Lesson Notes Students are asked to construct

### Projective Geometry. Stoienescu Paul. International Computer High School Of Bucharest,

Projective Geometry Stoienescu Paul International Computer High School Of Bucharest, paul98stoienescu@gmail.com Abstract. In this note, I will present some olympiad problems which can be solved using projective

### Conjectures. Chapter 2. Chapter 3

Conjectures Chapter 2 C-1 Linear Pair Conjecture If two angles form a linear pair, then the measures of the angles add up to 180. (Lesson 2.5) C-2 Vertical Angles Conjecture If two angles are vertical

### x Q.7 All points on the curve y 2 4a

C X,Y CONIC SECTION PRACTICE SHEET Q. If on a given base, a triangle be described such that the sum of the tangents of the base angles is a constant, then the locus of the verte is : a circle (B) a parabola

### Co-ordinate Geometry THE EQUATION OF STRAIGHT LINES

Co-ordinate Geometry THE EQUATION OF STRAIGHT LINES This section refers to the properties of straight lines and curves using rules found by the use of cartesian co-ordinates. The Gradient of a Line. As

### The Inversion Transformation

The Inversion Transformation A non-linear transformation The transformations of the Euclidean plane that we have studied so far have all had the property that lines have been mapped to lines. Transformations

### IMO Geomety Problems. (IMO 1999/1) Determine all finite sets S of at least three points in the plane which satisfy the following condition:

IMO Geomety Problems (IMO 1999/1) Determine all finite sets S of at least three points in the plane which satisfy the following condition: for any two distinct points A and B in S, the perpendicular bisector

### Chapter 4 Circles, Tangent-Chord Theorem, Intersecting Chord Theorem and Tangent-secant Theorem

Tampines Junior ollege H3 Mathematics (9810) Plane Geometry hapter 4 ircles, Tangent-hord Theorem, Intersecting hord Theorem and Tangent-secant Theorem utline asic definitions and facts on circles The

### Tips for doing well on the final exam

Name Date Block The final exam for Geometry will take place on May 31 and June 1. The following study guide will help you prepare for the exam. Everything we have covered is fair game. As a reminder, topics

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Student Name:

GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Wednesday, August 18, 2010 8:30 to 11:30 a.m., only Student Name: School Name: Print your name and the name of

### Geometry: Euclidean. Through a given external point there is at most one line parallel to a

Geometry: Euclidean MATH 3120, Spring 2016 The proofs of theorems below can be proven using the SMSG postulates and the neutral geometry theorems provided in the previous section. In the SMSG axiom list,

### Postulate 17 The area of a square is the square of the length of a. Postulate 18 If two figures are congruent, then they have the same.

Chapter 11: Areas of Plane Figures (page 422) 11-1: Areas of Rectangles (page 423) Rectangle Rectangular Region Area is measured in units. Postulate 17 The area of a square is the square of the length

### Chapter 12. The Straight Line

302 Chapter 12 (Plane Analytic Geometry) 12.1 Introduction: Analytic- geometry was introduced by Rene Descartes (1596 1650) in his La Geometric published in 1637. Accordingly, after the name of its founder,

### The Inscribed Angle Alternate A Tangent Angle

Student Outcomes Students use the inscribed angle theorem to prove other theorems in its family (different angle and arc configurations and an arc intercepted by an angle at least one of whose rays is

### 1. A student followed the given steps below to complete a construction. Which type of construction is best represented by the steps given above?

1. A student followed the given steps below to complete a construction. Step 1: Place the compass on one endpoint of the line segment. Step 2: Extend the compass from the chosen endpoint so that the width

### Exercise Set 3. Similar triangles. Parallel lines

Exercise Set 3. Similar triangles Parallel lines Note: The exercises marked with are more difficult and go beyond the course/examination requirements. (1) Let ABC be a triangle with AB = AC. Let D be an

### PERIMETER AND AREA OF PLANE FIGURES

PERIMETER AND AREA OF PLANE FIGURES Q.. Find the area of a triangle whose sides are 8 cm, 4 cm and 30 cm. Also, find the length of altitude corresponding to the largest side of the triangle. Ans. Let ABC

### Unit 10 Geometry Circles. NAME Period

Unit 10 Geometry Circles NAME Period 1 Geometry Chapter 10 Circles ***In order to get full credit for your assignments they must me done on time and you must SHOW ALL WORK. *** 1. (10-1) Circles and Circumference

### Radius, diameter, circumference, π (Pi), central angles, Pythagorean relationship. about CIRCLES

Grade 9 Math Unit 8 : CIRCLE GEOMETRY NOTES 1 Chapter 8 in textbook (p. 384 420) 5/50 or 10% on 2011 CRT: 5 Multiple Choice WHAT YOU SHOULD ALREADY KNOW: Radius, diameter, circumference, π (Pi), central

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Student Name:

GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, June 17, 2010 1:15 to 4:15 p.m., only Student Name: School Name: Print your name and the name of your

### *1. Understand the concept of a constant number like pi. Know the formula for the circumference and area of a circle.

Students: 1. Students deepen their understanding of measurement of plane and solid shapes and use this understanding to solve problems. *1. Understand the concept of a constant number like pi. Know the

### GEOMETRY. Constructions OBJECTIVE #: G.CO.12

GEOMETRY Constructions OBJECTIVE #: G.CO.12 OBJECTIVE Make formal geometric constructions with a variety of tools and methods (compass and straightedge, string, reflective devices, paper folding, dynamic

### /27 Intro to Geometry Review

/27 Intro to Geometry Review 1. An acute has a measure of. 2. A right has a measure of. 3. An obtuse has a measure of. 13. Two supplementary angles are in ratio 11:7. Find the measure of each. 14. In the

### Unit 1: Similarity, Congruence, and Proofs

Unit 1: Similarity, Congruence, and Proofs This unit introduces the concepts of similarity and congruence. The definition of similarity is explored through dilation transformations. The concept of scale

### 10-4 Inscribed Angles. Find each measure. 1.

Find each measure. 1. 3. 2. intercepted arc. 30 Here, is a semi-circle. So, intercepted arc. So, 66 4. SCIENCE The diagram shows how light bends in a raindrop to make the colors of the rainbow. If, what

### Inversion in a Circle

Inversion in a Circle Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles March 23, 2011 Abstract This article will describe the geometric tool of inversion in a circle, and will demonstrate

### For the circle above, EOB is a central angle. So is DOE. arc. The (degree) measure of ù DE is the measure of DOE.

efinition: circle is the set of all points in a plane that are equidistant from a given point called the center of the circle. We use the symbol to represent a circle. The a line segment from the center

### Unit 3: Triangle Bisectors and Quadrilaterals

Unit 3: Triangle Bisectors and Quadrilaterals Unit Objectives Identify triangle bisectors Compare measurements of a triangle Utilize the triangle inequality theorem Classify Polygons Apply the properties