Geometry Chapter 10 Study Guide Name

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Geometry Chapter 10 Study Guide Name"

Transcription

1 eometry hapter 10 Study uide Name Terms and Vocabulary: ill in the blank and illustrate. 1. circle is defined as the set of all points in a plane that are equidistant from a fixed point called the center. circle is named by its center 2. segment whose endpoints are the center of a circle and a point on the circle is called a radius. T: ll radii of the same circle are congruent. 3. segment whose endpoints are 2 points on a circle is called a chord. 4. chord that passes through the center of a circle is called a diameter. omparing a diameter to a radius, d 2r 5. The circumference is the distance around a circle. 6. The formula for finding the circumference of a circle is: 2π r or dπ 7. π is defined as the ratio of the circumference of a circle to its diameter. It is approximately equal to central angle angle is an angle whose vertex is the center of a circle and its sides contain radii of the circle. Practice: O pages : 16-19, 26-29, 32-46; The three types of arcs:

2 Type of rc Minor rc Major rc Semicircle xample m on 142 m 142 c 1 m on c m 124 m on c m 180 ow is it named? Name a minor arc with 2 letters: Name a major arc with 3 letters: Name a semicircle with 3 letters: The rc s degree measure is qual to The measure of a minor arc is the same as the measure of its central angle. minor arc ha a measure less than 180 degrees. The measure of a major arc is the 360 minor arc associated with it. major arc has a measure greater than 180 degrees and less than 360. The measure of a semicircle is always 180 degrees. 10. Theorem: In the same circle or congruent circles, two arcs are congruent if and only if their corresponding central angles are congruent. 11. y the way, p if and only if q or p q indicates a statement that is biconditional. It literally means p q and q p. This kind of statement is only true when both p and q have the same truth value. 12. The rc ddition Postulate: The measure of an arc formed by two adjacent arcs is the sum of the measures of the individual arcs. P S Q xample: mpq + mqr mpr R

3 13. rc Length: The length of an arc is a fraction of the circumference of a circle. The fraction is determined by the degree measure of the arc. The following ratio can be used to find. arc measure l ( ircumference) 360 arc measure ( 2π r ) 360 Practice: O: page 533: Theorem: In a circle or in congruent circles, two minor arcs are congruent if and only if their corresponding chords are congruent. Pictured: If then nd If then 15. f the sides of a polygon are chords of a circle, then the polygon is said to be inscribed in the circle and the circle is said to be circumscribed about the polygon. 16. Theorem: In a circle, if a diameter is perpendicular to a chord, the it bisects the chord and it also bisects both of its arcs. Pictured: iven and Then:

4 17. Theorem: In a circle or in congruent circles, two chords are congruent if and only if they are equidistant from the center of the circle. So, In the picture of If If, then and then 18. y the way, the distance from a point to a line is always the length of the segment drawn from the point to the line that is perpendicular to the line. Practice: O page 540: n inscribed angle is an angle that has its vertex on the circle and its sides contain chords. 20. In the picture, M is called the L intercepted arc of LM. xcept for its endpoints and M, the arc lies in the interior of the LM. M 21. Theorem: The measure of an inscribed angle is equal to one half of the measure of its intercepted arc.. Using the picture above: m LM 1 2 ( mm) 22. Theorem: If two inscribed angles of a circle intercept the same arc or congruent arcs, then the angles are congruent. Since and both intercept, they are congruent. Similarly, since is intercepted by and, they are.

5 23. Theorem: If an inscribed angle intercepts or is inscribed in a semicircle, then the angle is a right angle. 24. Theorem: If a quadrilateral is inscribed in a circle, then its opposite angles are supplementary. Pictured: m + m 180 nd m+ m 180 Practice: O Page : 8-10,13-16, tangent line is a line in the plane of a circle that intersects the circle in exactly one point. The point of intersection, (Point in the picture) is called the point of tangency. 26. Theorem: If a line is tangent to a circle then it is perpendicular to the radius drawn to the point of tangency. 27. onverse: If a radius is perpendicular to a line at its endpoint on the circle, then the line is tangent to the circle

6 28. Theorem: If two segments from the same exterior point are tangent to a circle, then the segments are congruent. Practice: O Page : 8,9,12-18, secant is a line that intersects a circle in exactly two points. 30. Theorem: If two secants or chords intersect in the interior of a circle, then the angle formed is half the sum of their intercepted arcs Using the picture to the right: m LM 1 2 ml + mn L M N m MN 1 2 ml + mn 31. Theorem: If a secant and a tangent intersect at the point of tangency, then the measure of each angle formed is half the measure of the intercepted arc. In the picture at the right, N O 1 1 m OPR ( mor) and m QPO mp NO 2 2 Q P R

7 32. Theorem: If two secants, a secant and a tangent, or two tangents intersect in the exterior of a circle, then the measure of the angle formed is equal to one half the positive difference of the two intercepted arcs. Two Secants Secant & Tangent Two Tangents I M L m 1 2 m m mi 1 2 m I mi mm 1 2 ml m Practice: O Page 564: 12-24, 29, Theorem: If two chords intersect in a circle, then the products of the lengths of the segments of each chord are equal rom the picture: MN NP QN NO M Q N O P

8 34. Theorem: If two secant segments are drawn to a circle from an exterior point, then the product of the length of one secant segment and its external secant segment is equal to the product of the other secant segment and its external secant segment. rom the picture: 35. Theorem: If a tangent segment and a secant segment are drawn to a circle from an exterior point, then the square of the length of the tangent segment is equal to the product of the secant segment and its external secant segment. rom the picture: ( ) 2 I I Practice: O Page 572: 8-10, 12,13,15,16,17

Chapter 6 Notes: Circles

Chapter 6 Notes: Circles Chapter 6 Notes: Circles IMPORTANT TERMS AND DEFINITIONS A circle is the set of all points in a plane that are at a fixed distance from a given point known as the center of the circle. Any line segment

More information

Chapters 6 and 7 Notes: Circles, Locus and Concurrence

Chapters 6 and 7 Notes: Circles, Locus and Concurrence Chapters 6 and 7 Notes: Circles, Locus and Concurrence IMPORTANT TERMS AND DEFINITIONS A circle is the set of all points in a plane that are at a fixed distance from a given point known as the center of

More information

Circle Name: Radius: Diameter: Chord: Secant:

Circle Name: Radius: Diameter: Chord: Secant: 12.1: Tangent Lines Congruent Circles: circles that have the same radius length Diagram of Examples Center of Circle: Circle Name: Radius: Diameter: Chord: Secant: Tangent to A Circle: a line in the plane

More information

circumscribed circle Vocabulary Flash Cards Chapter 10 (p. 539) Chapter 10 (p. 530) Chapter 10 (p. 538) Chapter 10 (p. 530)

circumscribed circle Vocabulary Flash Cards Chapter 10 (p. 539) Chapter 10 (p. 530) Chapter 10 (p. 538) Chapter 10 (p. 530) Vocabulary Flash ards adjacent arcs center of a circle hapter 10 (p. 539) hapter 10 (p. 530) central angle of a circle chord of a circle hapter 10 (p. 538) hapter 10 (p. 530) circle circumscribed angle

More information

For the circle above, EOB is a central angle. So is DOE. arc. The (degree) measure of ù DE is the measure of DOE.

For the circle above, EOB is a central angle. So is DOE. arc. The (degree) measure of ù DE is the measure of DOE. efinition: circle is the set of all points in a plane that are equidistant from a given point called the center of the circle. We use the symbol to represent a circle. The a line segment from the center

More information

Geometry SOL G.11 G.12 Circles Study Guide

Geometry SOL G.11 G.12 Circles Study Guide Geometry SOL G.11 G.1 Circles Study Guide Name Date Block Circles Review and Study Guide Things to Know Use your notes, homework, checkpoint, and other materials as well as flashcards at quizlet.com (http://quizlet.com/4776937/chapter-10-circles-flashcardsflash-cards/).

More information

Circle geometry theorems

Circle geometry theorems Circle geometry theorems http://topdrawer.aamt.edu.au/geometric-reasoning/big-ideas/circlegeometry/angle-and-chord-properties Theorem Suggested abbreviation Diagram 1. When two circles intersect, the line

More information

Name Date Class. Lines and Segments That Intersect Circles. AB and CD are chords. Tangent Circles. Theorem Hypothesis Conclusion

Name Date Class. Lines and Segments That Intersect Circles. AB and CD are chords. Tangent Circles. Theorem Hypothesis Conclusion Section. Lines That Intersect Circles Lines and Segments That Intersect Circles A chord is a segment whose endpoints lie on a circle. A secant is a line that intersects a circle at two points. A tangent

More information

The measure of an arc is the measure of the central angle that intercepts it Therefore, the intercepted arc measures

The measure of an arc is the measure of the central angle that intercepts it Therefore, the intercepted arc measures 8.1 Name (print first and last) Per Date: 3/24 due 3/25 8.1 Circles: Arcs and Central Angles Geometry Regents 2013-2014 Ms. Lomac SLO: I can use definitions & theorems about points, lines, and planes to

More information

Intro to Circles Formulas Area: Circumference: Circle:

Intro to Circles Formulas Area: Circumference: Circle: Intro to ircles Formulas rea: ircumference: ircle: Key oncepts ll radii are congruent If radii or diameter of 2 circles are congruent, then circles are congruent. Points with respect to ircle Interior

More information

c.) If RN = 2, find RP. N

c.) If RN = 2, find RP. N Geometry 10-1 ircles and ircumference. Parts of ircles 1. circle is the locus of all points equidistant from a given point called the center of the circle.. circle is usually named by its point. 3. The

More information

Unit 3: Circles and Volume

Unit 3: Circles and Volume Unit 3: Circles and Volume This unit investigates the properties of circles and addresses finding the volume of solids. Properties of circles are used to solve problems involving arcs, angles, sectors,

More information

Chapter Review. 11-1 Lines that Intersect Circles. 11-2 Arcs and Chords. Identify each line or segment that intersects each circle.

Chapter Review. 11-1 Lines that Intersect Circles. 11-2 Arcs and Chords. Identify each line or segment that intersects each circle. HPTR 11-1 hapter Review 11-1 Lines that Intersect ircles Identify each line or segment that intersects each circle. 1. m 2. N L K J n W Y X Z V 3. The summit of Mt. McKinley in laska is about 20,321 feet

More information

CIRCLE DEFINITIONS AND THEOREMS

CIRCLE DEFINITIONS AND THEOREMS DEFINITIONS Circle- The set of points in a plane equidistant from a given point(the center of the circle). Radius- A segment from the center of the circle to a point on the circle(the distance from the

More information

CCGPS UNIT 3 Semester 1 ANALYTIC GEOMETRY Page 1 of 32. Circles and Volumes Name:

CCGPS UNIT 3 Semester 1 ANALYTIC GEOMETRY Page 1 of 32. Circles and Volumes Name: GPS UNIT 3 Semester 1 NLYTI GEOMETRY Page 1 of 3 ircles and Volumes Name: ate: Understand and apply theorems about circles M9-1.G..1 Prove that all circles are similar. M9-1.G.. Identify and describe relationships

More information

The Inscribed Angle Alternate A Tangent Angle

The Inscribed Angle Alternate A Tangent Angle Student Outcomes Students use the inscribed angle theorem to prove other theorems in its family (different angle and arc configurations and an arc intercepted by an angle at least one of whose rays is

More information

Unit 10 Geometry Circles. NAME Period

Unit 10 Geometry Circles. NAME Period Unit 10 Geometry Circles NAME Period 1 Geometry Chapter 10 Circles ***In order to get full credit for your assignments they must me done on time and you must SHOW ALL WORK. *** 1. (10-1) Circles and Circumference

More information

Geometry Unit 10 Notes Circles. Syllabus Objective: 10.1 - The student will differentiate among the terms relating to a circle.

Geometry Unit 10 Notes Circles. Syllabus Objective: 10.1 - The student will differentiate among the terms relating to a circle. Geometry Unit 0 Notes ircles Syllabus Objective: 0. - The student will differentiate among the terms relating to a circle. ircle the set of all points in a plane that are equidistant from a given point,

More information

Circle Theorems. This circle shown is described an OT. As always, when we introduce a new topic we have to define the things we wish to talk about.

Circle Theorems. This circle shown is described an OT. As always, when we introduce a new topic we have to define the things we wish to talk about. Circle s circle is a set of points in a plane that are a given distance from a given point, called the center. The center is often used to name the circle. T This circle shown is described an OT. s always,

More information

Conjectures. Chapter 2. Chapter 3

Conjectures. Chapter 2. Chapter 3 Conjectures Chapter 2 C-1 Linear Pair Conjecture If two angles form a linear pair, then the measures of the angles add up to 180. (Lesson 2.5) C-2 Vertical Angles Conjecture If two angles are vertical

More information

Definitions, Postulates and Theorems

Definitions, Postulates and Theorems Definitions, s and s Name: Definitions Complementary Angles Two angles whose measures have a sum of 90 o Supplementary Angles Two angles whose measures have a sum of 180 o A statement that can be proven

More information

of one triangle are congruent to the corresponding parts of the other triangle, the two triangles are congruent.

of one triangle are congruent to the corresponding parts of the other triangle, the two triangles are congruent. 2901 Clint Moore Road #319, Boca Raton, FL 33496 Office: (561) 459-2058 Mobile: (949) 510-8153 Email: HappyFunMathTutor@gmail.com www.happyfunmathtutor.com GEOMETRY THEORUMS AND POSTULATES GEOMETRY POSTULATES:

More information

Section 9-1. Basic Terms: Tangents, Arcs and Chords Homework Pages 330-331: 1-18

Section 9-1. Basic Terms: Tangents, Arcs and Chords Homework Pages 330-331: 1-18 Chapter 9 Circles Objectives A. Recognize and apply terms relating to circles. B. Properly use and interpret the symbols for the terms and concepts in this chapter. C. Appropriately apply the postulates,

More information

Geometry Chapter 9. Circle Vocabulary Arc Length Angle & Segment Theorems with Circles Proofs

Geometry Chapter 9. Circle Vocabulary Arc Length Angle & Segment Theorems with Circles Proofs Geometry hapter 9 ircle Vocabulary rc Length ngle & Segment Theorems with ircles Proofs hapter 9: ircles Date Due Section Topics ssignment 9.1 9.2 Written Eercises Definitions Worksheet (pg330 classroom

More information

Basics of Circles 9/20/15. Important theorems:

Basics of Circles 9/20/15. Important theorems: Basics of ircles 9/20/15 B H P E F G ID Important theorems: 1. A radius is perpendicular to a tangent at the point of tangency. PB B 2. The measure of a central angle is equal to the measure of its intercepted

More information

Inscribed Angle Theorem and Its Applications

Inscribed Angle Theorem and Its Applications : Student Outcomes Prove the inscribed angle theorem: The measure of a central angle is twice the measure of any inscribed angle that intercepts the same arc as the central angle. Recognize and use different

More information

Warm Up #23: Review of Circles 1.) A central angle of a circle is an angle with its vertex at the of the circle. Example:

Warm Up #23: Review of Circles 1.) A central angle of a circle is an angle with its vertex at the of the circle. Example: Geometr hapter 12 Notes - 1 - Warm Up #23: Review of ircles 1.) central angle of a circle is an angle with its verte at the of the circle. Eample: X 80 2.) n arc is a section of a circle. Eamples:, 3.)

More information

10.5 and 10.6 Lesson Plan

10.5 and 10.6 Lesson Plan Title: Secants, Tangents, and Angle Measures 10.5 and 10.6 Lesson Plan Course: Objectives: Reporting Categories: Related SOL: Vocabulary: Materials: Time Required: Geometry (Mainly 9 th and 10 th Grade)

More information

Postulate 17 The area of a square is the square of the length of a. Postulate 18 If two figures are congruent, then they have the same.

Postulate 17 The area of a square is the square of the length of a. Postulate 18 If two figures are congruent, then they have the same. Chapter 11: Areas of Plane Figures (page 422) 11-1: Areas of Rectangles (page 423) Rectangle Rectangular Region Area is measured in units. Postulate 17 The area of a square is the square of the length

More information

BC AB = AB. The first proportion is derived from similarity of the triangles BDA and ADC. These triangles are similar because

BC AB = AB. The first proportion is derived from similarity of the triangles BDA and ADC. These triangles are similar because 150 hapter 3. SIMILRITY 397. onstruct a triangle, given the ratio of its altitude to the base, the angle at the vertex, and the median drawn to one of its lateral sides 398. Into a given disk segment,

More information

GEOMETRY CONCEPT MAP. Suggested Sequence:

GEOMETRY CONCEPT MAP. Suggested Sequence: CONCEPT MAP GEOMETRY August 2011 Suggested Sequence: 1. Tools of Geometry 2. Reasoning and Proof 3. Parallel and Perpendicular Lines 4. Congruent Triangles 5. Relationships Within Triangles 6. Polygons

More information

Conjectures for Geometry for Math 70 By I. L. Tse

Conjectures for Geometry for Math 70 By I. L. Tse Conjectures for Geometry for Math 70 By I. L. Tse Chapter Conjectures 1. Linear Pair Conjecture: If two angles form a linear pair, then the measure of the angles add up to 180. Vertical Angle Conjecture:

More information

Geometry Honors: Circles, Coordinates, and Construction Semester 2, Unit 4: Activity 24

Geometry Honors: Circles, Coordinates, and Construction Semester 2, Unit 4: Activity 24 Geometry Honors: Circles, Coordinates, and Construction Semester 2, Unit 4: ctivity 24 esources: Springoard- Geometry Unit Overview In this unit, students will study formal definitions of basic figures,

More information

Radius, diameter, circumference, π (Pi), central angles, Pythagorean relationship. about CIRCLES

Radius, diameter, circumference, π (Pi), central angles, Pythagorean relationship. about CIRCLES Grade 9 Math Unit 8 : CIRCLE GEOMETRY NOTES 1 Chapter 8 in textbook (p. 384 420) 5/50 or 10% on 2011 CRT: 5 Multiple Choice WHAT YOU SHOULD ALREADY KNOW: Radius, diameter, circumference, π (Pi), central

More information

GEOMETRY FINAL EXAM REVIEW

GEOMETRY FINAL EXAM REVIEW GEOMETRY FINL EXM REVIEW I. MTHING reflexive. a(b + c) = ab + ac transitive. If a = b & b = c, then a = c. symmetric. If lies between and, then + =. substitution. If a = b, then b = a. distributive E.

More information

Geometry Unit 5: Circles Part 1 Chords, Secants, and Tangents

Geometry Unit 5: Circles Part 1 Chords, Secants, and Tangents Geometry Unit 5: Circles Part 1 Chords, Secants, and Tangents Name Chords and Circles: A chord is a segment that joins two points of the circle. A diameter is a chord that contains the center of the circle.

More information

Lesson 1: Introducing Circles

Lesson 1: Introducing Circles IRLES N VOLUME Lesson 1: Introducing ircles ommon ore Georgia Performance Standards M9 12.G..1 M9 12.G..2 Essential Questions 1. Why are all circles similar? 2. What are the relationships among inscribed

More information

ABC is the triangle with vertices at points A, B and C

ABC is the triangle with vertices at points A, B and C Euclidean Geometry Review This is a brief review of Plane Euclidean Geometry - symbols, definitions, and theorems. Part I: The following are symbols commonly used in geometry: AB is the segment from the

More information

Tangent Properties. Line m is a tangent to circle O. Point T is the point of tangency.

Tangent Properties. Line m is a tangent to circle O. Point T is the point of tangency. CONDENSED LESSON 6.1 Tangent Properties In this lesson you will Review terms associated with circles Discover how a tangent to a circle and the radius to the point of tangency are related Make a conjecture

More information

Chapter 4 Circles, Tangent-Chord Theorem, Intersecting Chord Theorem and Tangent-secant Theorem

Chapter 4 Circles, Tangent-Chord Theorem, Intersecting Chord Theorem and Tangent-secant Theorem Tampines Junior ollege H3 Mathematics (9810) Plane Geometry hapter 4 ircles, Tangent-hord Theorem, Intersecting hord Theorem and Tangent-secant Theorem utline asic definitions and facts on circles The

More information

Centroid: The point of intersection of the three medians of a triangle. Centroid

Centroid: The point of intersection of the three medians of a triangle. Centroid Vocabulary Words Acute Triangles: A triangle with all acute angles. Examples 80 50 50 Angle: A figure formed by two noncollinear rays that have a common endpoint and are not opposite rays. Angle Bisector:

More information

Contents. 2 Lines and Circles 3 2.1 Cartesian Coordinates... 3 2.2 Distance and Midpoint Formulas... 3 2.3 Lines... 3 2.4 Circles...

Contents. 2 Lines and Circles 3 2.1 Cartesian Coordinates... 3 2.2 Distance and Midpoint Formulas... 3 2.3 Lines... 3 2.4 Circles... Contents Lines and Circles 3.1 Cartesian Coordinates.......................... 3. Distance and Midpoint Formulas.................... 3.3 Lines.................................. 3.4 Circles..................................

More information

10.1: Areas of Parallelograms and Triangles

10.1: Areas of Parallelograms and Triangles 10.1: Areas of Parallelograms and Triangles Important Vocabulary: By the end of this lesson, you should be able to define these terms: Base of a Parallelogram, Altitude of a Parallelogram, Height of a

More information

2006 Geometry Form A Page 1

2006 Geometry Form A Page 1 2006 Geometry Form Page 1 1. he hypotenuse of a right triangle is 12" long, and one of the acute angles measures 30 degrees. he length of the shorter leg must be: () 4 3 inches () 6 3 inches () 5 inches

More information

Geometry: Euclidean. Through a given external point there is at most one line parallel to a

Geometry: Euclidean. Through a given external point there is at most one line parallel to a Geometry: Euclidean MATH 3120, Spring 2016 The proofs of theorems below can be proven using the SMSG postulates and the neutral geometry theorems provided in the previous section. In the SMSG axiom list,

More information

Geometry Chapter 1 Vocabulary. coordinate - The real number that corresponds to a point on a line.

Geometry Chapter 1 Vocabulary. coordinate - The real number that corresponds to a point on a line. Chapter 1 Vocabulary coordinate - The real number that corresponds to a point on a line. point - Has no dimension. It is usually represented by a small dot. bisect - To divide into two congruent parts.

More information

Tangents to Circles. Circle The set of all points in a plane that are equidistant from a given point, called the center of the circle

Tangents to Circles. Circle The set of all points in a plane that are equidistant from a given point, called the center of the circle 10.1 Tangents to ircles Goals p Identify segments and lines related to circles. p Use properties of a tangent to a circle. VOULRY ircle The set of all points in a plane that are equidistant from a given

More information

56 questions (multiple choice, check all that apply, and fill in the blank) The exam is worth 224 points.

56 questions (multiple choice, check all that apply, and fill in the blank) The exam is worth 224 points. 6.1.1 Review: Semester Review Study Sheet Geometry Core Sem 2 (S2495808) Semester Exam Preparation Look back at the unit quizzes and diagnostics. Use the unit quizzes and diagnostics to determine which

More information

CK-12 Geometry: Parts of Circles and Tangent Lines

CK-12 Geometry: Parts of Circles and Tangent Lines CK-12 Geometry: Parts of Circles and Tangent Lines Learning Objectives Define circle, center, radius, diameter, chord, tangent, and secant of a circle. Explore the properties of tangent lines and circles.

More information

San Jose Math Circle February 14, 2009 CIRCLES AND FUNKY AREAS - PART II. Warm-up Exercises

San Jose Math Circle February 14, 2009 CIRCLES AND FUNKY AREAS - PART II. Warm-up Exercises San Jose Math Circle February 14, 2009 CIRCLES AND FUNKY AREAS - PART II Warm-up Exercises 1. In the diagram below, ABC is equilateral with side length 6. Arcs are drawn centered at the vertices connecting

More information

Unit 3 Practice Test. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

Unit 3 Practice Test. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question. Name: lass: ate: I: Unit 3 Practice Test Multiple hoice Identify the choice that best completes the statement or answers the question. The radius, diameter, or circumference of a circle is given. Find

More information

12-1. Tangent Lines. Vocabulary. Review. Vocabulary Builder HSM11_GEMC_1201_T Use Your Vocabulary

12-1. Tangent Lines. Vocabulary. Review. Vocabulary Builder HSM11_GEMC_1201_T Use Your Vocabulary 1-1 Tangent Lines Vocabulary Review 1. ross out the word that does NT apply to a circle. arc circumference diameter equilateral radius. ircle the word for a segment with one endpoint at the center of a

More information

circle the set of all points that are given distance from a given point in a given plane

circle the set of all points that are given distance from a given point in a given plane Geometry Week 19 Sec 9.1 to 9.3 Definitions: section 9.1 circle the set of all points that are given distance from a given point in a given plane E D Notation: F center the given point in the plane radius

More information

CONJECTURES - Discovering Geometry. Chapter 2

CONJECTURES - Discovering Geometry. Chapter 2 CONJECTURES - Discovering Geometry Chapter C-1 Linear Pair Conjecture - If two angles form a linear pair, then the measures of the angles add up to 180. C- Vertical Angles Conjecture - If two angles are

More information

MATH STUDENT BOOK. 8th Grade Unit 6

MATH STUDENT BOOK. 8th Grade Unit 6 MATH STUDENT BOOK 8th Grade Unit 6 Unit 6 Measurement Math 806 Measurement Introduction 3 1. Angle Measures and Circles 5 Classify and Measure Angles 5 Perpendicular and Parallel Lines, Part 1 12 Perpendicular

More information

Unit 3 Circles and Spheres

Unit 3 Circles and Spheres Accelerated Mathematics I Frameworks Student Edition Unit 3 Circles and Spheres 2 nd Edition March, 2011 Table of Contents INTRODUCTION:... 3 Sunrise on the First Day of a New Year Learning Task... 8 Is

More information

Content Area: GEOMETRY Grade 9 th Quarter 1 st Curso Serie Unidade

Content Area: GEOMETRY Grade 9 th Quarter 1 st Curso Serie Unidade Content Area: GEOMETRY Grade 9 th Quarter 1 st Curso Serie Unidade Standards/Content Padrões / Conteúdo Learning Objectives Objetivos de Aprendizado Vocabulary Vocabulário Assessments Avaliações Resources

More information

Geometry Enduring Understandings Students will understand 1. that all circles are similar.

Geometry Enduring Understandings Students will understand 1. that all circles are similar. High School - Circles Essential Questions: 1. Why are geometry and geometric figures relevant and important? 2. How can geometric ideas be communicated using a variety of representations? ******(i.e maps,

More information

MATHEMATICS Grade 12 EUCLIDEAN GEOMETRY: CIRCLES 02 JULY 2014

MATHEMATICS Grade 12 EUCLIDEAN GEOMETRY: CIRCLES 02 JULY 2014 EUCLIDEAN GEOMETRY: CIRCLES 02 JULY 2014 Checklist Make sure you learn proofs of the following theorems: The line drawn from the centre of a circle perpendicular to a chord bisects the chord The angle

More information

10-4 Inscribed Angles. Find each measure. 1.

10-4 Inscribed Angles. Find each measure. 1. Find each measure. 1. 3. 2. intercepted arc. 30 Here, is a semi-circle. So, intercepted arc. So, 66 4. SCIENCE The diagram shows how light bends in a raindrop to make the colors of the rainbow. If, what

More information

Chapter 3.1 Angles. Geometry. Objectives: Define what an angle is. Define the parts of an angle.

Chapter 3.1 Angles. Geometry. Objectives: Define what an angle is. Define the parts of an angle. Chapter 3.1 Angles Define what an angle is. Define the parts of an angle. Recall our definition for a ray. A ray is a line segment with a definite starting point and extends into infinity in only one direction.

More information

Overview Mathematical Practices Congruence

Overview Mathematical Practices Congruence Overview Mathematical Practices Congruence 1. Make sense of problems and persevere in Experiment with transformations in the plane. solving them. Understand congruence in terms of rigid motions. 2. Reason

More information

Perimeter and area formulas for common geometric figures:

Perimeter and area formulas for common geometric figures: Lesson 10.1 10.: Perimeter and Area of Common Geometric Figures Focused Learning Target: I will be able to Solve problems involving perimeter and area of common geometric figures. Compute areas of rectangles,

More information

GEOMETRY OF THE CIRCLE

GEOMETRY OF THE CIRCLE HTR GMTRY F TH IRL arly geometers in many parts of the world knew that, for all circles, the ratio of the circumference of a circle to its diameter was a constant. Today, we write d 5p, but early geometers

More information

39 Symmetry of Plane Figures

39 Symmetry of Plane Figures 39 Symmetry of Plane Figures In this section, we are interested in the symmetric properties of plane figures. By a symmetry of a plane figure we mean a motion of the plane that moves the figure so that

More information

Unknown Angle Problems with Inscribed Angles in Circles

Unknown Angle Problems with Inscribed Angles in Circles : Unknown Angle Problems with Inscribed Angles in Circles Student Outcomes Use the inscribed angle theorem to find the measures of unknown angles. Prove relationships between inscribed angles and central

More information

Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question. Name: Class: Date: ID: A Q3 Geometry Review Multiple Choice Identify the choice that best completes the statement or answers the question. Graph the image of each figure under a translation by the given

More information

Topics Covered on Geometry Placement Exam

Topics Covered on Geometry Placement Exam Topics Covered on Geometry Placement Exam - Use segments and congruence - Use midpoint and distance formulas - Measure and classify angles - Describe angle pair relationships - Use parallel lines and transversals

More information

Sec 1.1 CC Geometry - Constructions Name: 1. [COPY SEGMENT] Construct a segment with an endpoint of C and congruent to the segment AB.

Sec 1.1 CC Geometry - Constructions Name: 1. [COPY SEGMENT] Construct a segment with an endpoint of C and congruent to the segment AB. Sec 1.1 CC Geometry - Constructions Name: 1. [COPY SEGMENT] Construct a segment with an endpoint of C and congruent to the segment AB. A B C **Using a ruler measure the two lengths to make sure they have

More information

GEOMETRY COMMON CORE STANDARDS

GEOMETRY COMMON CORE STANDARDS 1st Nine Weeks Experiment with transformations in the plane G-CO.1 Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point,

More information

Dates, assignments, and quizzes subject to change without advance notice. Monday Tuesday Block Day Friday. 3 (only see 6 th, 4

Dates, assignments, and quizzes subject to change without advance notice. Monday Tuesday Block Day Friday. 3 (only see 6 th, 4 Name: Period GL UNIT 12: IRLS I can define, identify and illustrate the following terms: Interior of a circle hord xterior of a circle Secant of a circle Tangent to a circle Point of tangency entral angle

More information

Lesson 2: Circles, Chords, Diameters, and Their Relationships

Lesson 2: Circles, Chords, Diameters, and Their Relationships Circles, Chords, Diameters, and Their Relationships Student Outcomes Identify the relationships between the diameters of a circle and other chords of the circle. Lesson Notes Students are asked to construct

More information

Geo 9 1 Circles 9-1 Basic Terms associated with Circles and Spheres. Radius. Chord. Secant. Diameter. Tangent. Point of Tangency.

Geo 9 1 Circles 9-1 Basic Terms associated with Circles and Spheres. Radius. Chord. Secant. Diameter. Tangent. Point of Tangency. Geo 9 1 ircles 9-1 asic Terms associated with ircles and Spheres ircle Given Point = Given distance = Radius hord Secant iameter Tangent Point of Tangenc Sphere Label ccordingl: ongruent circles or spheres

More information

A = ½ x b x h or ½bh or bh. Formula Key A 2 + B 2 = C 2. Pythagorean Theorem. Perimeter. b or (b 1 / b 2 for a trapezoid) height

A = ½ x b x h or ½bh or bh. Formula Key A 2 + B 2 = C 2. Pythagorean Theorem. Perimeter. b or (b 1 / b 2 for a trapezoid) height Formula Key b 1 base height rea b or (b 1 / b for a trapezoid) h b Perimeter diagonal P d (d 1 / d for a kite) d 1 d Perpendicular two lines form a angle. Perimeter P = total of all sides (side + side

More information

New York State Student Learning Objective: Regents Geometry

New York State Student Learning Objective: Regents Geometry New York State Student Learning Objective: Regents Geometry All SLOs MUST include the following basic components: Population These are the students assigned to the course section(s) in this SLO all students

More information

Geometry Essential Curriculum

Geometry Essential Curriculum Geometry Essential Curriculum Unit I: Fundamental Concepts and Patterns in Geometry Goal: The student will demonstrate the ability to use the fundamental concepts of geometry including the definitions

More information

INDEX. Arc Addition Postulate,

INDEX. Arc Addition Postulate, # 30-60 right triangle, 441-442, 684 A Absolute value, 59 Acute angle, 77, 669 Acute triangle, 178 Addition Property of Equality, 86 Addition Property of Inequality, 258 Adjacent angle, 109, 669 Adjacent

More information

A convex polygon is a polygon such that no line containing a side of the polygon will contain a point in the interior of the polygon.

A convex polygon is a polygon such that no line containing a side of the polygon will contain a point in the interior of the polygon. hapter 7 Polygons A polygon can be described by two conditions: 1. No two segments with a common endpoint are collinear. 2. Each segment intersects exactly two other segments, but only on the endpoints.

More information

GEOMETRY. Constructions OBJECTIVE #: G.CO.12

GEOMETRY. Constructions OBJECTIVE #: G.CO.12 GEOMETRY Constructions OBJECTIVE #: G.CO.12 OBJECTIVE Make formal geometric constructions with a variety of tools and methods (compass and straightedge, string, reflective devices, paper folding, dynamic

More information

10-7 Special Segments in a Circle. Find x. Assume that segments that appear to be tangent are tangent. 1. SOLUTION: 2. SOLUTION: 3.

10-7 Special Segments in a Circle. Find x. Assume that segments that appear to be tangent are tangent. 1. SOLUTION: 2. SOLUTION: 3. Find x. Assume that segments that appear to be tangent are tangent. 1. 2. 3. esolutions Manual - Powered by Cognero Page 1 4. 5. SCIENCE A piece of broken pottery found at an archaeological site is shown.

More information

Geometry Math Standards and I Can Statements

Geometry Math Standards and I Can Statements Geometry Math Standards and I Can Statements Unit 1 Subsection A CC.9-12.G.CO.1 Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions

More information

Area. Area Overview. Define: Area:

Area. Area Overview. Define: Area: Define: Area: Area Overview Kite: Parallelogram: Rectangle: Rhombus: Square: Trapezoid: Postulates/Theorems: Every closed region has an area. If closed figures are congruent, then their areas are equal.

More information

Math 531, Exam 1 Information.

Math 531, Exam 1 Information. Math 531, Exam 1 Information. 9/21/11, LC 310, 9:05-9:55. Exam 1 will be based on: Sections 1A - 1F. The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/531fa11/531.html)

More information

10-7 Special Segments in a Circle. Find x. Assume that segments that appear to be tangent are tangent. 1. SOLUTION: ANSWER: 2 SOLUTION: ANSWER:

10-7 Special Segments in a Circle. Find x. Assume that segments that appear to be tangent are tangent. 1. SOLUTION: ANSWER: 2 SOLUTION: ANSWER: Find x. Assume that segments that appear to be tangent are tangent. 1. 3. 2 5 2. 4. 6 13 esolutions Manual - Powered by Cognero Page 1 5. SCIENCE A piece of broken pottery found at an archaeological site

More information

Chapter 7 Quiz. (1.) Which type of unit can be used to measure the area of a region centimeter, square centimeter, or cubic centimeter?

Chapter 7 Quiz. (1.) Which type of unit can be used to measure the area of a region centimeter, square centimeter, or cubic centimeter? Chapter Quiz Section.1 Area and Initial Postulates (1.) Which type of unit can be used to measure the area of a region centimeter, square centimeter, or cubic centimeter? (.) TRUE or FALSE: If two plane

More information

Circles. An Investigation of the Properties and Theorems of Arcs, Angles and Segments in Circles. Course 2R/2E 10 th Grade

Circles. An Investigation of the Properties and Theorems of Arcs, Angles and Segments in Circles. Course 2R/2E 10 th Grade Circles An Investigation of the Properties and Theorems of Arcs, Angles and Segments in Circles. Course 2R/2E 10 th Grade A 4 block (8 day) unit plan using Geometer s Sketchpad Developed by Mark Warren

More information

CRLS Mathematics Department Geometry Curriculum Map/Pacing Guide. CRLS Mathematics Department Geometry Curriculum Map/Pacing Guide

CRLS Mathematics Department Geometry Curriculum Map/Pacing Guide. CRLS Mathematics Department Geometry Curriculum Map/Pacing Guide Curriculum Map/Pacing Guide page of 6 2 77.5 Unit : Tools of 5 9 Totals Always Include 2 blocks for Review & Test Activity binder, District Google How do you find length, area? 2 What are the basic tools

More information

Name Geometry Exam Review #1: Constructions and Vocab

Name Geometry Exam Review #1: Constructions and Vocab Name Geometry Exam Review #1: Constructions and Vocab Copy an angle: 1. Place your compass on A, make any arc. Label the intersections of the arc and the sides of the angle B and C. 2. Compass on A, make

More information

Unit 3: Triangle Bisectors and Quadrilaterals

Unit 3: Triangle Bisectors and Quadrilaterals Unit 3: Triangle Bisectors and Quadrilaterals Unit Objectives Identify triangle bisectors Compare measurements of a triangle Utilize the triangle inequality theorem Classify Polygons Apply the properties

More information

Geometry. Higher Mathematics Courses 69. Geometry

Geometry. Higher Mathematics Courses 69. Geometry The fundamental purpose of the course is to formalize and extend students geometric experiences from the middle grades. This course includes standards from the conceptual categories of and Statistics and

More information

Chapters 4 and 5 Notes: Quadrilaterals and Similar Triangles

Chapters 4 and 5 Notes: Quadrilaterals and Similar Triangles Chapters 4 and 5 Notes: Quadrilaterals and Similar Triangles IMPORTANT TERMS AND DEFINITIONS parallelogram rectangle square rhombus A quadrilateral is a polygon that has four sides. A parallelogram is

More information

Grade 7 & 8 Math Circles Circles, Circles, Circles March 19/20, 2013

Grade 7 & 8 Math Circles Circles, Circles, Circles March 19/20, 2013 Faculty of Mathematics Waterloo, Ontario N2L 3G Introduction Grade 7 & 8 Math Circles Circles, Circles, Circles March 9/20, 203 The circle is a very important shape. In fact of all shapes, the circle is

More information

(a) 5 square units. (b) 12 square units. (c) 5 3 square units. 3 square units. (d) 6. (e) 16 square units

(a) 5 square units. (b) 12 square units. (c) 5 3 square units. 3 square units. (d) 6. (e) 16 square units 1. Find the area of parallelogram ACD shown below if the measures of segments A, C, and DE are 6 units, 2 units, and 1 unit respectively and AED is a right angle. (a) 5 square units (b) 12 square units

More information

Circles. Dan Greenberg Lori Jordan Andrew Gloag Victor Cifarelli Jim Sconyers Bill Zahner

Circles. Dan Greenberg Lori Jordan Andrew Gloag Victor Cifarelli Jim Sconyers Bill Zahner Circles Dan Greenberg Lori Jordan Andrew Gloag Victor Cifarelli Jim Sconyers Bill Zahner Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) To access a customizable version

More information

Test to see if ΔFEG is a right triangle.

Test to see if ΔFEG is a right triangle. 1. Copy the figure shown, and draw the common tangents. If no common tangent exists, state no common tangent. Every tangent drawn to the small circle will intersect the larger circle in two points. Every

More information

Set 1: Circumference, Angles, Arcs, Chords, and Inscribed Angles

Set 1: Circumference, Angles, Arcs, Chords, and Inscribed Angles Goal: To provide opportunities for students to develop concepts and skills related to circumference, arc length, central angles, chords, and inscribed angles Common Core Standards Congruence Experiment

More information

Geometry Unit 7 (Textbook Chapter 9) Solving a right triangle: Find all missing sides and all missing angles

Geometry Unit 7 (Textbook Chapter 9) Solving a right triangle: Find all missing sides and all missing angles Geometry Unit 7 (Textbook Chapter 9) Name Objective 1: Right Triangles and Pythagorean Theorem In many geometry problems, it is necessary to find a missing side or a missing angle of a right triangle.

More information

COURSE OVERVIEW. PearsonSchool.com Copyright 2009 Pearson Education, Inc. or its affiliate(s). All rights reserved

COURSE OVERVIEW. PearsonSchool.com Copyright 2009 Pearson Education, Inc. or its affiliate(s). All rights reserved COURSE OVERVIEW The geometry course is centered on the beliefs that The ability to construct a valid argument is the basis of logical communication, in both mathematics and the real-world. There is a need

More information

alternate interior angles

alternate interior angles alternate interior angles two non-adjacent angles that lie on the opposite sides of a transversal between two lines that the transversal intersects (a description of the location of the angles); alternate

More information

Lesson 6.3: Arcs and Angles

Lesson 6.3: Arcs and Angles Lesson 6.3: Arcs and Angles In this lesson you will: make conjectures about inscribed angles in a circle investigate relationships among the angles in a cyclic quadrilateral compare the arcs formed when

More information