# INTRODUCTION TO EUCLID S GEOMETRY

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 78 MATHEMATICS INTRODUCTION TO EUCLID S GEOMETRY CHAPTER Introduction The word geometry comes form the Greek words geo, meaning the earth, and metrein, meaning to measure. Geometry appears to have originated from the need for measuring land. This branch of mathematics was studied in various forms in every ancient civilisation, be it in Egypt, Babylonia, China, India, Greece, the Incas, etc. The people of these civilisations faced several practical problems which required the development of geometry in various ways. For example, whenever the river Nile overflowed, it wiped out the boundaries between the adjoining fields of different land owners. After such flooding, these boundaries had to be redrawn. For this purpose, the Egyptians developed a number of geometric techniques and rules for calculating simple areas and also for doing simple constructions. The knowledge of geometry was also used by them for computing volumes of granaries, and for constructing canals and pyramids. They also knew the correct formula to find the volume of a truncated pyramid (see Fig. 5.1).You know that a pyramid is a solid figure, the base of which is a triangle, or square, or some other polygon, and its side faces are triangles Fig. 5.1 : A Truncated Pyramid converging to a point at the top.

2 INTRODUCTION TO EUCLID S GEOMETRY 79 In the Indian subcontinent, the excavations at Harappa and Mohenjo-Daro, etc. show that the Indus Valley Civilisation (about 3000 BC) made extensive use of geometry. It was a highly organised society. The cities were highly developed and very well planned. For example, the roads were parallel to each other and there was an underground drainage system. The houses had many rooms of different types. This shows that the town dwellers were skilled in mensuration and practical arithmetic. The bricks used for constructions were kiln fired and the ratio length : breadth : thickness, of the bricks was found to be 4 : 2 : 1. In ancient India, the Sulbasutras (800 BC to 500 BC) were the manuals of geometrical constructions. The geometry of the Vedic period originated with the construction of altars (or vedis) and fireplaces for performing Vedic rites. The location of the sacred fires had to be in accordance to the clearly laid down instructions about their shapes and areas, if they were to be effective instruments. Square and circular altars were used for household rituals, while altars whose shapes were combinations of rectangles, triangles and trapeziums were required for public worship. The sriyantra (given in the Atharvaveda) consists of nine interwoven isosceles triangles. These triangles are arranged in such a way that they produce 43 subsidiary triangles. Though accurate geometric methods were used for the constructions of altars, the principles behind them were not discussed. These examples show that geometry was being developed and applied everywhere in the world. But this was happening in an unsystematic manner. What is interesting about these developments of geometry in the ancient world is that they were passed on from one generation to the next, either orally or through palm leaf messages, or by other ways. Also, we find that in some civilisations like Babylonia, geometry remained a very practical oriented discipline, as was the case in India and Rome. The geometry developed by Egyptians mainly consisted of the statements of results. There were no general rules of the procedure. In fact, Babylonians and Egyptians used geometry mostly for practical purposes and did very little to develop it as a systematic science. But in civilisations like Greece, the emphasis was on the reasoning behind why certain constructions work. The Greeks were interested in establishing the truth of the statements they discovered using deductive reasoning (see Appendix 1). A Greek mathematician, Thales is credited with giving the first known proof. This proof was of the statement that a circle is bisected (i.e., cut into two equal parts) by its diameter. One of Thales most famous pupils was Pythagoras (572 BC), whom you have heard about. Pythagoras and his group discovered many geometric properties and developed the theory of geometry to a great extent. This process continued till 300 BC. At that time Euclid, a teacher of mathematics at Alexandria in Egypt, collected all the known work and arranged it in his famous treatise, Thales (640 BC 546 BC) Fig. 5.2

3 80 MATHEMATICS called Elements. He divided the Elements into thirteen chapters, each called a book. These books influenced the whole world s understanding of geometry for generations to come. In this chapter, we shall discuss Euclid s approach to geometry and shall try to link it with the present day geometry. Euclid (325 BC 265 BC) Fig Euclid s Definitions, Axioms and Postulates The Greek mathematicians of Euclid s time thought of geometry as an abstract model of the world in which they lived. The notions of point, line, plane (or surface) and so on were derived from what was seen around them. From studies of the space and solids in the space around them, an abstract geometrical notion of a solid object was developed. A solid has shape, size, position, and can be moved from one place to another. Its boundaries are called surfaces. They separate one part of the space from another, and are said to have no thickness. The boundaries of the surfaces are curves or straight lines. These lines end in points. Consider the three steps from solids to points (solids-surfaces-lines-points). In each step we lose one extension, also called a dimension. So, a solid has three dimensions, a surface has two, a line has one and a point has none. Euclid summarised these statements as definitions. He began his exposition by listing 23 definitions in Book 1 of the Elements. A few of them are given below : 1. A point is that which has no part. 2. A line is breadthless length. 3. The ends of a line are points. 4. A straight line is a line which lies evenly with the points on itself. 5. A surface is that which has length and breadth only. 6. The edges of a surface are lines. 7. A plane surface is a surface which lies evenly with the straight lines on itself. If you carefully study these definitions, you find that some of the terms like part, breadth, length, evenly, etc. need to be further explained clearly. For example, consider his definition of a point. In this definition, a part needs to be defined. Suppose if you define a part to be that which occupies area, again an area needs to be defined. So, to define one thing, you need to define many other things, and you may get a long chain of definitions without an end. For such reasons, mathematicians agree to leave

4 INTRODUCTION TO EUCLID S GEOMETRY 81 some geometric terms undefined. However, we do have a intuitive feeling for the geometric concept of a point than what the definition above gives us. So, we represent a point as a dot, even though a dot has some dimension. A similar problem arises in Definition 2 above, since it refers to breadth and length, neither of which has been defined. Because of this, a few terms are kept undefined while developing any course of study. So, in geometry, we take a point, a line and a plane (in Euclid s words a plane surface) as undefined terms. The only thing is that we can represent them intuitively, or explain them with the help of physical models. Starting with his definitions, Euclid assumed certain properties, which were not to be proved. These assumptions are actually obvious universal truths. He divided them into two types: axioms and postulates. He used the term postulate for the assumptions that were specific to geometry. Common notions (often called axioms), on the other hand, were assumptions used throughout mathematics and not specifically linked to geometry. For details about axioms and postulates, refer to Appendix 1. Some of Euclid s axioms, not in his order, are given below : (1) Things which are equal to the same thing are equal to one another. (2) If equals are added to equals, the wholes are equal. (3) If equals are subtracted from equals, the remainders are equal. (4) Things which coincide with one another are equal to one another. (5) The whole is greater than the part. (6) Things which are double of the same things are equal to one another. (7) Things which are halves of the same things are equal to one another. These common notions refer to magnitudes of some kind. The first common notion could be applied to plane figures. For example, if an area of a triangle equals the area of a rectangle and the area of the rectangle equals that of a square, then the area of the triangle also equals the area of the square. Magnitudes of the same kind can be compared and added, but magnitudes of different kinds cannot be compared. For example, a line cannot be added to a rectangle, nor can an angle be compared to a pentagon. The 4th axiom given above seems to say that if two things are identical (that is, they are the same), then they are equal. In other words, everything equals itself. It is the justification of the principle of superposition. Axiom (5) gives us the definition of greater than. For example, if a quantity B is a part of another quantity A, then A can be written as the sum of B and some third quantity C. Symbolically, A > B means that there is some C such that A = B + C.

5 82 MATHEMATICS Now let us discuss Euclid s five postulates. They are : Postulate 1 : A straight line may be drawn from any one point to any other point. Note that this postulate tells us that at least one straight line passes through two distinct points, but it does not say that there cannot be more than one such line. However, in his work, Euclid has frequently assumed, without mentioning, that there is a unique line joining two distinct points. We state this result in the form of an axiom as follows: Axiom 5.1 : Given two distinct points, there is a unique line that passes through them. How many lines passing through P also pass through Q (see Fig. 5.4)? Only one, that is, the line PQ. How many lines passing through Q also pass through P? Only one, that is, the line PQ. Thus, the statement above is self-evident, and so is taken as an axiom. Fig. 5.4 Postulate 2 : A terminated line can be produced indefinitely. Note that what we call a line segment now-a-days is what Euclid called a terminated line. So, according to the present day terms, the second postulate says that a line segment can be extended on either side to form a line (see Fig. 5.5). Fig. 5.5 Postulate 3 : A circle can be drawn with any centre and any radius. Postulate 4 : All right angles are equal to one another. Postulate 5 : If a straight line falling on two straight lines makes the interior angles on the same side of it taken together less than two right angles, then the two straight lines, if produced indefinitely, meet on that side on which the sum of angles is less than two right angles.

6 INTRODUCTION TO EUCLID S GEOMETRY 83 For example, the line PQ in Fig. 5.6 falls on lines AB and CD such that the sum of the interior angles 1 and 2 is less than 180 on the left side of PQ. Therefore, the lines AB and CD will eventually intersect on the left side of PQ. Fig. 5.6 A brief look at the five postulates brings to your notice that Postulate 5 is far more complex than any other postulate. On the other hand, Postulates 1 through 4 are so simple and obvious that these are taken as self-evident truths. However, it is not possible to prove them. So, these statements are accepted without any proof (see Appendix 1). Because of its complexity, the fifth postulate will be given more attention in the next section. Now-a-days, postulates and axioms are terms that are used interchangeably and in the same sense. Postulate is actually a verb. When we say let us postulate, we mean, let us make some statement based on the observed phenomenon in the Universe. Its truth/validity is checked afterwards. If it is true, then it is accepted as a Postulate. A system of axioms is called consistent (see Appendix 1), if it is impossible to deduce from these axioms a statement that contradicts any axiom or previously proved statement. So, when any system of axioms is given, it needs to be ensured that the system is consistent. After Euclid stated his postulates and axioms, he used them to prove other results. Then using these results, he proved some more results by applying deductive reasoning. The statements that were proved are called propositions or theorems. Euclid deduced 465 propositions in a logical chain using his axioms, postulates, definitions and theorems proved earlier in the chain. In the next few chapters on geometry, you will be using these axioms to prove some theorems. Now, let us see in the following examples how Euclid used his axioms and postulates for proving some of the results: Example 1 : If A, B and C are three points on a line, and B lies between A and C (see Fig. 5.7), then prove that AB + BC = AC. Fig. 5.7

7 84 MATHEMATICS Solution : In the figure given above, AC coincides with AB + BC. Also, Euclid s Axiom (4) says that things which coincide with one another are equal to one another. So, it can be deduced that AB + BC = AC Note that in this solution, it has been assumed that there is a unique line passing through two points. Example 2 : Prove that an equilateral triangle can be constructed on any given line segment. Solution : In the statement above, a line segment of any length is given, say AB [see Fig. 5.8(i)]. Fig. 5.8 Here, you need to do some construction. Using Euclid s Postulate 3, you can draw a circle with point A as the centre and AB as the radius [see Fig. 5.8(ii)]. Similarly, draw another circle with point B as the centre and BA as the radius. The two circles meet at a point, say C. Now, draw the line segments AC and BC to form ABC [see Fig. 5.8 (iii)]. So, you have to prove that this triangle is equilateral, i.e., AB = AC = BC. Now, AB = AC, since they are the radii of the same circle (1) Similarly, AB = BC (Radii of the same circle) (2) From these two facts, and Euclid s axiom that things which are equal to the same thing are equal to one another, you can conclude that AB = BC = AC. So, ABC is an equilateral triangle. Note that here Euclid has assumed, without mentioning anywhere, that the two circles drawn with centres A and B will meet each other at a point. Now we prove a theorem, which is frequently used in different results:

8 INTRODUCTION TO EUCLID S GEOMETRY 85 Theorem 5.1 : Two distinct lines cannot have more than one point in common. Proof : Here we are given two lines l and m. We need to prove that they have only one point in common. For the time being, let us suppose that the two lines intersect in two distinct points, say P and Q. So, you have two lines passing through two distinct points P and Q. But this assumption clashes with the axiom that only one line can pass through two distinct points. So, the assumption that we started with, that two lines can pass through two distinct points is wrong. From this, what can we conclude? We are forced to conclude that two distinct lines cannot have more than one point in common. EXERCISE Which of the following statements are true and which are false? Give reasons for your answers. (i) Only one line can pass through a single point. (ii) There are an infinite number of lines which pass through two distinct points. (iii) A terminated line can be produced indefinitely on both the sides. (iv) If two circles are equal, then their radii are equal. (v) In Fig. 5.9, if AB = PQ and PQ = XY, then AB = XY. Fig Give a definition for each of the following terms. Are there other terms that need to be defined first? What are they, and how might you define them? (i) parallel lines (ii) perpendicular lines (iii) line segment (iv) radius of a circle (v) square 3. Consider two postulates given below: (i) Given any two distinct points A and B, there exists a third point C which is in between A and B. (ii) There exist at least three points that are not on the same line. Do these postulates contain any undefined terms? Are these postulates consistent? Do they follow from Euclid s postulates? Explain.

9 86 MATHEMATICS 4. If a point C lies between two points A and B such that AC = BC, then prove that AC = 1 AB. Explain by drawing the figure In Question 4, point C is called a mid-point of line segment AB. Prove that every line segment has one and only one mid-point. 6. In Fig. 5.10, if AC = BD, then prove that AB = CD. Fig Why is Axiom 5, in the list of Euclid s axioms, considered a universal truth? (Note that the question is not about the fifth postulate.) 5.3 Equivalent Versions of Euclid s Fifth Postulate Euclid s fifth postulate is very significant in the history of mathematics. Recall it again from Section 5.2. We see that by implication, no intersection of lines will take place when the sum of the measures of the interior angles on the same side of the falling line is exactly 180. There are several equivalent versions of this postulate. One of them is Playfair s Axiom (given by a Scottish mathematician John Playfair in 1729), as stated below: For every line l and for every point P not lying on l, there exists a unique line m passing through P and parallel to l. From Fig. 5.11, you can see that of all the lines passing through the point P, only line m is parallel to line l. Fig This result can also be stated in the following form: Two distinct intersecting lines cannot be parallel to the same line.

10 INTRODUCTION TO EUCLID S GEOMETRY 87 Euclid did not require his fifth postulate to prove his first 28 theorems. Many mathematicians, including him, were convinced that the fifth postulate is actually a theorem that can be proved using just the first four postulates and other axioms. However, all attempts to prove the fifth postulate as a theorem have failed. But these efforts have led to a great achievement the creation of several other geometries. These geometries are quite different from Euclidean geometry. They are called non-euclidean geometries. Their creation is considered a landmark in the history of thought because till then everyone had believed that Euclid s was the only geometry Fig and the world itself was Euclidean. Now the geometry of the universe we live in has been shown to be a non-euclidean geometry. In fact, it is called spherical geometry. In spherical geometry, lines are not straight. They are parts of great circles (i.e., circles obtained by the intersection of a sphere and planes passing through the centre of the sphere). In Fig. 5.12, the lines AN and BN (which are parts of great circles of a sphere) are perpendicular to the same line AB. But they are meeting each other, though the sum of the angles on the same side of line AB is not less than two right angles (in fact, it is = 180 ). Also, note that the sum of the angles of the triangle NAB is greater than 180, as A + B = 180. Thus, Euclidean geometry is valid only for the figures in the plane. On the curved surfaces, it fails. Now, let us consider an example. Example 3 : Consider the following statement : There exists a pair of straight lines that are everywhere equidistant from one another. Is this statement a direct consequence of Euclid s fifth postulate? Explain. Solution : Take any line l and a point P not on l. Then, by Playfair s axiom, which is equivalent to the fifth postulate, we know that there is a unique line m through P which is parallel to l. Now, the distance of a point from a line is the length of the perpendicular from the point to the line. This distance will be the same for any point on m from l and any point on l from m. So, these two lines are everywhere equidistant from one another. Remark : The geometry that you will be studying in the next few chapters is Euclidean Geometry. However, the axioms and theorems used by us may be different from those of Euclid s.

11 88 MATHEMATICS EXERCISE How would you rewrite Euclid s fifth postulate so that it would be easier to understand? 2. Does Euclid s fifth postulate imply the existence of parallel lines? Explain. 5.4 Summary In this chapter, you have studied the following points: 1. Though Euclid defined a point, a line, and a plane, the definitions are not accepted by mathematicians. Therefore, these terms are now taken as undefined. 2. Axioms or postulates are the assumptions which are obvious universal truths. They are not proved. 3. Theorems are statements which are proved, using definitions, axioms, previously proved statements and deductive reasining. 4. Some of Euclid s axioms were : (1) Things which are equal to the same thing are equal to one another. (2) If equals are added to equals, the wholes are equal. (3) If equals are subtracted from equals, the remainders are equal. (4) Things which coincide with one another are equal to one another. (5) The whole is greater than the part. (6) Things which are double of the same things are equal to one another. (7) Things which are halves of the same things are equal to one another. 5. Euclid s postulates were : Postulate 1 : A straight line may be drawn from any one point to any other point. Postulate 2 : A terminated line can be produced indefinitely. Postulate 3 : A circle can be drawn with any centre and any radius. Postulate 4 : All right angles are equal to one another. Postulate 5 : If a straight line falling on two straight lines makes the interior angles on the same side of it taken together less than two right angles, then the two straight lines, if produced indefinitely, meet on that side on which the sum of angles is less than two right angles. 6. Two equivalent versions of Euclid s fifth postulate are: (i) For every line l and for every point P not lying on l, there exists a unique line m passing through P and parallel to l. (ii) Two distinct intersecting lines cannot be parallel to the same line. 7. All the attempts to prove Euclid s fifth postulate using the first 4 postulates failed. But they led to the discovery of several other geometries, called non-euclidean geometries.

### alternate interior angles

alternate interior angles two non-adjacent angles that lie on the opposite sides of a transversal between two lines that the transversal intersects (a description of the location of the angles); alternate

### GEOMETRY. Constructions OBJECTIVE #: G.CO.12

GEOMETRY Constructions OBJECTIVE #: G.CO.12 OBJECTIVE Make formal geometric constructions with a variety of tools and methods (compass and straightedge, string, reflective devices, paper folding, dynamic

### Elements of Plane Geometry by LK

Elements of Plane Geometry by LK These are notes indicating just some bare essentials of plane geometry and some problems to think about. We give a modified version of the axioms for Euclidean Geometry

### 4.2 Euclid s Classification of Pythagorean Triples

178 4. Number Theory: Fermat s Last Theorem Exercise 4.7: A primitive Pythagorean triple is one in which any two of the three numbers are relatively prime. Show that every multiple of a Pythagorean triple

### 12. Parallels. Then there exists a line through P parallel to l.

12. Parallels Given one rail of a railroad track, is there always a second rail whose (perpendicular) distance from the first rail is exactly the width across the tires of a train, so that the two rails

### 39 Symmetry of Plane Figures

39 Symmetry of Plane Figures In this section, we are interested in the symmetric properties of plane figures. By a symmetry of a plane figure we mean a motion of the plane that moves the figure so that

### Solutions to Practice Problems

Higher Geometry Final Exam Tues Dec 11, 5-7:30 pm Practice Problems (1) Know the following definitions, statements of theorems, properties from the notes: congruent, triangle, quadrilateral, isosceles

### INTERESTING PROOFS FOR THE CIRCUMFERENCE AND AREA OF A CIRCLE

INTERESTING PROOFS FOR THE CIRCUMFERENCE AND AREA OF A CIRCLE ABSTRACT:- Vignesh Palani University of Minnesota - Twin cities e-mail address - palan019@umn.edu In this brief work, the existing formulae

### Lesson 18: Looking More Carefully at Parallel Lines

Student Outcomes Students learn to construct a line parallel to a given line through a point not on that line using a rotation by 180. They learn how to prove the alternate interior angles theorem using

### INCIDENCE-BETWEENNESS GEOMETRY

INCIDENCE-BETWEENNESS GEOMETRY MATH 410, CSUSM. SPRING 2008. PROFESSOR AITKEN This document covers the geometry that can be developed with just the axioms related to incidence and betweenness. The full

### Angles that are between parallel lines, but on opposite sides of a transversal.

GLOSSARY Appendix A Appendix A: Glossary Acute Angle An angle that measures less than 90. Acute Triangle Alternate Angles A triangle that has three acute angles. Angles that are between parallel lines,

### Mathematics Geometry Unit 1 (SAMPLE)

Review the Geometry sample year-long scope and sequence associated with this unit plan. Mathematics Possible time frame: Unit 1: Introduction to Geometric Concepts, Construction, and Proof 14 days This

### Incenter Circumcenter

TRIANGLE: Centers: Incenter Incenter is the center of the inscribed circle (incircle) of the triangle, it is the point of intersection of the angle bisectors of the triangle. The radius of incircle is

### Selected practice exam solutions (part 5, item 2) (MAT 360)

Selected practice exam solutions (part 5, item ) (MAT 360) Harder 8,91,9,94(smaller should be replaced by greater )95,103,109,140,160,(178,179,180,181 this is really one problem),188,193,194,195 8. On

### APPENDIX 1 PROOFS IN MATHEMATICS. A1.1 Introduction 286 MATHEMATICS

286 MATHEMATICS APPENDIX 1 PROOFS IN MATHEMATICS A1.1 Introduction Suppose your family owns a plot of land and there is no fencing around it. Your neighbour decides one day to fence off his land. After

### 1. A student followed the given steps below to complete a construction. Which type of construction is best represented by the steps given above?

1. A student followed the given steps below to complete a construction. Step 1: Place the compass on one endpoint of the line segment. Step 2: Extend the compass from the chosen endpoint so that the width

### MENSURATION. Definition

MENSURATION Definition 1. Mensuration : It is a branch of mathematics which deals with the lengths of lines, areas of surfaces and volumes of solids. 2. Plane Mensuration : It deals with the sides, perimeters

### POTENTIAL REASONS: Definition of Congruence:

Sec 6 CC Geometry Triangle Pros Name: POTENTIAL REASONS: Definition Congruence: Having the exact same size and shape and there by having the exact same measures. Definition Midpoint: The point that divides

### Conjectures. Chapter 2. Chapter 3

Conjectures Chapter 2 C-1 Linear Pair Conjecture If two angles form a linear pair, then the measures of the angles add up to 180. (Lesson 2.5) C-2 Vertical Angles Conjecture If two angles are vertical

### Lesson 1: Introducing Circles

IRLES N VOLUME Lesson 1: Introducing ircles ommon ore Georgia Performance Standards M9 12.G..1 M9 12.G..2 Essential Questions 1. Why are all circles similar? 2. What are the relationships among inscribed

### 1 Solution of Homework

Math 3181 Dr. Franz Rothe February 4, 2011 Name: 1 Solution of Homework 10 Problem 1.1 (Common tangents of two circles). How many common tangents do two circles have. Informally draw all different cases,

### CSU Fresno Problem Solving Session. Geometry, 17 March 2012

CSU Fresno Problem Solving Session Problem Solving Sessions website: http://zimmer.csufresno.edu/ mnogin/mfd-prep.html Math Field Day date: Saturday, April 21, 2012 Math Field Day website: http://www.csufresno.edu/math/news

### CHAPTER 8, GEOMETRY. 4. A circular cylinder has a circumference of 33 in. Use 22 as the approximate value of π and find the radius of this cylinder.

TEST A CHAPTER 8, GEOMETRY 1. A rectangular plot of ground is to be enclosed with 180 yd of fencing. If the plot is twice as long as it is wide, what are its dimensions? 2. A 4 cm by 6 cm rectangle has

### Tangent circles in the hyperbolic disk

Rose- Hulman Undergraduate Mathematics Journal Tangent circles in the hyperbolic disk Megan Ternes a Volume 14, No. 1, Spring 2013 Sponsored by Rose-Hulman Institute of Technology Department of Mathematics

### Geometry Enduring Understandings Students will understand 1. that all circles are similar.

High School - Circles Essential Questions: 1. Why are geometry and geometric figures relevant and important? 2. How can geometric ideas be communicated using a variety of representations? ******(i.e maps,

### The Triangle and its Properties

THE TRINGLE ND ITS PROPERTIES 113 The Triangle and its Properties Chapter 6 6.1 INTRODUCTION triangle, you have seen, is a simple closed curve made of three line segments. It has three vertices, three

### New York State Student Learning Objective: Regents Geometry

New York State Student Learning Objective: Regents Geometry All SLOs MUST include the following basic components: Population These are the students assigned to the course section(s) in this SLO all students

### 2.1. Inductive Reasoning EXAMPLE A

CONDENSED LESSON 2.1 Inductive Reasoning In this lesson you will Learn how inductive reasoning is used in science and mathematics Use inductive reasoning to make conjectures about sequences of numbers

### Grade 7 & 8 Math Circles Circles, Circles, Circles March 19/20, 2013

Faculty of Mathematics Waterloo, Ontario N2L 3G Introduction Grade 7 & 8 Math Circles Circles, Circles, Circles March 9/20, 203 The circle is a very important shape. In fact of all shapes, the circle is

### Section 7.2 Area. The Area of Rectangles and Triangles

Section 7. Area The Area of Rectangles and Triangles We encounter two dimensional objects all the time. We see objects that take on the shapes similar to squares, rectangle, trapezoids, triangles, and

### CHAPTER 3. Methods of Proofs. 1. Logical Arguments and Formal Proofs

CHAPTER 3 Methods of Proofs 1. Logical Arguments and Formal Proofs 1.1. Basic Terminology. An axiom is a statement that is given to be true. A rule of inference is a logical rule that is used to deduce

### GEOMETRY CONCEPT MAP. Suggested Sequence:

CONCEPT MAP GEOMETRY August 2011 Suggested Sequence: 1. Tools of Geometry 2. Reasoning and Proof 3. Parallel and Perpendicular Lines 4. Congruent Triangles 5. Relationships Within Triangles 6. Polygons

### MODERN APPLICATIONS OF PYTHAGORAS S THEOREM

UNIT SIX MODERN APPLICATIONS OF PYTHAGORAS S THEOREM Coordinate Systems 124 Distance Formula 127 Midpoint Formula 131 SUMMARY 134 Exercises 135 UNIT SIX: 124 COORDINATE GEOMETRY Geometry, as presented

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Tuesday, August 13, 2013 8:30 to 11:30 a.m., only.

GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Tuesday, August 13, 2013 8:30 to 11:30 a.m., only Student Name: School Name: The possession or use of any communications

### The Use of Dynamic Geometry Software in the Teaching and Learning of Geometry through Transformations

The Use of Dynamic Geometry Software in the Teaching and Learning of Geometry through Transformations Dynamic geometry technology should be used to maximize student learning in geometry. Such technology

### ME 111: Engineering Drawing

ME 111: Engineering Drawing Lecture # 14 (10/10/2011) Development of Surfaces http://www.iitg.ernet.in/arindam.dey/me111.htm http://www.iitg.ernet.in/rkbc/me111.htm http://shilloi.iitg.ernet.in/~psr/ Indian

### Intermediate Math Circles October 10, 2012 Geometry I: Angles

Intermediate Math Circles October 10, 2012 Geometry I: Angles Over the next four weeks, we will look at several geometry topics. Some of the topics may be familiar to you while others, for most of you,

### MATH10040 Chapter 2: Prime and relatively prime numbers

MATH10040 Chapter 2: Prime and relatively prime numbers Recall the basic definition: 1. Prime numbers Definition 1.1. Recall that a positive integer is said to be prime if it has precisely two positive

### Unit 2 - Triangles. Equilateral Triangles

Equilateral Triangles Unit 2 - Triangles Equilateral Triangles Overview: Objective: In this activity participants discover properties of equilateral triangles using properties of symmetry. TExES Mathematics

### Geometry - Semester 2. Mrs. Day-Blattner 1/20/2016

Geometry - Semester 2 Mrs. Day-Blattner 1/20/2016 Agenda 1/20/2016 1) 20 Question Quiz - 20 minutes 2) Jan 15 homework - self-corrections 3) Spot check sheet Thales Theorem - add to your response 4) Finding

### 3.1 Triangles, Congruence Relations, SAS Hypothesis

Chapter 3 Foundations of Geometry 2 3.1 Triangles, Congruence Relations, SAS Hypothesis Definition 3.1 A triangle is the union of three segments ( called its side), whose end points (called its vertices)

### Geometry: Unit 1 Vocabulary TERM DEFINITION GEOMETRIC FIGURE. Cannot be defined by using other figures.

Geometry: Unit 1 Vocabulary 1.1 Undefined terms Cannot be defined by using other figures. Point A specific location. It has no dimension and is represented by a dot. Line Plane A connected straight path.

### Section 9-1. Basic Terms: Tangents, Arcs and Chords Homework Pages 330-331: 1-18

Chapter 9 Circles Objectives A. Recognize and apply terms relating to circles. B. Properly use and interpret the symbols for the terms and concepts in this chapter. C. Appropriately apply the postulates,

### Curriculum Map by Block Geometry Mapping for Math Block Testing 2007-2008. August 20 to August 24 Review concepts from previous grades.

Curriculum Map by Geometry Mapping for Math Testing 2007-2008 Pre- s 1 August 20 to August 24 Review concepts from previous grades. August 27 to September 28 (Assessment to be completed by September 28)

### Wednesday 15 January 2014 Morning Time: 2 hours

Write your name here Surname Other names Pearson Edexcel Certificate Pearson Edexcel International GCSE Mathematics A Paper 4H Centre Number Wednesday 15 January 2014 Morning Time: 2 hours Candidate Number

### Geometry: Classifying, Identifying, and Constructing Triangles

Geometry: Classifying, Identifying, and Constructing Triangles Lesson Objectives Teacher's Notes Lesson Notes 1) Identify acute, right, and obtuse triangles. 2) Identify scalene, isosceles, equilateral

### Geometry Course Summary Department: Math. Semester 1

Geometry Course Summary Department: Math Semester 1 Learning Objective #1 Geometry Basics Targets to Meet Learning Objective #1 Use inductive reasoning to make conclusions about mathematical patterns Give

### Geometry and Measurement

The student will be able to: Geometry and Measurement 1. Demonstrate an understanding of the principles of geometry and measurement and operations using measurements Use the US system of measurement for

### Chapter 18 Symmetry. Symmetry of Shapes in a Plane 18.1. then unfold

Chapter 18 Symmetry Symmetry is of interest in many areas, for example, art, design in general, and even the study of molecules. This chapter begins with a look at two types of symmetry of two-dimensional

### Mathematics 3301-001 Spring 2015 Dr. Alexandra Shlapentokh Guide #3

Mathematics 3301-001 Spring 2015 Dr. Alexandra Shlapentokh Guide #3 The problems in bold are the problems for Test #3. As before, you are allowed to use statements above and all postulates in the proofs

### Terminology: When one line intersects each of two given lines, we call that line a transversal.

Feb 23 Notes: Definition: Two lines l and m are parallel if they lie in the same plane and do not intersect. Terminology: When one line intersects each of two given lines, we call that line a transversal.

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, August 13, 2015 8:30 to 11:30 a.m., only.

GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, August 13, 2015 8:30 to 11:30 a.m., only Student Name: School Name: The possession or use of any communications

### Situation: Proving Quadrilaterals in the Coordinate Plane

Situation: Proving Quadrilaterals in the Coordinate Plane 1 Prepared at the University of Georgia EMAT 6500 Date Last Revised: 07/31/013 Michael Ferra Prompt A teacher in a high school Coordinate Algebra

### 4. How many integers between 2004 and 4002 are perfect squares?

5 is 0% of what number? What is the value of + 3 4 + 99 00? (alternating signs) 3 A frog is at the bottom of a well 0 feet deep It climbs up 3 feet every day, but slides back feet each night If it started

### Reflection and Refraction

Equipment Reflection and Refraction Acrylic block set, plane-concave-convex universal mirror, cork board, cork board stand, pins, flashlight, protractor, ruler, mirror worksheet, rectangular block worksheet,

### Chapter 6 Notes: Circles

Chapter 6 Notes: Circles IMPORTANT TERMS AND DEFINITIONS A circle is the set of all points in a plane that are at a fixed distance from a given point known as the center of the circle. Any line segment

### /27 Intro to Geometry Review

/27 Intro to Geometry Review 1. An acute has a measure of. 2. A right has a measure of. 3. An obtuse has a measure of. 13. Two supplementary angles are in ratio 11:7. Find the measure of each. 14. In the

### Conjunction is true when both parts of the statement are true. (p is true, q is true. p^q is true)

Mathematical Sentence - a sentence that states a fact or complete idea Open sentence contains a variable Closed sentence can be judged either true or false Truth value true/false Negation not (~) * Statement

### 1. A plane passes through the apex (top point) of a cone and then through its base. What geometric figure will be formed from this intersection?

Student Name: Teacher: Date: District: Description: Miami-Dade County Public Schools Geometry Topic 7: 3-Dimensional Shapes 1. A plane passes through the apex (top point) of a cone and then through its

### MA 408 Computer Lab Two The Poincaré Disk Model of Hyperbolic Geometry. Figure 1: Lines in the Poincaré Disk Model

MA 408 Computer Lab Two The Poincaré Disk Model of Hyperbolic Geometry Put your name here: Score: Instructions: For this lab you will be using the applet, NonEuclid, created by Castellanos, Austin, Darnell,

### CIRCLE COORDINATE GEOMETRY

CIRCLE COORDINATE GEOMETRY (EXAM QUESTIONS) Question 1 (**) A circle has equation x + y = 2x + 8 Determine the radius and the coordinates of the centre of the circle. r = 3, ( 1,0 ) Question 2 (**) A circle

### Triangle Congruence and Similarity A Common-Core-Compatible Approach

Triangle Congruence and Similarity A Common-Core-Compatible Approach The Common Core State Standards for Mathematics (CCSSM) include a fundamental change in the geometry program in grades 8 to 10: geometric

### Geometry. Higher Mathematics Courses 69. Geometry

The fundamental purpose of the course is to formalize and extend students geometric experiences from the middle grades. This course includes standards from the conceptual categories of and Statistics and

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, January 26, 2012 9:15 a.m. to 12:15 p.m.

GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXMINTION GEOMETRY Thursday, January 26, 2012 9:15 a.m. to 12:15 p.m., only Student Name: School Name: Print your name and the name

### Chapters 6 and 7 Notes: Circles, Locus and Concurrence

Chapters 6 and 7 Notes: Circles, Locus and Concurrence IMPORTANT TERMS AND DEFINITIONS A circle is the set of all points in a plane that are at a fixed distance from a given point known as the center of

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Student Name:

GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Wednesday, August 18, 2010 8:30 to 11:30 a.m., only Student Name: School Name: Print your name and the name of

### GEOMETRY COMMON CORE STANDARDS

1st Nine Weeks Experiment with transformations in the plane G-CO.1 Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point,

### In mathematics, there are four attainment targets: using and applying mathematics; number and algebra; shape, space and measures, and handling data.

MATHEMATICS: THE LEVEL DESCRIPTIONS In mathematics, there are four attainment targets: using and applying mathematics; number and algebra; shape, space and measures, and handling data. Attainment target

### MI314 History of Mathematics: Episodes in Non-Euclidean Geometry

MI314 History of Mathematics: Episodes in Non-Euclidean Geometry Giovanni Saccheri, Euclides ab omni naevo vindicatus In 1733, Saccheri published Euclides ab omni naevo vindicatus (Euclid vindicated om

### Squaring the Circle. A Case Study in the History of Mathematics Part II

Squaring the Circle A Case Study in the History of Mathematics Part II π It is lost in the mists of pre-history who first realized that the ratio of the circumference of a circle to its diameter is a constant.

### DEFINITIONS. Perpendicular Two lines are called perpendicular if they form a right angle.

DEFINITIONS Degree A degree is the 1 th part of a straight angle. 180 Right Angle A 90 angle is called a right angle. Perpendicular Two lines are called perpendicular if they form a right angle. Congruent

### 5.1 Midsegment Theorem and Coordinate Proof

5.1 Midsegment Theorem and Coordinate Proof Obj.: Use properties of midsegments and write coordinate proofs. Key Vocabulary Midsegment of a triangle - A midsegment of a triangle is a segment that connects

### Geometry Unit 6 Areas and Perimeters

Geometry Unit 6 Areas and Perimeters Name Lesson 8.1: Areas of Rectangle (and Square) and Parallelograms How do we measure areas? Area is measured in square units. The type of the square unit you choose

### Proposition 4: SAS Triangle Congruence

Proposition 4: SAS Triangle Congruence The method of proof used in this proposition is sometimes called "superposition." It apparently is not a method that Euclid prefers since he so rarely uses it, only

### Geometry Module 4 Unit 2 Practice Exam

Name: Class: Date: ID: A Geometry Module 4 Unit 2 Practice Exam Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which diagram shows the most useful positioning

### Visualizing Triangle Centers Using Geogebra

Visualizing Triangle Centers Using Geogebra Sanjay Gulati Shri Shankaracharya Vidyalaya, Hudco, Bhilai India http://mathematicsbhilai.blogspot.com/ sanjaybhil@gmail.com ABSTRACT. In this paper, we will

### Chapter 8 Geometry We will discuss following concepts in this chapter.

Mat College Mathematics Updated on Nov 5, 009 Chapter 8 Geometry We will discuss following concepts in this chapter. Two Dimensional Geometry: Straight lines (parallel and perpendicular), Rays, Angles

### San Jose Math Circle April 25 - May 2, 2009 ANGLE BISECTORS

San Jose Math Circle April 25 - May 2, 2009 ANGLE BISECTORS Recall that the bisector of an angle is the ray that divides the angle into two congruent angles. The most important results about angle bisectors

### Algebra Geometry Glossary. 90 angle

lgebra Geometry Glossary 1) acute angle an angle less than 90 acute angle 90 angle 2) acute triangle a triangle where all angles are less than 90 3) adjacent angles angles that share a common leg Example:

### Contents. 2 Lines and Circles 3 2.1 Cartesian Coordinates... 3 2.2 Distance and Midpoint Formulas... 3 2.3 Lines... 3 2.4 Circles...

Contents Lines and Circles 3.1 Cartesian Coordinates.......................... 3. Distance and Midpoint Formulas.................... 3.3 Lines.................................. 3.4 Circles..................................

### Geometry Chapter 1. 1.1 Point (pt) 1.1 Coplanar (1.1) 1.1 Space (1.1) 1.2 Line Segment (seg) 1.2 Measure of a Segment

Geometry Chapter 1 Section Term 1.1 Point (pt) Definition A location. It is drawn as a dot, and named with a capital letter. It has no shape or size. undefined term 1.1 Line A line is made up of points

### Right Triangles 4 A = 144 A = 16 12 5 A = 64

Right Triangles If I looked at enough right triangles and experimented a little, I might eventually begin to notice a relationship developing if I were to construct squares formed by the legs of a right

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, August 16, 2012 8:30 to 11:30 a.m.

GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, August 16, 2012 8:30 to 11:30 a.m., only Student Name: School Name: Print your name and the name of your

### Geometry of 2D Shapes

Name: Geometry of 2D Shapes Answer these questions in your class workbook: 1. Give the definitions of each of the following shapes and draw an example of each one: a) equilateral triangle b) isosceles

### 2004 Solutions Ga lois Contest (Grade 10)

Canadian Mathematics Competition An activity of The Centre for Education in Ma thematics and Computing, University of W aterloo, Wa terloo, Ontario 2004 Solutions Ga lois Contest (Grade 10) 2004 Waterloo

### Shape Dictionary YR to Y6

Shape Dictionary YR to Y6 Guidance Notes The terms in this dictionary are taken from the booklet Mathematical Vocabulary produced by the National Numeracy Strategy. Children need to understand and use

### Chapter 3.1 Angles. Geometry. Objectives: Define what an angle is. Define the parts of an angle.

Chapter 3.1 Angles Define what an angle is. Define the parts of an angle. Recall our definition for a ray. A ray is a line segment with a definite starting point and extends into infinity in only one direction.

### SIMSON S THEOREM MARY RIEGEL

SIMSON S THEOREM MARY RIEGEL Abstract. This paper is a presentation and discussion of several proofs of Simson s Theorem. Simson s Theorem is a statement about a specific type of line as related to a given

### Geometry Regents Review

Name: Class: Date: Geometry Regents Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. If MNP VWX and PM is the shortest side of MNP, what is the shortest

### Grade 8 Mathematics Geometry: Lesson 2

Grade 8 Mathematics Geometry: Lesson 2 Read aloud to the students the material that is printed in boldface type inside the boxes. Information in regular type inside the boxes and all information outside

### Additional Topics in Math

Chapter Additional Topics in Math In addition to the questions in Heart of Algebra, Problem Solving and Data Analysis, and Passport to Advanced Math, the SAT Math Test includes several questions that are

### Linking Mathematics and Culture to Teach Geometry Concepts Vincent Snipes and Pamela Moses

Linking Mathematics and Culture to Teach Geometry Concepts Vincent Snipes and Pamela Moses Introduction Throughout history, mathematics has been used by different peoples in various ways. Arithmetic and

### Definitions, Postulates and Theorems

Definitions, s and s Name: Definitions Complementary Angles Two angles whose measures have a sum of 90 o Supplementary Angles Two angles whose measures have a sum of 180 o A statement that can be proven

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Tuesday, January 26, 2016 1:15 to 4:15 p.m., only.

GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Tuesday, January 26, 2016 1:15 to 4:15 p.m., only Student Name: School Name: The possession or use of any communications

### 88 CHAPTER 2. VECTOR FUNCTIONS. . First, we need to compute T (s). a By definition, r (s) T (s) = 1 a sin s a. sin s a, cos s a

88 CHAPTER. VECTOR FUNCTIONS.4 Curvature.4.1 Definitions and Examples The notion of curvature measures how sharply a curve bends. We would expect the curvature to be 0 for a straight line, to be very small

### Discovering Math: Exploring Geometry Teacher s Guide

Teacher s Guide Grade Level: 6 8 Curriculum Focus: Mathematics Lesson Duration: Three class periods Program Description Discovering Math: Exploring Geometry From methods of geometric construction and threedimensional

### CAMI Education linked to CAPS: Mathematics

- 1 - TOPIC 1.1 Whole numbers _CAPS curriculum TERM 1 CONTENT Mental calculations Revise: Multiplication of whole numbers to at least 12 12 Ordering and comparing whole numbers Revise prime numbers to

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, January 24, 2013 9:15 a.m. to 12:15 p.m.

GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, January 24, 2013 9:15 a.m. to 12:15 p.m., only Student Name: School Name: The possession or use of any