Discrete Mathematics Set Operations


 Poppy Walker
 1 years ago
 Views:
Transcription
1 Discrete Mathematics 13. Set Operations
2 Introduction to Set Theory A setis a new type of structure, representing an unordered collection (group, plurality) of zero or more distinct (different) objects. Set theory deals with operations between, relations among, and statements about sets. Sets are ubiquitous in computer software systems. Allof mathematics can be defined in terms of some form of set theory (using predicate logic). Discrete Mathematics, Spring
3 Basic notations for sets For sets, we ll use variables S, T, U, We can denote a set Sin writing by listing all of its elements in curly braces: {a, b, c} is the set of whatever 3 objects are denoted by a, b, c. Setbuilder notation: For any proposition P(x) over any universe of discourse, {x P(x)} is the set of all x such that P(x). Discrete Mathematics, Spring
4 Basic properties of sets Sets are inherently unordered: No matter what objects a, b, and c denote, {a, b, c} = {a, c, b} = {b, a, c} = {b, c, a} = {c, a, b} = {c, b, a}. All elements are distinct(unequal); multiple listings make no difference! If a=b, then {a, b, c} = {a, c} = {b, c} = {a, a, b, a, b, c, c, c, c}. This set contains at most 2 elements! Discrete Mathematics, Spring
5 Infinite Sets Conceptually, sets may be infinite(i.e., not finite, without end, unending). Symbols for some special infinite sets: N= {0, 1, 2, } The Natural numbers. Z= {,2,1, 0, 1, 2, } The Zntegers. R= The Real numbers, such as Infinite sets come in different sizes! Discrete Mathematics, Spring
6 Empty Set Definition: A set which does not contain any elements is an empty set, denoted by or {} or {x false} Example: x: x Discrete Mathematics, Spring
7 Subset and Superset Definition: Let S and T be any two sets. S is a subsetof T and T is a supersetof S, denoted by S T, if and only if every element of Sis an element of T, i.e., ( x)((x S) (x T)). Example S, S S. Discrete Mathematics, Spring
8 Set Equality Definition: Let Sand Tbe any two sets. Sand Tare declared to be equal if and only ifthey contain exactly the sameelements,i.e. S=T iff(s T) (S T) Note that it does not matter how the set is defined or denoted. Example: The set {1, 2, 3, 4} = {x xis an integer where x>0 and x<5 } = {x xis a positive integer whose square is >0 and <25} Discrete Mathematics, Spring
9 Proper Subsets & Supersets Definition: Let Sand Tbe any two sets. Sis a proper subset of T(Tis a proper superset of S), denoted by S T iffs T and S T. S T Venn Diagram equivalent of S T Example: {1,2} {1,2,3} Discrete Mathematics, Spring
10 Sets Are Objects, Too! The objects that are elements of a set may themselves be sets. Example: Let S={x x {1,2,3}} then S={, {1},{2},{3}, {1,2},{1,3},{2,3}, {1,2,3}} Note that 1 {1} {{1}}!!!! Discrete Mathematics, Spring
11 Basic Set Relations: Member of Definition: x S( xis in S )is the proposition that object xis an lementor memberof set S. e.g.3 N, a {x xis a letter of the alphabet} Can define set equality in terms of relation: S,T: S=T ( x: x S x T) Two sets are equal iffthey have all the same members. x S: (x S) xis not in S Discrete Mathematics, Spring
12 Cardinality and Finiteness S (read the cardinalityof S ) is a measure of how many different elements S has. E.g., =0, {1,2,3} = 3, {a,b} = 2, {{1,2,3},{4,5}} = 2 If S N, then we say Sis finite. Otherwise, we say S is infinite. What are some infinite sets we ve seen? Discrete Mathematics, Spring
13 Power Set Definition: Let Sbe a set. The power set (S) of a set Sis the set of all subsets of S. (S) = {x x S}. Example: ({a,b}) = {, {a}, {b}, {a,b}}. Sometimes (S) is written 2 S. Note that for finite S, (S) = 2 S. It turns out that P(N) > N. There are different sizes of infinite sets! Discrete Mathematics, Spring
14 Ordered ntuples Definition: For n N, an ordered ntupleor a sequenceoflength nis written (a 1, a 2,, a n ). The firstelement is a 1, etc. These are like sets, except that duplicates matter, and the order makes a difference. Note (1, 2) (2, 1) (2, 1, 1). Empty sequence, singlets, pairs, triples, quadruples, quintuples,, ntuples. Discrete Mathematics, Spring
15 Cartesian Products of Sets Definition: Let Aand Bbe any two sets. The Cartesian product A B is defined to be A B ={(a, b) a A b B}. Example: {a,b} {1,2} = {(a,1),(a,2),(b,1),(b,2)} Note that for finite A, B, A B = A B. Note that the Cartesian product is not commutative: A B B A. Extends to A 1 A 2 A n... Discrete Mathematics, Spring
16 Union Operator Definition: Let A and B be any two sets. The niona Bof A and Bis the set containing all elements that are either in Aor( )in B(or, of course, in both), i.e., A B= {x x A x B}. Note that A B contains all the elements of Aandit contains all the elements of B:(A B A) (A B B) Discrete Mathematics, Spring
17 Example of Union {a,b,c} {2,3} = {a,b,c,2,3} {2,3,5} {3,5,7}= {2,3,5,3,5,7} ={2,3,5,7} Discrete Mathematics, Spring
18 Intersection Operator Definition: Let A and B be any two sets. The intersectiona Bof A and Bis the set containing all elements that are simultaneously in A and( ) in B, i.e., A B {x x A x B}. Note that A B is a subset of Aandit is a subset of B: (A B A) (A B B) Discrete Mathematics, Spring
19 Example of Intersection {a,b,c} {2,3} = {2,4,6} {3,4,5} = {4} Discrete Mathematics, Spring
20 Disjointedness Definition: Let Aand Bbe any two sets. A and Bare called disjoint(i.e., unjoined) iff their intersection is empty (A B= ). Example: The set of even integers is disjoint with the set of odd integers. Discrete Mathematics, Spring
21 InclusionExclusion Principle How many elements are in A B? A B = A + B A B Example: How many students are on our class list? Consider set E =I M, I= {s sturned in an information sheet} M= {s s sent the TAs their address} Some students did both! E = I M = I + M I M Discrete Mathematics, Spring
22 Set Difference Definition: Let Aand Bbe any two sets. The set differenceof A and B, A Bis the set of all elements that are in Abut not B. A B = {x x A x B} = {x (x A x B ) } A Bis also called the complementofbwith respect to A. Discrete Mathematics, Spring
23 Example of Set Difference {1,2,3,4,5,6} {2,3,5,7,9,11} = {1,4,6} Z N ={, 1, 0, 1, 2, } {0, 1, } = {x xis an integer but not a nat. #} = {x xis a negative integer} = {,3,2,1} Discrete Mathematics, Spring
24 Universal Set & Complement of a Set Definition(Universal Set): A set is a universal set orauniverse of discourse, denoted by U, if it includes every set under discussion. Definition(Complement of a Set): Let Abe a set. The complementof A inu, denoted by the set of all elements of U which are not elements of A, i.e., A = U A. U A= {x x U x A} A, is Example: If U=N, { 3,5} = {1,2,4,6,7,...} Discrete Mathematics, Spring
25 More on Set Complements An equivalent definition, when U is clear: A = { x x A} U A A Discrete Mathematics, Spring
26 Set Identities (Theorem) Theorem: Identity: A =A A U=A Domination: A U=U A = Idempotent: A A= A =A A Double complement: ( A ) = Commutative: A B=B A A B=B A Associative: A (B C)=(A B) C A (B C)=(A B) C A Discrete Mathematics, Spring
27 DeMorgan slaw for Sets Theorem: Exactly analogous to (and derivable from) DeMorgan s Law for propositions. A B = A B A B = A B Discrete Mathematics, Spring
28 Proving Set Equality To prove statements about the form E 1 = E 2 where E 1 and E 2 are sets, prove E 1 E 2 ande 2 E 1 separately. Discrete Mathematics, Spring
29 Example: Show A (B C)=(A B) (A C) Show A (B C) (A B) (A C). Assume x A (B C), & show x (A B) (A C). We know that x A, and either x Bor x C. Case 1: x B. Then x A B, so x (A B) (A C). Case 2: x C. Then x A C, so x (A B) (A C). Therefore, x (A B) (A C). Therefore, A (B C) (A B) (A C). Show (A B) (A C) A (B C). Discrete Mathematics, Spring
30 Theorem: If Aand Bare two sets, the following statements are equivalent. (1) A B (2) A B = A (3) A B = B Discrete Mathematics, Spring
31 Generalized Unions & Intersections Since union & intersection are commutative and associative, we can extend them from operating on ordered pairsof sets (A,B) to operating on sequences of sets (A 1,,A n ), or even unordered sets of sets, X={A Q(A)}. Discrete Mathematics, Spring
32 Generalized Union Binary union operator: A B nary union: A 1 A 2 A n : (( ((A 1 A 2 ) ) A n ) (grouping& order is irrelevant) Big U notation: n Ui =1 A i Or for infinite sets of sets: U A X A Discrete Mathematics, Spring
33 Generalized Intersection Binary intersection operator: A B nary intersection: A A 2 A n (( ((A 1 A 2 ) ) A n ) (grouping& order is irrelevant) Big Arch notation: I n i=1 A i Or for infinite sets of sets: I A X A Discrete Mathematics, Spring
34 Exercise 1.Let Aand Bbe sets. Show that (a) (A B) A (b)a (BA) = A B 2.Let A, Band Cbe sets. Show that (AB)C= (AC)(BC). 3.Let Aand Bbe two sets. Prove or disprove each of the followings (a) P(A) P(B) P(A B) where P(A) is the power set of the set A. (b) P(A B) P(A) P(B) Discrete Mathematics, Spring
Discrete Mathematics
Discrete Mathematics ChihWei Yi Dept. of Computer Science National Chiao Tung University March 16, 2009 2.1 Sets 2.1 Sets 2.1 Sets Basic Notations for Sets For sets, we ll use variables S, T, U,. We can
More informationSome Definitions about Sets
Some Definitions about Sets Definition: Two sets are equal if they contain the same elements. I.e., sets A and B are equal if x[x A x B]. Notation: A = B. Recall: Sets are unordered and we do not distinguish
More informationThe Language of Mathematics
CHPTER 2 The Language of Mathematics 2.1. Set Theory 2.1.1. Sets. set is a collection of objects, called elements of the set. set can be represented by listing its elements between braces: = {1, 2, 3,
More informationSections 2.1, 2.2 and 2.4
SETS Sections 2.1, 2.2 and 2.4 Chapter Summary Sets The Language of Sets Set Operations Set Identities Introduction Sets are one of the basic building blocks for the types of objects considered in discrete
More informationSets. A set is a collection of (mathematical) objects, with the collection treated as a single mathematical object.
Sets 1 Sets Informally: A set is a collection of (mathematical) objects, with the collection treated as a single mathematical object. Examples: real numbers, complex numbers, C integers, All students in
More information2.1 Sets, power sets. Cartesian Products.
Lecture 8 2.1 Sets, power sets. Cartesian Products. Set is an unordered collection of objects.  used to group objects together,  often the objects with similar properties This description of a set (without
More informationSETS, RELATIONS, AND FUNCTIONS
September 27, 2009 and notations Common Universal Subset and Power Set Cardinality Operations A set is a collection or group of objects or elements or members (Cantor 1895). the collection of the four
More informationA set is a Many that allows itself to be thought of as a One. (Georg Cantor)
Chapter 4 Set Theory A set is a Many that allows itself to be thought of as a One. (Georg Cantor) In the previous chapters, we have often encountered sets, for example, prime numbers form a set, domains
More informationCmSc 175 Discrete Mathematics Lesson 10: SETS A B, A B
CmSc 175 Discrete Mathematics Lesson 10: SETS Sets: finite, infinite, : empty set, U : universal set Describing a set: Enumeration = {a, b, c} Predicates = {x P(x)} Recursive definition, e.g. sequences
More informationAnnouncements. CompSci 230 Discrete Math for Computer Science Sets. Introduction to Sets. Sets
CompSci 230 Discrete Math for Computer Science Sets September 12, 2013 Prof. Rodger Slides modified from Rosen 1 nnouncements Read for next time Chap. 2.32.6 Homework 2 due Tuesday Recitation 3 on Friday
More informationA set is an unordered collection of objects.
Section 2.1 Sets A set is an unordered collection of objects. the students in this class the chairs in this room The objects in a set are called the elements, or members of the set. A set is said to contain
More informationWhat is a set? Sets. Specifying a Set. Notes. The Universal Set. Specifying a Set 10/29/13
What is a set? Sets CS 231 Dianna Xu set is a group of objects People: {lice, ob, Clara} Colors of a rainbow: {red, orange, yellow, green, blue, purple} States in the S: {labama, laska, Virginia, } ll
More informationSets and set operations
CS 441 Discrete Mathematics for CS Lecture 7 Sets and set operations Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square asic discrete structures Discrete math = study of the discrete structures used
More information2.1.1 Examples of Sets and their Elements
Chapter 2 Set Theory 2.1 Sets The most basic object in Mathematics is called a set. As rudimentary as it is, the exact, formal definition of a set is highly complex. For our purposes, we will simply define
More informationDiscrete Mathematics. Some related courses. Assessed work. Motivation: functions. Motivation: sets. Exercise. Motivation: relations
Discrete Mathematics Philippa Gardner This course is based on previous lecture notes by Iain Phillips. K.H. Rosen. Discrete Mathematics and its Applications, McGraw Hill 1995. J.L. Gersting. Mathematical
More informationNotes. Sets. Notes. Introduction II. Notes. Definition. Definition. Slides by Christopher M. Bourke Instructor: Berthe Y. Choueiry.
Sets Slides by Christopher M. Bourke Instructor: Berthe Y. Choueiry Spring 2006 Computer Science & Engineering 235 Introduction to Discrete Mathematics Sections 1.6 1.7 of Rosen cse235@cse.unl.edu Introduction
More informationSets and set operations: cont. Functions.
CS 441 Discrete Mathematics for CS Lecture 8 Sets and set operations: cont. Functions. Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square Set Definition: set is a (unordered) collection of objects.
More informationClicker Question. Theorems/Proofs and Computational Problems/Algorithms MC215: MATHEMATICAL REASONING AND DISCRETE STRUCTURES
MC215: MATHEMATICAL REASONING AND DISCRETE STRUCTURES Tuesday, 1/21/14 General course Information Sets Reading: [J] 1.1 Optional: [H] 1.11.7 Exercises: Do before next class; not to hand in [J] pp. 1214:
More information4.1. Definitions. A set may be viewed as any well defined collection of objects, called elements or members of the set.
Section 4. Set Theory 4.1. Definitions A set may be viewed as any well defined collection of objects, called elements or members of the set. Sets are usually denoted with upper case letters, A, B, X, Y,
More information2.1 The Algebra of Sets
Chapter 2 Abstract Algebra 83 part of abstract algebra, sets are fundamental to all areas of mathematics and we need to establish a precise language for sets. We also explore operations on sets and relations
More information(Refer Slide Time: 1:41)
Discrete Mathematical Structures Dr. Kamala Krithivasan Department of Computer Science and Engineering Indian Institute of Technology, Madras Lecture # 10 Sets Today we shall learn about sets. You must
More informationApplications of Methods of Proof
CHAPTER 4 Applications of Methods of Proof 1. Set Operations 1.1. Set Operations. The settheoretic operations, intersection, union, and complementation, defined in Chapter 1.1 Introduction to Sets are
More informationLogic & Discrete Math in Software Engineering (CAS 701) Dr. Borzoo Bonakdarpour
Logic & Discrete Math in Software Engineering (CAS 701) Background Dr. Borzoo Bonakdarpour Department of Computing and Software McMaster University Dr. Borzoo Bonakdarpour Logic & Discrete Math in SE (CAS
More informationMath 117 Chapter 7 Sets and Probability
Math 117 Chapter 7 and Probability Flathead Valley Community College Page 1 of 15 1. A set is a welldefined collection of specific objects. Each item in the set is called an element or a member. Curly
More informationINTRODUCTORY SET THEORY
M.Sc. program in mathematics INTRODUCTORY SET THEORY Katalin Károlyi Department of Applied Analysis, Eötvös Loránd University H1088 Budapest, Múzeum krt. 68. CONTENTS 1. SETS Set, equal sets, subset,
More informationDefinition 14 A set is an unordered collection of elements or objects.
Chapter 4 Set Theory Definition 14 A set is an unordered collection of elements or objects. Primitive Notation EXAMPLE {1, 2, 3} is a set containing 3 elements: 1, 2, and 3. EXAMPLE {1, 2, 3} = {3, 2,
More informationSets, Relations and Functions
Sets, Relations and Functions Eric Pacuit Department of Philosophy University of Maryland, College Park pacuit.org epacuit@umd.edu ugust 26, 2014 These notes provide a very brief background in discrete
More informationStudents in their first advanced mathematics classes are often surprised
CHAPTER 8 Proofs Involving Sets Students in their first advanced mathematics classes are often surprised by the extensive role that sets play and by the fact that most of the proofs they encounter are
More informationMathematics for Computer Science/Software Engineering. Notes for the course MSM1F3 Dr. R. A. Wilson
Mathematics for Computer Science/Software Engineering Notes for the course MSM1F3 Dr. R. A. Wilson October 1996 Chapter 1 Logic Lecture no. 1. We introduce the concept of a proposition, which is a statement
More informationMath 3000 Running Glossary
Math 3000 Running Glossary Last Updated on: July 15, 2014 The definition of items marked with a must be known precisely. Chapter 1: 1. A set: A collection of objects called elements. 2. The empty set (
More informationBasic Concepts of Set Theory, Functions and Relations
March 1, 2006 p. 1 Basic Concepts of Set Theory, Functions and Relations 1. Basic Concepts of Set Theory...1 1.1. Sets and elements...1 1.2. Specification of sets...2 1.3. Identity and cardinality...3
More informationDiscrete Mathematics Lecture 5. Harper Langston New York University
Discrete Mathematics Lecture 5 Harper Langston New York University Empty Set S = {x R, x 2 = 1} X = {1, 3}, Y = {2, 4}, C = X Y (X and Y are disjoint) Empty set has no elements Empty set is a subset of
More informationAutomata Theory. Şubat 2006 Tuğrul Yılmaz Ankara Üniversitesi
Automata Theory Automata theory is the study of abstract computing devices. A. M. Turing studied an abstract machine that had all the capabilities of today s computers. Turing s goal was to describe the
More informationCHAPTER 2. Set, Whole Numbers, and Numeration
CHAPTER 2 Set, Whole Numbers, and Numeration 2.1. Sets as a Basis for Whole Numbers A set is a collection of objects, called the elements or members of the set. Three common ways to define sets: (1) A
More informationThe set consisting of all natural numbers that are in A and are in B is the set f1; 3; 5g;
Chapter 5 Set Theory 5.1 Sets and Operations on Sets Preview Activity 1 (Set Operations) Before beginning this section, it would be a good idea to review sets and set notation, including the roster method
More informationMath/CSE 1019: Discrete Mathematics for Computer Science Fall Suprakash Datta
Math/CSE 1019: Discrete Mathematics for Computer Science Fall 2011 Suprakash Datta datta@cse.yorku.ca Office: CSEB 3043 Phone: 4167362100 ext 77875 Course page: http://www.cse.yorku.ca/course/1019 1
More informationThe Mathematics Driving License for Computer Science CS10410
The Mathematics Driving License for Computer Science CS10410 Venn Diagram, Union, Intersection, Difference, Complement, Disjoint, Subset and Power Set Nitin Naik Department of Computer Science VennEuler
More information2.1 Symbols and Terminology
2.1 Symbols and Terminology Definitions: set is a collection of objects. The objects belonging to the set are called elements, ormembers, oftheset. Sets can be designated in one of three different ways:
More informationMAT2400 Analysis I. A brief introduction to proofs, sets, and functions
MAT2400 Analysis I A brief introduction to proofs, sets, and functions In Analysis I there is a lot of manipulations with sets and functions. It is probably also the first course where you have to take
More informationIntroduction Russell s Paradox Basic Set Theory Operations on Sets. 6. Sets. Terence Sim
6. Sets Terence Sim 6.1. Introduction A set is a Many that allows itself to be thought of as a One. Georg Cantor Reading Section 6.1 6.3 of Epp. Section 3.1 3.4 of Campbell. Familiar concepts Sets can
More informationLecture Note 1 Set and Probability Theory. MIT 14.30 Spring 2006 Herman Bennett
Lecture Note 1 Set and Probability Theory MIT 14.30 Spring 2006 Herman Bennett 1 Set Theory 1.1 Definitions and Theorems 1. Experiment: any action or process whose outcome is subject to uncertainty. 2.
More informationSet (mathematics) From Wikipedia, the free encyclopedia
Set (mathematics) From Wikipedia, the free encyclopedia A set in mathematics is a collection of well defined and distinct objects, considered as an object in its own right. Sets are one of the most fundamental
More informationThis chapter describes set theory, a mathematical theory that underlies all of modern mathematics.
Appendix A Set Theory This chapter describes set theory, a mathematical theory that underlies all of modern mathematics. A.1 Basic Definitions Definition A.1.1. A set is an unordered collection of elements.
More informationSets and Cardinality Notes for C. F. Miller
Sets and Cardinality Notes for 620111 C. F. Miller Semester 1, 2000 Abstract These lecture notes were compiled in the Department of Mathematics and Statistics in the University of Melbourne for the use
More informationLecture 1. Basic Concepts of Set Theory, Functions and Relations
September 7, 2005 p. 1 Lecture 1. Basic Concepts of Set Theory, Functions and Relations 0. Preliminaries...1 1. Basic Concepts of Set Theory...1 1.1. Sets and elements...1 1.2. Specification of sets...2
More informationBasics of Probability
Basics of Probability August 27 and September 1, 2009 1 Introduction A phenomena is called random if the exact outcome is uncertain. The mathematical study of randomness is called the theory of probability.
More informationMathematics Review for MS Finance Students
Mathematics Review for MS Finance Students Anthony M. Marino Department of Finance and Business Economics Marshall School of Business Lecture 1: Introductory Material Sets The Real Number System Functions,
More informationnot to be republishe NCERT SETS Chapter Introduction 1.2 Sets and their Representations
SETS Chapter 1 In these days of conflict between ancient and modern studies; there must surely be something to be said for a study which did not begin with Pythagoras and will not end with Einstein; but
More information4.1. Sets. Introduction. Prerequisites. Learning Outcomes. Learning Style
ets 4.1 Introduction If we can identify a property which is common to several objects, it is often useful to group them together. uch a grouping is called a set. Engineers for example, may wish to study
More informationMath 421: Probability and Statistics I Note Set 2
Math 421: Probability and Statistics I Note Set 2 Marcus Pendergrass September 13, 2013 4 Discrete Probability Discrete probability is concerned with situations in which you can essentially list all the
More informationDiscrete Mathematics, Chapter 5: Induction and Recursion
Discrete Mathematics, Chapter 5: Induction and Recursion Richard Mayr University of Edinburgh, UK Richard Mayr (University of Edinburgh, UK) Discrete Mathematics. Chapter 5 1 / 20 Outline 1 Wellfounded
More informationChapter 3. Cartesian Products and Relations. 3.1 Cartesian Products
Chapter 3 Cartesian Products and Relations The material in this chapter is the first real encounter with abstraction. Relations are very general thing they are a special type of subset. After introducing
More informationSets and Logic. Chapter Sets
Chapter 2 Sets and Logic This chapter introduces sets. In it we study the structure on subsets of a set, operations on subsets, the relations of inclusion and equality on sets, and the close connection
More informationIntroducing Functions
Functions 1 Introducing Functions A function f from a set A to a set B, written f : A B, is a relation f A B such that every element of A is related to one element of B; in logical notation 1. (a, b 1
More informationAutomata and Formal Languages
Automata and Formal Languages Winter 20092010 Yacov HelOr 1 What this course is all about This course is about mathematical models of computation We ll study different machine models (finite automata,
More informationIn mathematics you don t understand things. You just get used to them. (Attributed to John von Neumann)
Chapter 1 Sets and Functions We understand a set to be any collection M of certain distinct objects of our thought or intuition (called the elements of M) into a whole. (Georg Cantor, 1895) In mathematics
More informationA Little Set Theory (Never Hurt Anybody)
A Little Set Theory (Never Hurt Anybody) Matthew Saltzman Department of Mathematical Sciences Clemson University Draft: August 21, 2013 1 Introduction The fundamental ideas of set theory and the algebra
More informationSection 3.3 Equivalence Relations
1 Section 3.3 Purpose of Section To introduce the concept of an equivalence relation and show how it subdivides or partitions a set into distinct categories. Introduction Classifying objects and placing
More informationSets and Subsets. Countable and Uncountable
Sets and Subsets Countable and Uncountable Reading Appendix A Section A.6.8 Pages 788792 BIG IDEAS Themes 1. There exist functions that cannot be computed in Java or any other computer language. 2. There
More informationCHAPTER 1. Basic Ideas
CHPTER 1 asic Ideas In the end, all mathematics can be boiled down to logic and set theory. ecause of this, any careful presentation of fundamental mathematical ideas is inevitably couched in the language
More informationProblems on Discrete Mathematics 1
Problems on Discrete Mathematics 1 ChungChih Li 2 Kishan Mehrotra 3 Syracuse University, New York L A TEX at January 11, 2007 (Part I) 1 No part of this book can be reproduced without permission from
More informationSETS. Chapter Overview
Chapter 1 SETS 1.1 Overview This chapter deals with the concept of a set, operations on sets.concept of sets will be useful in studying the relations and functions. 1.1.1 Set and their representations
More informationIf f is a 11 correspondence between A and B then it has an inverse, and f 1 isa 11 correspondence between B and A.
Chapter 5 Cardinality of sets 51 11 Correspondences A 11 correspondence between sets A and B is another name for a function f : A B that is 11 and onto If f is a 11 correspondence between A and B,
More informationBasic Set Theory. Chapter Set Theory. can be written: A set is a Many that allows itself to be thought of as a One.
Chapter Basic Set Theory A set is a Many that allows itself to be thought of as a One.  Georg Cantor This chapter introduces set theory, mathematical induction, and formalizes the notion of mathematical
More informationChapter Prove or disprove: A (B C) = (A B) (A C). Ans: True, since
Chapter 2 1. Prove or disprove: A (B C) = (A B) (A C)., since A ( B C) = A B C = A ( B C) = ( A B) ( A C) = ( A B) ( A C). 2. Prove that A B= A B by giving a containment proof (that is, prove that the
More informationDISCRETE MATHEMATICS W W L CHEN
DISCRETE MATHEMATICS W W L CHEN c W W L Chen, 1982, 2008. This chapter originates from material used by the author at Imperial College, University of London, between 1981 and 1990. It is available free
More informationLecture 2 : Basics of Probability Theory
Lecture 2 : Basics of Probability Theory When an experiment is performed, the realization of the experiment is an outcome in the sample space. If the experiment is performed a number of times, different
More informationReview for Final Exam
Review for Final Exam Note: Warning, this is probably not exhaustive and probably does contain typos (which I d like to hear about), but represents a review of most of the material covered in Chapters
More informationChapter 1. Logic and Proof
Chapter 1. Logic and Proof 1.1 Remark: A little over 100 years ago, it was found that some mathematical proofs contained paradoxes, and these paradoxes could be used to prove statements that were known
More informationNotes 2 for Honors Probability and Statistics
Notes 2 for Honors Probability and Statistics Ernie Croot August 24, 2010 1 Examples of σalgebras and Probability Measures So far, the only examples of σalgebras we have seen are ones where the sample
More information1 / Basic Structures: Sets, Functions, Sequences, and Sums  definition of a set, and the use of the intuitive notion that any property whatever there
C H A P T E R Basic Structures: Sets, Functions, Sequences, and Sums.1 Sets. Set Operations.3 Functions.4 Sequences and Summations Much of discrete mathematics is devoted to the study of discrete structures,
More informationLecture 4  Sets, Relations, Functions 1
Lecture 4 Sets, Relations, Functions Pat Place Carnegie Mellon University Models of Software Systems 17651 Fall 1999 Lecture 4  Sets, Relations, Functions 1 The Story So Far Formal Systems > Syntax»
More informationDiscrete Mathematics and Probability Theory Fall 2009 Satish Rao,David Tse Note 11
CS 70 Discrete Mathematics and Probability Theory Fall 2009 Satish Rao,David Tse Note Conditional Probability A pharmaceutical company is marketing a new test for a certain medical condition. According
More informationSets and functions. {x R : x > 0}.
Sets and functions 1 Sets The language of sets and functions pervades mathematics, and most of the important operations in mathematics turn out to be functions or to be expressible in terms of functions.
More informationClassical Sets and Fuzzy Sets Classical Sets Operation on Classical Sets Properties of Classical (Crisp) Sets Mapping of Classical Sets to Functions
Classical Sets and Fuzzy Sets Classical Sets Operation on Classical Sets Properties of Classical (Crisp) Sets Mapping of Classical Sets to Functions Fuzzy Sets Notation Convention for Fuzzy Sets Fuzzy
More informationCS 341 Homework 9 Languages That Are and Are Not Regular
CS 341 Homework 9 Languages That Are and Are Not Regular 1. Show that the following are not regular. (a) L = {ww R : w {a, b}*} (b) L = {ww : w {a, b}*} (c) L = {ww' : w {a, b}*}, where w' stands for w
More informationDiscrete Math Review
Data Structures and Algorithms Discrete Math Review Chris Brooks Department of Computer Science University of San Francisco Department of Computer Science University of San Francisco p.1/32 20: Discrete
More informationMatthias Beck Ross Geoghegan. The Art of Proof. Basic Training for Deeper Mathematics
Matthias Beck Ross Geoghegan The Art of Proof Basic Training for Deeper Mathematics ! "#$$%&#'!()*+!!,''!.)/%)/#0! 1)2#3$4)0$!5!"#$%)4#$&*'!! 1)2#3$4)0$!5!"#$%)4#$&*#6!7*&)0*)'! 7#0!83#0*&'*!7$#$)!90&:)3'&$;!
More informationUnit SF. Sets and Functions
Unit SF Sets and Functions Section : Sets The basic concepts of sets and functions are topics covered in high school math courses and are thus familiar to most university students. We take the intuitive
More informationLecture 1 (Review of High School Math: Functions and Models) Introduction: Numbers and their properties
Lecture 1 (Review of High School Math: Functions and Models) Introduction: Numbers and their properties Addition: (1) (Associative law) If a, b, and c are any numbers, then ( ) ( ) (2) (Existence of an
More informationMASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 1 9/3/2008 PROBABILISTIC MODELS AND PROBABILITY MEASURES
MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 1 9/3/2008 PROBABILISTIC MODELS AND PROBABILITY MEASURES Contents 1. Probabilistic experiments 2. Sample space 3. Discrete probability
More informationaxiomatic vs naïve set theory
ED40 Discrete Structures in Computer Science 1: Sets Jörn W. Janneck, Dept. of Computer Science, Lund University axiomatic vs naïve set theory s ZermeloFraenkel Set Theory w/choice (ZFC) extensionality
More informationRegular Languages and Finite State Machines
Regular Languages and Finite State Machines Plan for the Day: Mathematical preliminaries  some review One application formal definition of finite automata Examples 1 Sets A set is an unordered collection
More information3.3 Proofs Involving Quantifiers
3.3 Proofs Involving Quantifiers 1. In exercise 6 of Section 2.2 you use logical equivalences to show that x(p (x) Q(x)) is equivalent to xp (x) xq(x). Now use the methods of this section to prove that
More informationFinite Sets. Theorem 5.1. Two nonempty finite sets have the same cardinality if and only if they are equivalent.
MATH 337 Cardinality Dr. Neal, WKU We now shall prove that the rational numbers are a countable set while R is uncountable. This result shows that there are two different magnitudes of infinity. But we
More information1.1. Basic Concepts. Write sets using set notation. Write sets using set notation. Write sets using set notation. Write sets using set notation.
1.1 Basic Concepts Write sets using set notation. Objectives A set is a collection of objects called the elements or members of the set. 1 2 3 4 5 6 7 Write sets using set notation. Use number lines. Know
More informationDiscrete Mathematics. Thomas Goller. July 2013
Discrete Mathematics Thomas Goller July 2013 Contents 1 Mathematics 1 1.1 Axioms..................................... 1 1.2 Definitions................................... 2 1.3 Theorems...................................
More informationPOWER SETS AND RELATIONS
POWER SETS AND RELATIONS L. MARIZZA A. BAILEY 1. The Power Set Now that we have defined sets as best we can, we can consider a sets of sets. If we were to assume nothing, except the existence of the empty
More informationIntroduction to Proofs
Chapter 1 Introduction to Proofs 1.1 Preview of Proof This section previews many of the key ideas of proof and cites [in brackets] the sections where they are discussed thoroughly. All of these ideas are
More informationCARDINALITY, COUNTABLE AND UNCOUNTABLE SETS PART ONE
CARDINALITY, COUNTABLE AND UNCOUNTABLE SETS PART ONE With the notion of bijection at hand, it is easy to formalize the idea that two finite sets have the same number of elements: we just need to verify
More informationProbability  Part I. Definition : A random experiment is an experiment or a process for which the outcome cannot be predicted with certainty.
Probability  Part I Definition : A random experiment is an experiment or a process for which the outcome cannot be predicted with certainty. Definition : The sample space (denoted S) of a random experiment
More informationCartesian Products and Relations
Cartesian Products and Relations Definition (Cartesian product) If A and B are sets, the Cartesian product of A and B is the set A B = {(a, b) :(a A) and (b B)}. The following points are worth special
More informationLecture 16 : Relations and Functions DRAFT
CS/Math 240: Introduction to Discrete Mathematics 3/29/2011 Lecture 16 : Relations and Functions Instructor: Dieter van Melkebeek Scribe: Dalibor Zelený DRAFT In Lecture 3, we described a correspondence
More informationDiscrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 20
CS 70 Discrete Mathematics and Probability Theory Fall 009 Satish Rao, David Tse Note 0 Infinity and Countability Consider a function (or mapping) f that maps elements of a set A (called the domain of
More informationNotes on Discrete Mathematics. Miguel A. Lerma
Notes on Discrete Mathematics Miguel A. Lerma Contents Introduction 5 Chapter 1. Logic, Proofs 6 1.1. Propositions 6 1.2. Predicates, Quantifiers 11 1.3. Proofs 13 Chapter 2. Sets, Functions, Relations
More informationf(x) is a singleton set for all x A. If f is a function and f(x) = {y}, we normally write
Math 525 Chapter 1 Stuff If A and B are sets, then A B = {(x,y) x A, y B} denotes the product set. If S A B, then S is called a relation from A to B or a relation between A and B. If B = A, S A A is called
More informationMAT Discrete Mathematics
RHODES UNIVERSITY Grahamstown 6140, South Africa Lecture Notes CCR MAT 102  Discrete Mathematics Claudiu C. Remsing DEPT. of MATHEMATICS (Pure and Applied) 2005 Mathematics is not about calculations but
More informationSet operations and Venn Diagrams. COPYRIGHT 2006 by LAVON B. PAGE
Set operations and Venn Diagrams Set operations and Venn diagrams! = { x x " and x " } This is the intersection of and. # = { x x " or x " } This is the union of and. n element of! belongs to both and,
More informationBasic Set Theory. 1. Motivation. Fido Sue. Fred Aristotle Bob. LX 502  Semantics I September 11, 2008
Basic Set Theory LX 502  Semantics I September 11, 2008 1. Motivation When you start reading these notes, the first thing you should be asking yourselves is What is Set Theory and why is it relevant?
More information3(vi) B. Answer: False. 3(vii) B. Answer: True
Mathematics 0N1 Solutions 1 1. Write the following sets in list form. 1(i) The set of letters in the word banana. {a, b, n}. 1(ii) {x : x 2 + 3x 10 = 0}. 3(iv) C A. True 3(v) B = {e, e, f, c}. True 3(vi)
More information