Discrete Mathematics Set Operations

Size: px
Start display at page:

Download "Discrete Mathematics Set Operations"

Transcription

1 Discrete Mathematics 1-3. Set Operations

2 Introduction to Set Theory A setis a new type of structure, representing an unordered collection (group, plurality) of zero or more distinct (different) objects. Set theory deals with operations between, relations among, and statements about sets. Sets are ubiquitous in computer software systems. Allof mathematics can be defined in terms of some form of set theory (using predicate logic). Discrete Mathematics, Spring

3 Basic notations for sets For sets, we ll use variables S, T, U, We can denote a set Sin writing by listing all of its elements in curly braces: {a, b, c} is the set of whatever 3 objects are denoted by a, b, c. Setbuilder notation: For any proposition P(x) over any universe of discourse, {x P(x)} is the set of all x such that P(x). Discrete Mathematics, Spring

4 Basic properties of sets Sets are inherently unordered: No matter what objects a, b, and c denote, {a, b, c} = {a, c, b} = {b, a, c} = {b, c, a} = {c, a, b} = {c, b, a}. All elements are distinct(unequal); multiple listings make no difference! If a=b, then {a, b, c} = {a, c} = {b, c} = {a, a, b, a, b, c, c, c, c}. This set contains at most 2 elements! Discrete Mathematics, Spring

5 Infinite Sets Conceptually, sets may be infinite(i.e., not finite, without end, unending). Symbols for some special infinite sets: N= {0, 1, 2, } The Natural numbers. Z= {,-2,-1, 0, 1, 2, } The Zntegers. R= The Real numbers, such as Infinite sets come in different sizes! Discrete Mathematics, Spring

6 Empty Set Definition: A set which does not contain any elements is an empty set, denoted by or {} or {x false} Example: x: x Discrete Mathematics, Spring

7 Subset and Superset Definition: Let S and T be any two sets. S is a subsetof T and T is a supersetof S, denoted by S T, if and only if every element of Sis an element of T, i.e., ( x)((x S) (x T)). Example S, S S. Discrete Mathematics, Spring

8 Set Equality Definition: Let Sand Tbe any two sets. Sand Tare declared to be equal if and only ifthey contain exactly the sameelements,i.e. S=T iff(s T) (S T) Note that it does not matter how the set is defined or denoted. Example: The set {1, 2, 3, 4} = {x xis an integer where x>0 and x<5 } = {x xis a positive integer whose square is >0 and <25} Discrete Mathematics, Spring

9 Proper Subsets & Supersets Definition: Let Sand Tbe any two sets. Sis a proper subset of T(Tis a proper superset of S), denoted by S T iffs T and S T. S T Venn Diagram equivalent of S T Example: {1,2} {1,2,3} Discrete Mathematics, Spring

10 Sets Are Objects, Too! The objects that are elements of a set may themselves be sets. Example: Let S={x x {1,2,3}} then S={, {1},{2},{3}, {1,2},{1,3},{2,3}, {1,2,3}} Note that 1 {1} {{1}}!!!! Discrete Mathematics, Spring

11 Basic Set Relations: Member of Definition: x S( xis in S )is the proposition that object xis an lementor memberof set S. e.g.3 N, a {x xis a letter of the alphabet} Can define set equality in terms of relation: S,T: S=T ( x: x S x T) Two sets are equal iffthey have all the same members. x S: (x S) xis not in S Discrete Mathematics, Spring

12 Cardinality and Finiteness S (read the cardinalityof S ) is a measure of how many different elements S has. E.g., =0, {1,2,3} = 3, {a,b} = 2, {{1,2,3},{4,5}} = 2 If S N, then we say Sis finite. Otherwise, we say S is infinite. What are some infinite sets we ve seen? Discrete Mathematics, Spring

13 Power Set Definition: Let Sbe a set. The power set (S) of a set Sis the set of all subsets of S. (S) = {x x S}. Example: ({a,b}) = {, {a}, {b}, {a,b}}. Sometimes (S) is written 2 S. Note that for finite S, (S) = 2 S. It turns out that P(N) > N. There are different sizes of infinite sets! Discrete Mathematics, Spring

14 Ordered n-tuples Definition: For n N, an ordered n-tupleor a sequenceoflength nis written (a 1, a 2,, a n ). The firstelement is a 1, etc. These are like sets, except that duplicates matter, and the order makes a difference. Note (1, 2) (2, 1) (2, 1, 1). Empty sequence, singlets, pairs, triples, quadruples, quintuples,, n-tuples. Discrete Mathematics, Spring

15 Cartesian Products of Sets Definition: Let Aand Bbe any two sets. The Cartesian product A B is defined to be A B ={(a, b) a A b B}. Example: {a,b} {1,2} = {(a,1),(a,2),(b,1),(b,2)} Note that for finite A, B, A B = A B. Note that the Cartesian product is not commutative: A B B A. Extends to A 1 A 2 A n... Discrete Mathematics, Spring

16 Union Operator Definition: Let A and B be any two sets. The niona Bof A and Bis the set containing all elements that are either in Aor( )in B(or, of course, in both), i.e., A B= {x x A x B}. Note that A B contains all the elements of Aandit contains all the elements of B:(A B A) (A B B) Discrete Mathematics, Spring

17 Example of Union {a,b,c} {2,3} = {a,b,c,2,3} {2,3,5} {3,5,7}= {2,3,5,3,5,7} ={2,3,5,7} Discrete Mathematics, Spring

18 Intersection Operator Definition: Let A and B be any two sets. The intersectiona Bof A and Bis the set containing all elements that are simultaneously in A and( ) in B, i.e., A B {x x A x B}. Note that A B is a subset of Aandit is a subset of B: (A B A) (A B B) Discrete Mathematics, Spring

19 Example of Intersection {a,b,c} {2,3} = {2,4,6} {3,4,5} = {4} Discrete Mathematics, Spring

20 Disjointedness Definition: Let Aand Bbe any two sets. A and Bare called disjoint(i.e., unjoined) iff their intersection is empty (A B= ). Example: The set of even integers is disjoint with the set of odd integers. Discrete Mathematics, Spring

21 Inclusion-Exclusion Principle How many elements are in A B? A B = A + B A B Example: How many students are on our class list? Consider set E =I M, I= {s sturned in an information sheet} M= {s s sent the TAs their address} Some students did both! E = I M = I + M I M Discrete Mathematics, Spring

22 Set Difference Definition: Let Aand Bbe any two sets. The set differenceof A and B, A Bis the set of all elements that are in Abut not B. A B = {x x A x B} = {x (x A x B ) } A Bis also called the complementofbwith respect to A. Discrete Mathematics, Spring

23 Example of Set Difference {1,2,3,4,5,6} {2,3,5,7,9,11} = {1,4,6} Z N ={, -1, 0, 1, 2, } {0, 1, } = {x xis an integer but not a nat. #} = {x xis a negative integer} = {,-3,-2,-1} Discrete Mathematics, Spring

24 Universal Set & Complement of a Set Definition(Universal Set): A set is a universal set orauniverse of discourse, denoted by U, if it includes every set under discussion. Definition(Complement of a Set): Let Abe a set. The complementof A inu, denoted by the set of all elements of U which are not elements of A, i.e., A = U A. U A= {x x U x A} A, is Example: If U=N, { 3,5} = {1,2,4,6,7,...} Discrete Mathematics, Spring

25 More on Set Complements An equivalent definition, when U is clear: A = { x x A} U A A Discrete Mathematics, Spring

26 Set Identities (Theorem) Theorem: Identity: A =A A U=A Domination: A U=U A = Idempotent: A A= A =A A Double complement: ( A ) = Commutative: A B=B A A B=B A Associative: A (B C)=(A B) C A (B C)=(A B) C A Discrete Mathematics, Spring

27 DeMorgan slaw for Sets Theorem: Exactly analogous to (and derivable from) DeMorgan s Law for propositions. A B = A B A B = A B Discrete Mathematics, Spring

28 Proving Set Equality To prove statements about the form E 1 = E 2 where E 1 and E 2 are sets, prove E 1 E 2 ande 2 E 1 separately. Discrete Mathematics, Spring

29 Example: Show A (B C)=(A B) (A C) Show A (B C) (A B) (A C). Assume x A (B C), & show x (A B) (A C). We know that x A, and either x Bor x C. Case 1: x B. Then x A B, so x (A B) (A C). Case 2: x C. Then x A C, so x (A B) (A C). Therefore, x (A B) (A C). Therefore, A (B C) (A B) (A C). Show (A B) (A C) A (B C). Discrete Mathematics, Spring

30 Theorem: If Aand Bare two sets, the following statements are equivalent. (1) A B (2) A B = A (3) A B = B Discrete Mathematics, Spring

31 Generalized Unions & Intersections Since union & intersection are commutative and associative, we can extend them from operating on ordered pairsof sets (A,B) to operating on sequences of sets (A 1,,A n ), or even unordered sets of sets, X={A Q(A)}. Discrete Mathematics, Spring

32 Generalized Union Binary union operator: A B n-ary union: A 1 A 2 A n : (( ((A 1 A 2 ) ) A n ) (grouping& order is irrelevant) Big U notation: n Ui =1 A i Or for infinite sets of sets: U A X A Discrete Mathematics, Spring

33 Generalized Intersection Binary intersection operator: A B n-ary intersection: A A 2 A n (( ((A 1 A 2 ) ) A n ) (grouping& order is irrelevant) Big Arch notation: I n i=1 A i Or for infinite sets of sets: I A X A Discrete Mathematics, Spring

34 Exercise 1.Let Aand Bbe sets. Show that (a) (A B) A (b)a (B-A) = A B 2.Let A, Band Cbe sets. Show that (A-B)-C= (A-C)-(B-C). 3.Let Aand Bbe two sets. Prove or disprove each of the followings (a) P(A) P(B) P(A B) where P(A) is the power set of the set A. (b) P(A B) P(A) P(B) Discrete Mathematics, Spring

Discrete Mathematics

Discrete Mathematics Discrete Mathematics Chih-Wei Yi Dept. of Computer Science National Chiao Tung University March 16, 2009 2.1 Sets 2.1 Sets 2.1 Sets Basic Notations for Sets For sets, we ll use variables S, T, U,. We can

More information

Some Definitions about Sets

Some Definitions about Sets Some Definitions about Sets Definition: Two sets are equal if they contain the same elements. I.e., sets A and B are equal if x[x A x B]. Notation: A = B. Recall: Sets are unordered and we do not distinguish

More information

The Language of Mathematics

The Language of Mathematics CHPTER 2 The Language of Mathematics 2.1. Set Theory 2.1.1. Sets. set is a collection of objects, called elements of the set. set can be represented by listing its elements between braces: = {1, 2, 3,

More information

Sections 2.1, 2.2 and 2.4

Sections 2.1, 2.2 and 2.4 SETS Sections 2.1, 2.2 and 2.4 Chapter Summary Sets The Language of Sets Set Operations Set Identities Introduction Sets are one of the basic building blocks for the types of objects considered in discrete

More information

Sets. A set is a collection of (mathematical) objects, with the collection treated as a single mathematical object.

Sets. A set is a collection of (mathematical) objects, with the collection treated as a single mathematical object. Sets 1 Sets Informally: A set is a collection of (mathematical) objects, with the collection treated as a single mathematical object. Examples: real numbers, complex numbers, C integers, All students in

More information

2.1 Sets, power sets. Cartesian Products.

2.1 Sets, power sets. Cartesian Products. Lecture 8 2.1 Sets, power sets. Cartesian Products. Set is an unordered collection of objects. - used to group objects together, - often the objects with similar properties This description of a set (without

More information

SETS, RELATIONS, AND FUNCTIONS

SETS, RELATIONS, AND FUNCTIONS September 27, 2009 and notations Common Universal Subset and Power Set Cardinality Operations A set is a collection or group of objects or elements or members (Cantor 1895). the collection of the four

More information

A set is a Many that allows itself to be thought of as a One. (Georg Cantor)

A set is a Many that allows itself to be thought of as a One. (Georg Cantor) Chapter 4 Set Theory A set is a Many that allows itself to be thought of as a One. (Georg Cantor) In the previous chapters, we have often encountered sets, for example, prime numbers form a set, domains

More information

CmSc 175 Discrete Mathematics Lesson 10: SETS A B, A B

CmSc 175 Discrete Mathematics Lesson 10: SETS A B, A B CmSc 175 Discrete Mathematics Lesson 10: SETS Sets: finite, infinite, : empty set, U : universal set Describing a set: Enumeration = {a, b, c} Predicates = {x P(x)} Recursive definition, e.g. sequences

More information

Announcements. CompSci 230 Discrete Math for Computer Science Sets. Introduction to Sets. Sets

Announcements. CompSci 230 Discrete Math for Computer Science Sets. Introduction to Sets. Sets CompSci 230 Discrete Math for Computer Science Sets September 12, 2013 Prof. Rodger Slides modified from Rosen 1 nnouncements Read for next time Chap. 2.3-2.6 Homework 2 due Tuesday Recitation 3 on Friday

More information

A set is an unordered collection of objects.

A set is an unordered collection of objects. Section 2.1 Sets A set is an unordered collection of objects. the students in this class the chairs in this room The objects in a set are called the elements, or members of the set. A set is said to contain

More information

What is a set? Sets. Specifying a Set. Notes. The Universal Set. Specifying a Set 10/29/13

What is a set? Sets. Specifying a Set. Notes. The Universal Set. Specifying a Set 10/29/13 What is a set? Sets CS 231 Dianna Xu set is a group of objects People: {lice, ob, Clara} Colors of a rainbow: {red, orange, yellow, green, blue, purple} States in the S: {labama, laska, Virginia, } ll

More information

Sets and set operations

Sets and set operations CS 441 Discrete Mathematics for CS Lecture 7 Sets and set operations Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square asic discrete structures Discrete math = study of the discrete structures used

More information

2.1.1 Examples of Sets and their Elements

2.1.1 Examples of Sets and their Elements Chapter 2 Set Theory 2.1 Sets The most basic object in Mathematics is called a set. As rudimentary as it is, the exact, formal definition of a set is highly complex. For our purposes, we will simply define

More information

Discrete Mathematics. Some related courses. Assessed work. Motivation: functions. Motivation: sets. Exercise. Motivation: relations

Discrete Mathematics. Some related courses. Assessed work. Motivation: functions. Motivation: sets. Exercise. Motivation: relations Discrete Mathematics Philippa Gardner This course is based on previous lecture notes by Iain Phillips. K.H. Rosen. Discrete Mathematics and its Applications, McGraw Hill 1995. J.L. Gersting. Mathematical

More information

Notes. Sets. Notes. Introduction II. Notes. Definition. Definition. Slides by Christopher M. Bourke Instructor: Berthe Y. Choueiry.

Notes. Sets. Notes. Introduction II. Notes. Definition. Definition. Slides by Christopher M. Bourke Instructor: Berthe Y. Choueiry. Sets Slides by Christopher M. Bourke Instructor: Berthe Y. Choueiry Spring 2006 Computer Science & Engineering 235 Introduction to Discrete Mathematics Sections 1.6 1.7 of Rosen cse235@cse.unl.edu Introduction

More information

Sets and set operations: cont. Functions.

Sets and set operations: cont. Functions. CS 441 Discrete Mathematics for CS Lecture 8 Sets and set operations: cont. Functions. Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square Set Definition: set is a (unordered) collection of objects.

More information

Clicker Question. Theorems/Proofs and Computational Problems/Algorithms MC215: MATHEMATICAL REASONING AND DISCRETE STRUCTURES

Clicker Question. Theorems/Proofs and Computational Problems/Algorithms MC215: MATHEMATICAL REASONING AND DISCRETE STRUCTURES MC215: MATHEMATICAL REASONING AND DISCRETE STRUCTURES Tuesday, 1/21/14 General course Information Sets Reading: [J] 1.1 Optional: [H] 1.1-1.7 Exercises: Do before next class; not to hand in [J] pp. 12-14:

More information

4.1. Definitions. A set may be viewed as any well defined collection of objects, called elements or members of the set.

4.1. Definitions. A set may be viewed as any well defined collection of objects, called elements or members of the set. Section 4. Set Theory 4.1. Definitions A set may be viewed as any well defined collection of objects, called elements or members of the set. Sets are usually denoted with upper case letters, A, B, X, Y,

More information

2.1 The Algebra of Sets

2.1 The Algebra of Sets Chapter 2 Abstract Algebra 83 part of abstract algebra, sets are fundamental to all areas of mathematics and we need to establish a precise language for sets. We also explore operations on sets and relations

More information

(Refer Slide Time: 1:41)

(Refer Slide Time: 1:41) Discrete Mathematical Structures Dr. Kamala Krithivasan Department of Computer Science and Engineering Indian Institute of Technology, Madras Lecture # 10 Sets Today we shall learn about sets. You must

More information

Applications of Methods of Proof

Applications of Methods of Proof CHAPTER 4 Applications of Methods of Proof 1. Set Operations 1.1. Set Operations. The set-theoretic operations, intersection, union, and complementation, defined in Chapter 1.1 Introduction to Sets are

More information

Logic & Discrete Math in Software Engineering (CAS 701) Dr. Borzoo Bonakdarpour

Logic & Discrete Math in Software Engineering (CAS 701) Dr. Borzoo Bonakdarpour Logic & Discrete Math in Software Engineering (CAS 701) Background Dr. Borzoo Bonakdarpour Department of Computing and Software McMaster University Dr. Borzoo Bonakdarpour Logic & Discrete Math in SE (CAS

More information

Math 117 Chapter 7 Sets and Probability

Math 117 Chapter 7 Sets and Probability Math 117 Chapter 7 and Probability Flathead Valley Community College Page 1 of 15 1. A set is a well-defined collection of specific objects. Each item in the set is called an element or a member. Curly

More information

INTRODUCTORY SET THEORY

INTRODUCTORY SET THEORY M.Sc. program in mathematics INTRODUCTORY SET THEORY Katalin Károlyi Department of Applied Analysis, Eötvös Loránd University H-1088 Budapest, Múzeum krt. 6-8. CONTENTS 1. SETS Set, equal sets, subset,

More information

Definition 14 A set is an unordered collection of elements or objects.

Definition 14 A set is an unordered collection of elements or objects. Chapter 4 Set Theory Definition 14 A set is an unordered collection of elements or objects. Primitive Notation EXAMPLE {1, 2, 3} is a set containing 3 elements: 1, 2, and 3. EXAMPLE {1, 2, 3} = {3, 2,

More information

Sets, Relations and Functions

Sets, Relations and Functions Sets, Relations and Functions Eric Pacuit Department of Philosophy University of Maryland, College Park pacuit.org epacuit@umd.edu ugust 26, 2014 These notes provide a very brief background in discrete

More information

Students in their first advanced mathematics classes are often surprised

Students in their first advanced mathematics classes are often surprised CHAPTER 8 Proofs Involving Sets Students in their first advanced mathematics classes are often surprised by the extensive role that sets play and by the fact that most of the proofs they encounter are

More information

Mathematics for Computer Science/Software Engineering. Notes for the course MSM1F3 Dr. R. A. Wilson

Mathematics for Computer Science/Software Engineering. Notes for the course MSM1F3 Dr. R. A. Wilson Mathematics for Computer Science/Software Engineering Notes for the course MSM1F3 Dr. R. A. Wilson October 1996 Chapter 1 Logic Lecture no. 1. We introduce the concept of a proposition, which is a statement

More information

Math 3000 Running Glossary

Math 3000 Running Glossary Math 3000 Running Glossary Last Updated on: July 15, 2014 The definition of items marked with a must be known precisely. Chapter 1: 1. A set: A collection of objects called elements. 2. The empty set (

More information

Basic Concepts of Set Theory, Functions and Relations

Basic Concepts of Set Theory, Functions and Relations March 1, 2006 p. 1 Basic Concepts of Set Theory, Functions and Relations 1. Basic Concepts of Set Theory...1 1.1. Sets and elements...1 1.2. Specification of sets...2 1.3. Identity and cardinality...3

More information

Discrete Mathematics Lecture 5. Harper Langston New York University

Discrete Mathematics Lecture 5. Harper Langston New York University Discrete Mathematics Lecture 5 Harper Langston New York University Empty Set S = {x R, x 2 = -1} X = {1, 3}, Y = {2, 4}, C = X Y (X and Y are disjoint) Empty set has no elements Empty set is a subset of

More information

Automata Theory. Şubat 2006 Tuğrul Yılmaz Ankara Üniversitesi

Automata Theory. Şubat 2006 Tuğrul Yılmaz Ankara Üniversitesi Automata Theory Automata theory is the study of abstract computing devices. A. M. Turing studied an abstract machine that had all the capabilities of today s computers. Turing s goal was to describe the

More information

CHAPTER 2. Set, Whole Numbers, and Numeration

CHAPTER 2. Set, Whole Numbers, and Numeration CHAPTER 2 Set, Whole Numbers, and Numeration 2.1. Sets as a Basis for Whole Numbers A set is a collection of objects, called the elements or members of the set. Three common ways to define sets: (1) A

More information

The set consisting of all natural numbers that are in A and are in B is the set f1; 3; 5g;

The set consisting of all natural numbers that are in A and are in B is the set f1; 3; 5g; Chapter 5 Set Theory 5.1 Sets and Operations on Sets Preview Activity 1 (Set Operations) Before beginning this section, it would be a good idea to review sets and set notation, including the roster method

More information

Math/CSE 1019: Discrete Mathematics for Computer Science Fall Suprakash Datta

Math/CSE 1019: Discrete Mathematics for Computer Science Fall Suprakash Datta Math/CSE 1019: Discrete Mathematics for Computer Science Fall 2011 Suprakash Datta datta@cse.yorku.ca Office: CSEB 3043 Phone: 416-736-2100 ext 77875 Course page: http://www.cse.yorku.ca/course/1019 1

More information

The Mathematics Driving License for Computer Science- CS10410

The Mathematics Driving License for Computer Science- CS10410 The Mathematics Driving License for Computer Science- CS10410 Venn Diagram, Union, Intersection, Difference, Complement, Disjoint, Subset and Power Set Nitin Naik Department of Computer Science Venn-Euler

More information

2.1 Symbols and Terminology

2.1 Symbols and Terminology 2.1 Symbols and Terminology Definitions: set is a collection of objects. The objects belonging to the set are called elements, ormembers, oftheset. Sets can be designated in one of three different ways:

More information

MAT2400 Analysis I. A brief introduction to proofs, sets, and functions

MAT2400 Analysis I. A brief introduction to proofs, sets, and functions MAT2400 Analysis I A brief introduction to proofs, sets, and functions In Analysis I there is a lot of manipulations with sets and functions. It is probably also the first course where you have to take

More information

Introduction Russell s Paradox Basic Set Theory Operations on Sets. 6. Sets. Terence Sim

Introduction Russell s Paradox Basic Set Theory Operations on Sets. 6. Sets. Terence Sim 6. Sets Terence Sim 6.1. Introduction A set is a Many that allows itself to be thought of as a One. Georg Cantor Reading Section 6.1 6.3 of Epp. Section 3.1 3.4 of Campbell. Familiar concepts Sets can

More information

Lecture Note 1 Set and Probability Theory. MIT 14.30 Spring 2006 Herman Bennett

Lecture Note 1 Set and Probability Theory. MIT 14.30 Spring 2006 Herman Bennett Lecture Note 1 Set and Probability Theory MIT 14.30 Spring 2006 Herman Bennett 1 Set Theory 1.1 Definitions and Theorems 1. Experiment: any action or process whose outcome is subject to uncertainty. 2.

More information

Set (mathematics) From Wikipedia, the free encyclopedia

Set (mathematics) From Wikipedia, the free encyclopedia Set (mathematics) From Wikipedia, the free encyclopedia A set in mathematics is a collection of well defined and distinct objects, considered as an object in its own right. Sets are one of the most fundamental

More information

This chapter describes set theory, a mathematical theory that underlies all of modern mathematics.

This chapter describes set theory, a mathematical theory that underlies all of modern mathematics. Appendix A Set Theory This chapter describes set theory, a mathematical theory that underlies all of modern mathematics. A.1 Basic Definitions Definition A.1.1. A set is an unordered collection of elements.

More information

Sets and Cardinality Notes for C. F. Miller

Sets and Cardinality Notes for C. F. Miller Sets and Cardinality Notes for 620-111 C. F. Miller Semester 1, 2000 Abstract These lecture notes were compiled in the Department of Mathematics and Statistics in the University of Melbourne for the use

More information

Lecture 1. Basic Concepts of Set Theory, Functions and Relations

Lecture 1. Basic Concepts of Set Theory, Functions and Relations September 7, 2005 p. 1 Lecture 1. Basic Concepts of Set Theory, Functions and Relations 0. Preliminaries...1 1. Basic Concepts of Set Theory...1 1.1. Sets and elements...1 1.2. Specification of sets...2

More information

Basics of Probability

Basics of Probability Basics of Probability August 27 and September 1, 2009 1 Introduction A phenomena is called random if the exact outcome is uncertain. The mathematical study of randomness is called the theory of probability.

More information

Mathematics Review for MS Finance Students

Mathematics Review for MS Finance Students Mathematics Review for MS Finance Students Anthony M. Marino Department of Finance and Business Economics Marshall School of Business Lecture 1: Introductory Material Sets The Real Number System Functions,

More information

not to be republishe NCERT SETS Chapter Introduction 1.2 Sets and their Representations

not to be republishe NCERT SETS Chapter Introduction 1.2 Sets and their Representations SETS Chapter 1 In these days of conflict between ancient and modern studies; there must surely be something to be said for a study which did not begin with Pythagoras and will not end with Einstein; but

More information

4.1. Sets. Introduction. Prerequisites. Learning Outcomes. Learning Style

4.1. Sets. Introduction. Prerequisites. Learning Outcomes. Learning Style ets 4.1 Introduction If we can identify a property which is common to several objects, it is often useful to group them together. uch a grouping is called a set. Engineers for example, may wish to study

More information

Math 421: Probability and Statistics I Note Set 2

Math 421: Probability and Statistics I Note Set 2 Math 421: Probability and Statistics I Note Set 2 Marcus Pendergrass September 13, 2013 4 Discrete Probability Discrete probability is concerned with situations in which you can essentially list all the

More information

Discrete Mathematics, Chapter 5: Induction and Recursion

Discrete Mathematics, Chapter 5: Induction and Recursion Discrete Mathematics, Chapter 5: Induction and Recursion Richard Mayr University of Edinburgh, UK Richard Mayr (University of Edinburgh, UK) Discrete Mathematics. Chapter 5 1 / 20 Outline 1 Well-founded

More information

Chapter 3. Cartesian Products and Relations. 3.1 Cartesian Products

Chapter 3. Cartesian Products and Relations. 3.1 Cartesian Products Chapter 3 Cartesian Products and Relations The material in this chapter is the first real encounter with abstraction. Relations are very general thing they are a special type of subset. After introducing

More information

Sets and Logic. Chapter Sets

Sets and Logic. Chapter Sets Chapter 2 Sets and Logic This chapter introduces sets. In it we study the structure on subsets of a set, operations on subsets, the relations of inclusion and equality on sets, and the close connection

More information

Introducing Functions

Introducing Functions Functions 1 Introducing Functions A function f from a set A to a set B, written f : A B, is a relation f A B such that every element of A is related to one element of B; in logical notation 1. (a, b 1

More information

Automata and Formal Languages

Automata and Formal Languages Automata and Formal Languages Winter 2009-2010 Yacov Hel-Or 1 What this course is all about This course is about mathematical models of computation We ll study different machine models (finite automata,

More information

In mathematics you don t understand things. You just get used to them. (Attributed to John von Neumann)

In mathematics you don t understand things. You just get used to them. (Attributed to John von Neumann) Chapter 1 Sets and Functions We understand a set to be any collection M of certain distinct objects of our thought or intuition (called the elements of M) into a whole. (Georg Cantor, 1895) In mathematics

More information

A Little Set Theory (Never Hurt Anybody)

A Little Set Theory (Never Hurt Anybody) A Little Set Theory (Never Hurt Anybody) Matthew Saltzman Department of Mathematical Sciences Clemson University Draft: August 21, 2013 1 Introduction The fundamental ideas of set theory and the algebra

More information

Section 3.3 Equivalence Relations

Section 3.3 Equivalence Relations 1 Section 3.3 Purpose of Section To introduce the concept of an equivalence relation and show how it subdivides or partitions a set into distinct categories. Introduction Classifying objects and placing

More information

Sets and Subsets. Countable and Uncountable

Sets and Subsets. Countable and Uncountable Sets and Subsets Countable and Uncountable Reading Appendix A Section A.6.8 Pages 788-792 BIG IDEAS Themes 1. There exist functions that cannot be computed in Java or any other computer language. 2. There

More information

CHAPTER 1. Basic Ideas

CHAPTER 1. Basic Ideas CHPTER 1 asic Ideas In the end, all mathematics can be boiled down to logic and set theory. ecause of this, any careful presentation of fundamental mathematical ideas is inevitably couched in the language

More information

Problems on Discrete Mathematics 1

Problems on Discrete Mathematics 1 Problems on Discrete Mathematics 1 Chung-Chih Li 2 Kishan Mehrotra 3 Syracuse University, New York L A TEX at January 11, 2007 (Part I) 1 No part of this book can be reproduced without permission from

More information

SETS. Chapter Overview

SETS. Chapter Overview Chapter 1 SETS 1.1 Overview This chapter deals with the concept of a set, operations on sets.concept of sets will be useful in studying the relations and functions. 1.1.1 Set and their representations

More information

If f is a 1-1 correspondence between A and B then it has an inverse, and f 1 isa 1-1 correspondence between B and A.

If f is a 1-1 correspondence between A and B then it has an inverse, and f 1 isa 1-1 correspondence between B and A. Chapter 5 Cardinality of sets 51 1-1 Correspondences A 1-1 correspondence between sets A and B is another name for a function f : A B that is 1-1 and onto If f is a 1-1 correspondence between A and B,

More information

Basic Set Theory. Chapter Set Theory. can be written: A set is a Many that allows itself to be thought of as a One.

Basic Set Theory. Chapter Set Theory. can be written: A set is a Many that allows itself to be thought of as a One. Chapter Basic Set Theory A set is a Many that allows itself to be thought of as a One. - Georg Cantor This chapter introduces set theory, mathematical induction, and formalizes the notion of mathematical

More information

Chapter Prove or disprove: A (B C) = (A B) (A C). Ans: True, since

Chapter Prove or disprove: A (B C) = (A B) (A C). Ans: True, since Chapter 2 1. Prove or disprove: A (B C) = (A B) (A C)., since A ( B C) = A B C = A ( B C) = ( A B) ( A C) = ( A B) ( A C). 2. Prove that A B= A B by giving a containment proof (that is, prove that the

More information

DISCRETE MATHEMATICS W W L CHEN

DISCRETE MATHEMATICS W W L CHEN DISCRETE MATHEMATICS W W L CHEN c W W L Chen, 1982, 2008. This chapter originates from material used by the author at Imperial College, University of London, between 1981 and 1990. It is available free

More information

Lecture 2 : Basics of Probability Theory

Lecture 2 : Basics of Probability Theory Lecture 2 : Basics of Probability Theory When an experiment is performed, the realization of the experiment is an outcome in the sample space. If the experiment is performed a number of times, different

More information

Review for Final Exam

Review for Final Exam Review for Final Exam Note: Warning, this is probably not exhaustive and probably does contain typos (which I d like to hear about), but represents a review of most of the material covered in Chapters

More information

Chapter 1. Logic and Proof

Chapter 1. Logic and Proof Chapter 1. Logic and Proof 1.1 Remark: A little over 100 years ago, it was found that some mathematical proofs contained paradoxes, and these paradoxes could be used to prove statements that were known

More information

Notes 2 for Honors Probability and Statistics

Notes 2 for Honors Probability and Statistics Notes 2 for Honors Probability and Statistics Ernie Croot August 24, 2010 1 Examples of σ-algebras and Probability Measures So far, the only examples of σ-algebras we have seen are ones where the sample

More information

1 / Basic Structures: Sets, Functions, Sequences, and Sums - definition of a set, and the use of the intuitive notion that any property whatever there

1 / Basic Structures: Sets, Functions, Sequences, and Sums - definition of a set, and the use of the intuitive notion that any property whatever there C H A P T E R Basic Structures: Sets, Functions, Sequences, and Sums.1 Sets. Set Operations.3 Functions.4 Sequences and Summations Much of discrete mathematics is devoted to the study of discrete structures,

More information

Lecture 4 -- Sets, Relations, Functions 1

Lecture 4 -- Sets, Relations, Functions 1 Lecture 4 Sets, Relations, Functions Pat Place Carnegie Mellon University Models of Software Systems 17-651 Fall 1999 Lecture 4 -- Sets, Relations, Functions 1 The Story So Far Formal Systems > Syntax»

More information

Discrete Mathematics and Probability Theory Fall 2009 Satish Rao,David Tse Note 11

Discrete Mathematics and Probability Theory Fall 2009 Satish Rao,David Tse Note 11 CS 70 Discrete Mathematics and Probability Theory Fall 2009 Satish Rao,David Tse Note Conditional Probability A pharmaceutical company is marketing a new test for a certain medical condition. According

More information

Sets and functions. {x R : x > 0}.

Sets and functions. {x R : x > 0}. Sets and functions 1 Sets The language of sets and functions pervades mathematics, and most of the important operations in mathematics turn out to be functions or to be expressible in terms of functions.

More information

Classical Sets and Fuzzy Sets Classical Sets Operation on Classical Sets Properties of Classical (Crisp) Sets Mapping of Classical Sets to Functions

Classical Sets and Fuzzy Sets Classical Sets Operation on Classical Sets Properties of Classical (Crisp) Sets Mapping of Classical Sets to Functions Classical Sets and Fuzzy Sets Classical Sets Operation on Classical Sets Properties of Classical (Crisp) Sets Mapping of Classical Sets to Functions Fuzzy Sets Notation Convention for Fuzzy Sets Fuzzy

More information

CS 341 Homework 9 Languages That Are and Are Not Regular

CS 341 Homework 9 Languages That Are and Are Not Regular CS 341 Homework 9 Languages That Are and Are Not Regular 1. Show that the following are not regular. (a) L = {ww R : w {a, b}*} (b) L = {ww : w {a, b}*} (c) L = {ww' : w {a, b}*}, where w' stands for w

More information

Discrete Math Review

Discrete Math Review Data Structures and Algorithms Discrete Math Review Chris Brooks Department of Computer Science University of San Francisco Department of Computer Science University of San Francisco p.1/32 2-0: Discrete

More information

Matthias Beck Ross Geoghegan. The Art of Proof. Basic Training for Deeper Mathematics

Matthias Beck Ross Geoghegan. The Art of Proof. Basic Training for Deeper Mathematics Matthias Beck Ross Geoghegan The Art of Proof Basic Training for Deeper Mathematics ! "#$$%&#'!()*+!!,-''!.)-/%)/#0! 1)2#3$4)0$!-5!"#$%)4#$&*'!! 1)2#3$4)0$!-5!"#$%)4#$&*#6!7*&)0*)'! 7#0!83#0*&'*-!7$#$)!90&:)3'&$;!

More information

Unit SF. Sets and Functions

Unit SF. Sets and Functions Unit SF Sets and Functions Section : Sets The basic concepts of sets and functions are topics covered in high school math courses and are thus familiar to most university students. We take the intuitive

More information

Lecture 1 (Review of High School Math: Functions and Models) Introduction: Numbers and their properties

Lecture 1 (Review of High School Math: Functions and Models) Introduction: Numbers and their properties Lecture 1 (Review of High School Math: Functions and Models) Introduction: Numbers and their properties Addition: (1) (Associative law) If a, b, and c are any numbers, then ( ) ( ) (2) (Existence of an

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 1 9/3/2008 PROBABILISTIC MODELS AND PROBABILITY MEASURES

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 1 9/3/2008 PROBABILISTIC MODELS AND PROBABILITY MEASURES MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 1 9/3/2008 PROBABILISTIC MODELS AND PROBABILITY MEASURES Contents 1. Probabilistic experiments 2. Sample space 3. Discrete probability

More information

axiomatic vs naïve set theory

axiomatic vs naïve set theory ED40 Discrete Structures in Computer Science 1: Sets Jörn W. Janneck, Dept. of Computer Science, Lund University axiomatic vs naïve set theory s Zermelo-Fraenkel Set Theory w/choice (ZFC) extensionality

More information

Regular Languages and Finite State Machines

Regular Languages and Finite State Machines Regular Languages and Finite State Machines Plan for the Day: Mathematical preliminaries - some review One application formal definition of finite automata Examples 1 Sets A set is an unordered collection

More information

3.3 Proofs Involving Quantifiers

3.3 Proofs Involving Quantifiers 3.3 Proofs Involving Quantifiers 1. In exercise 6 of Section 2.2 you use logical equivalences to show that x(p (x) Q(x)) is equivalent to xp (x) xq(x). Now use the methods of this section to prove that

More information

Finite Sets. Theorem 5.1. Two non-empty finite sets have the same cardinality if and only if they are equivalent.

Finite Sets. Theorem 5.1. Two non-empty finite sets have the same cardinality if and only if they are equivalent. MATH 337 Cardinality Dr. Neal, WKU We now shall prove that the rational numbers are a countable set while R is uncountable. This result shows that there are two different magnitudes of infinity. But we

More information

1.1. Basic Concepts. Write sets using set notation. Write sets using set notation. Write sets using set notation. Write sets using set notation.

1.1. Basic Concepts. Write sets using set notation. Write sets using set notation. Write sets using set notation. Write sets using set notation. 1.1 Basic Concepts Write sets using set notation. Objectives A set is a collection of objects called the elements or members of the set. 1 2 3 4 5 6 7 Write sets using set notation. Use number lines. Know

More information

Discrete Mathematics. Thomas Goller. July 2013

Discrete Mathematics. Thomas Goller. July 2013 Discrete Mathematics Thomas Goller July 2013 Contents 1 Mathematics 1 1.1 Axioms..................................... 1 1.2 Definitions................................... 2 1.3 Theorems...................................

More information

POWER SETS AND RELATIONS

POWER SETS AND RELATIONS POWER SETS AND RELATIONS L. MARIZZA A. BAILEY 1. The Power Set Now that we have defined sets as best we can, we can consider a sets of sets. If we were to assume nothing, except the existence of the empty

More information

Introduction to Proofs

Introduction to Proofs Chapter 1 Introduction to Proofs 1.1 Preview of Proof This section previews many of the key ideas of proof and cites [in brackets] the sections where they are discussed thoroughly. All of these ideas are

More information

CARDINALITY, COUNTABLE AND UNCOUNTABLE SETS PART ONE

CARDINALITY, COUNTABLE AND UNCOUNTABLE SETS PART ONE CARDINALITY, COUNTABLE AND UNCOUNTABLE SETS PART ONE With the notion of bijection at hand, it is easy to formalize the idea that two finite sets have the same number of elements: we just need to verify

More information

Probability - Part I. Definition : A random experiment is an experiment or a process for which the outcome cannot be predicted with certainty.

Probability - Part I. Definition : A random experiment is an experiment or a process for which the outcome cannot be predicted with certainty. Probability - Part I Definition : A random experiment is an experiment or a process for which the outcome cannot be predicted with certainty. Definition : The sample space (denoted S) of a random experiment

More information

Cartesian Products and Relations

Cartesian Products and Relations Cartesian Products and Relations Definition (Cartesian product) If A and B are sets, the Cartesian product of A and B is the set A B = {(a, b) :(a A) and (b B)}. The following points are worth special

More information

Lecture 16 : Relations and Functions DRAFT

Lecture 16 : Relations and Functions DRAFT CS/Math 240: Introduction to Discrete Mathematics 3/29/2011 Lecture 16 : Relations and Functions Instructor: Dieter van Melkebeek Scribe: Dalibor Zelený DRAFT In Lecture 3, we described a correspondence

More information

Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 20

Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 20 CS 70 Discrete Mathematics and Probability Theory Fall 009 Satish Rao, David Tse Note 0 Infinity and Countability Consider a function (or mapping) f that maps elements of a set A (called the domain of

More information

Notes on Discrete Mathematics. Miguel A. Lerma

Notes on Discrete Mathematics. Miguel A. Lerma Notes on Discrete Mathematics Miguel A. Lerma Contents Introduction 5 Chapter 1. Logic, Proofs 6 1.1. Propositions 6 1.2. Predicates, Quantifiers 11 1.3. Proofs 13 Chapter 2. Sets, Functions, Relations

More information

f(x) is a singleton set for all x A. If f is a function and f(x) = {y}, we normally write

f(x) is a singleton set for all x A. If f is a function and f(x) = {y}, we normally write Math 525 Chapter 1 Stuff If A and B are sets, then A B = {(x,y) x A, y B} denotes the product set. If S A B, then S is called a relation from A to B or a relation between A and B. If B = A, S A A is called

More information

MAT Discrete Mathematics

MAT Discrete Mathematics RHODES UNIVERSITY Grahamstown 6140, South Africa Lecture Notes CCR MAT 102 - Discrete Mathematics Claudiu C. Remsing DEPT. of MATHEMATICS (Pure and Applied) 2005 Mathematics is not about calculations but

More information

Set operations and Venn Diagrams. COPYRIGHT 2006 by LAVON B. PAGE

Set operations and Venn Diagrams. COPYRIGHT 2006 by LAVON B. PAGE Set operations and Venn Diagrams Set operations and Venn diagrams! = { x x " and x " } This is the intersection of and. # = { x x " or x " } This is the union of and. n element of! belongs to both and,

More information

Basic Set Theory. 1. Motivation. Fido Sue. Fred Aristotle Bob. LX 502 - Semantics I September 11, 2008

Basic Set Theory. 1. Motivation. Fido Sue. Fred Aristotle Bob. LX 502 - Semantics I September 11, 2008 Basic Set Theory LX 502 - Semantics I September 11, 2008 1. Motivation When you start reading these notes, the first thing you should be asking yourselves is What is Set Theory and why is it relevant?

More information

3(vi) B. Answer: False. 3(vii) B. Answer: True

3(vi) B. Answer: False. 3(vii) B. Answer: True Mathematics 0N1 Solutions 1 1. Write the following sets in list form. 1(i) The set of letters in the word banana. {a, b, n}. 1(ii) {x : x 2 + 3x 10 = 0}. 3(iv) C A. True 3(v) B = {e, e, f, c}. True 3(vi)

More information