Handout #1: Mathematical Reasoning

Save this PDF as:

Size: px
Start display at page:

Transcription

1 Math 101 Rumbos Spring Handout #1: Mathematical Reasoning 1 Propositional Logic A proposition is a mathematical statement that it is either true or false; that is, a statement whose certainty or falsity can be ascertained; we call this the truth value of the statement Thus, a proposition can have only one two truth values: it can be either true, denoted by T, or it can be false, denoted by F For example, the statement n 2 is even is either true or false depending on the value that n takes on in the set of integers On the other hand, the statement This sentence is false is not a proposition (Why?) The truth values of a proposition, P, can be displayed in tabular form as follows: P T F This is an example of a truth table Given a proposition P, its negation, denoted by P, is defined by the truth table P T F P F T Example 11 Give the negation of the statement All students in this class are male Answer: There is at least one student in this class who is not male Example 12 Give the negation of the statement If n is even, the n 2 is even Answer: There exist and integer n such that n is even and n 2 is not even

2 Math 101 Rumbos Spring The previous two examples illustrate the concept of a quantifier in mathematical statements Expressions like there is, there exists, all, for all, and for some are examples of quantifiers Quantifiers modify statements of the form P (x) which depend on a variable (in this case x) which can take on values in a set under consideration For example, P (n): n 2 is even can be modified as follows or There exists and integer, n, such that n 2 is even, For all integers, n, n 2 is even The first statement is true, but the second one is false The first statement can be written in more compact notation as follows: ( n Z) (n 2 is even) The symbol reads there exists, there is or for some It is called the existential quantifier The second statement can be written as ( n Z) (n 2 is even) The symbol reads for all or for every It is called the universal quantifier The negation of the statement ( n Z) (n 2 is even) is the statement ( n Z) (n 2 is not even) In symbols, if we let P (n) denote n 2 is even, we write The symbol is read: is equivalent to ( n Z)P (n)) ( n Z) P (n))

3 Math 101 Rumbos Spring Definition 13 Two mathematical statements are equivalent if they have the same truth tables If P and Q are equivalent, we write P Q or P Q Thus, the truth table for the statement P Q is P Q P Q T T T T F F F T F F F T Thus, P Q is true only when the propositions P and Q have the same truth values Logical equivalence,, is an example of a logical connector In the next section we will see more examples of logical connectors 2 Logical Connectors Most mathematical statements are made up of several propositions Propositions can be put together in various ways and following certain rules that prescribe the truth values of the composite statements In this section we describe how this is done 21 Conjunctions The conjunction of two propositions, P and Q, is the statement P Q defined by the truth table: P Q P Q T T T T F F F T F F F F P Q reads P and Q Thus, the conjunction, P Q is true only when both P and Q are true

4 Math 101 Rumbos Spring Disjunctions The disjunction of two propositions, P and Q, is the statement P Q defined by the truth table: P Q P Q T T T T F T F T T F F F P Q reads P or Q Thus, the disjunction, P Q is false only when both P and Q are false In other words P Q is true when either one of the statements, P and Q, is true 23 Implications The implication of two propositions, P and Q, also known as material implication or truth functional conditional, is the statement P Q defined by the truth table: P Q P Q T T T T F F F T T F F T P Q reads P implies Q, or If P, then Q Other ways to translate the material implication P Q in Mathematics are: Q follows from P ; Q, if P ; P only if Q; Q is necessary for P ; and P is sufficient for Q The statement P in the material implication P Q is referred to as the hypothesis or antecedent, while Q is called the conclusion or consequent of the implication Material implication are very important in Mathematics Most mathematical theorems are of the form: If some set of hypotheses hold true, then a conclusion must necessarily follow Thus, in order to prove a mathematical statement, it is important to understand the import of the truth functional definition given in the truth table: P Q is false only when P is true and Q is false Thus, in order to establish the validity of a theorem of the form If P, then Q, one must show that if P is true, then Q must be true We will explore this idea further in the Section 4 on page 7 of these notes where we discuss methods for proving mathematical statements

5 Math 101 Rumbos Spring Equivalences and Rules of Reasoning We have already seen the definition of logical equivalence; namely, two mathematical statements are equivalent if they have the same truth tables If P and Q are equivalent, we write P Q or P Q The statement P Q is also read P if and only if Q, or P iff Q, or P is necessary and sufficient for Q The truth table for the statement P Q is P Q P Q T T T T F F F T F F F T Example 31 Show that the statements P Q and P Q are equivalent Solution: The strategy here is to set up a truth table that displays all the truth value for the statements and shows that they are the same P Q P P Q P Q T T F T T T F F F F F T T T T F F T T T Since the last two columns have the same truth values, the two statements are equivalent That is, (P Q) ( P Q) or (P Q) ( P Q) Alternatively, we can also solve the previous example by computing the truth values (or truth table) for the statement (P Q) ( P Q)

6 Math 101 Rumbos Spring Example 32 Compute the truth table for (P Q) ( P Q) Solution: We complete the following true table using the definition of logical equivalence P Q P P Q P Q (P Q) ( P Q) T T F T T T T F F F F T F T T T T T F F T T T T Observe that all the truth values under (P Q) ( P Q) are T Definition 33 A statement for which all the truth values are T is called a tautology Example 34 Determine if the implications P Q and Q P are equivalent Solution: Consider the truth table P Q P Q Q P T T T T T F F T F T T F F F T T Observe that the last two columns have different truth values Therefore, the two implications are not equivalent The implication Q P is called the converse of the implication P Q The previous example shows that an implication and its converse are not equivalent Fact 35 Two statements P and Q are equivalent if and only if P Q and Q P both hold true Proof We show that the statements P Q and (P Q) (Q P ) are equivalent To do so, consider the following truth table P Q P Q Q P (P Q) (Q P ) P Q T T T T T T T F F T F F F T T F F F F F T T T T

7 Math 101 Rumbos Spring Example 36 Show that the implications P Q and Q P are equivalent Solution: To prove this compute the truth table P Q P Q P Q Q P T T F F T T T F F T F F F T T F T T F F T T T T The implication Q P is called the contrapositive of the implication P Q The previous example shows that an implication and its contrapositive are equivalent 4 Methods of Proof The goal of this section is to develop techniques for proving mathematical statements 41 Direct Methods We have already seen one way of proving a mathematical statement of the form Theorem If P, then Q Based of the fact that the implication P Q is false only when P is true and Q is false, the idea behind the method of proof that we discussed was to assume that P is true and then to proceed, through a chain of logical deductions, to conclude that Q is true Here is the outline of the argument: Proof: Suppose that P is true Then, Therefore, Q This is an example of a direct method of proof In the following section we discuss indirect methods of proof

8 Math 101 Rumbos Spring Example 41 Prove the statement: If n is even, then n 2 is even Proof: Assume that the integer n is even Then, n = 2k, for some integer k It then follows that n 2 = (2k) 2 = 4k 2 = 2(2k 2 ), which shows that n 2 is even 42 Indirect Methods 421 Proving the Contrapositive The idea behind this method of proof comes from the fact that the implication is equivalent to the implication Q P P Q Thus, in order to prove P Q, it suffices to prove Q P Here is the outline of the argument: Theorem If P, then Q Proof Suppose that Q is true; ie, assume that Q is false Then, Hence, P Consequently, Q P is true; therefore, P Q is true Example 42 Prove that n 2 is even implies that n is even Proof Suppose that n is not even Then n = 2k + 1 for some integer k It then follows that n 2 = (2k + 1) 2 = 4k 2 + 4k + 1 = 2(2k 2 + 2k) + 1, which shows that n 2 is not even Thus, n is not even implies that n 2 is not even, and therefore the contrapositive is true; namely, n 2 is even implies that n is even

9 Math 101 Rumbos Spring Proof by Contradiction or Reductio ad Absurdum A contradiction is a statement of the form R R; that is, a statement which is always false The idea behind Reductio ad Absurdum comes from the fact that the implication (P Q) (R R) is equivalent to the implication P Q To see why this is the case, consider the following truth table: P Q Q P Q R R (P Q) (R R) P Q T T F F F T T T F T T F F F F T F F F T T F F T F F T T Here is the outline of an argument by contradiction: Theorem If P, then Q Proof Assume that P is true that Q is false Then, Arguing by contradiction, suppose also R R Hence, R R This is absurd Consequently, it must be that case that Q is true Therefore, P Q is true The argument outlined above can also be used to prove a statement of the form Theorem P is true

10 Math 101 Rumbos Spring Proof Arguing by contradiction, assume that P is true; that is, suppose that P is false Then, R R Hence, R R This is absurd Consequently, it must be that case that P is true In order to verify the validity of this argument, consider the truth table: P P R R P (R R) T F F T F T F F Observe that the columns for P and P (R R) have the same truth values; therefore, P and P (R R) are equivalent; in symbols, ( P (R R)) P Before we present the next example, recall a few facts about prime numbers Definition 43 A natural number p > 1 is said to be a prime number, or a prime, is its only (positive) divisors are 1 and p If an integer is not a prime, then it is said to be a composite number Theorem 44 (Fundamental Theorem of Arithmetic) Every natural number n > 1 can be written as a product of primes This representation of n is unique up to the order of the prime factors Theorem 45 There are infinitely many prime numbers 1 1 The first proof of this theorem is usually ascribed to Euclid, a Greek mathematician who lived circa 330 BC

11 Math 101 Rumbos Spring Proof Arguing by contradiction, suppose that there are only a finite number of prime numbers Denote them by p 1, p 2, p 3,, p r Then, this list contains all the prime numbers Form the number q = p 1 p 2 p 3 p r + 1 Then, q is not a prime since it is not in the list of primes given above Thus, q is composite Let p be a prime divisor of q Then p is not on the list of primes; for if it was in the list, then p would divide q p 1 p 2 p 3 p r = 1 This is impossible Hence, p is a prime which is not on the list; but this is absurd since the list p 1, p 2, p 3,, p r is assumed to contain all the primes This contradiction shows that there must be infinitely many primes

Mathematics for Computer Science/Software Engineering. Notes for the course MSM1F3 Dr. R. A. Wilson

Mathematics for Computer Science/Software Engineering Notes for the course MSM1F3 Dr. R. A. Wilson October 1996 Chapter 1 Logic Lecture no. 1. We introduce the concept of a proposition, which is a statement

INTRODUCTORY SET THEORY

M.Sc. program in mathematics INTRODUCTORY SET THEORY Katalin Károlyi Department of Applied Analysis, Eötvös Loránd University H-1088 Budapest, Múzeum krt. 6-8. CONTENTS 1. SETS Set, equal sets, subset,

WHAT ARE MATHEMATICAL PROOFS AND WHY THEY ARE IMPORTANT?

WHAT ARE MATHEMATICAL PROOFS AND WHY THEY ARE IMPORTANT? introduction Many students seem to have trouble with the notion of a mathematical proof. People that come to a course like Math 216, who certainly

CSL105: Discrete Mathematical Structures. Ragesh Jaiswal, CSE, IIT Delhi

Propositional Logic: logical operators Negation ( ) Conjunction ( ) Disjunction ( ). Exclusive or ( ) Conditional statement ( ) Bi-conditional statement ( ): Let p and q be propositions. The biconditional

SUBGROUPS OF CYCLIC GROUPS. 1. Introduction In a group G, we denote the (cyclic) group of powers of some g G by

SUBGROUPS OF CYCLIC GROUPS KEITH CONRAD 1. Introduction In a group G, we denote the (cyclic) group of powers of some g G by g = {g k : k Z}. If G = g, then G itself is cyclic, with g as a generator. Examples

Solutions to Homework 6 Mathematics 503 Foundations of Mathematics Spring 2014

Solutions to Homework 6 Mathematics 503 Foundations of Mathematics Spring 2014 3.4: 1. If m is any integer, then m(m + 1) = m 2 + m is the product of m and its successor. That it to say, m 2 + m is the

Propositional Logic. A proposition is a declarative sentence (a sentence that declares a fact) that is either true or false, but not both.

irst Order Logic Propositional Logic A proposition is a declarative sentence (a sentence that declares a fact) that is either true or false, but not both. Are the following sentences propositions? oronto

CHAPTER 7 GENERAL PROOF SYSTEMS

CHAPTER 7 GENERAL PROOF SYSTEMS 1 Introduction Proof systems are built to prove statements. They can be thought as an inference machine with special statements, called provable statements, or sometimes

CS510 Software Engineering

CS510 Software Engineering Propositional Logic Asst. Prof. Mathias Payer Department of Computer Science Purdue University TA: Scott A. Carr Slides inspired by Xiangyu Zhang http://nebelwelt.net/teaching/15-cs510-se

Doug Ravenel. October 15, 2008

Doug Ravenel University of Rochester October 15, 2008 s about Euclid s Some s about primes that every mathematician should know (Euclid, 300 BC) There are infinitely numbers. is very elementary, and we

An Innocent Investigation

An Innocent Investigation D. Joyce, Clark University January 2006 The beginning. Have you ever wondered why every number is either even or odd? I don t mean to ask if you ever wondered whether every number

Correspondence analysis for strong three-valued logic

Correspondence analysis for strong three-valued logic A. Tamminga abstract. I apply Kooi and Tamminga s (2012) idea of correspondence analysis for many-valued logics to strong three-valued logic (K 3 ).

This chapter is all about cardinality of sets. At first this looks like a

CHAPTER Cardinality of Sets This chapter is all about cardinality of sets At first this looks like a very simple concept To find the cardinality of a set, just count its elements If A = { a, b, c, d },

p: I am elected q: I will lower the taxes

Implication Conditional Statement p q (p implies q) (if p then q) is the proposition that is false when p is true and q is false and true otherwise. Equivalent to not p or q Ex. If I am elected then I

Predicate Logic. Example: All men are mortal. Socrates is a man. Socrates is mortal.

Predicate Logic Example: All men are mortal. Socrates is a man. Socrates is mortal. Note: We need logic laws that work for statements involving quantities like some and all. In English, the predicate is

Cyclotomic Extensions

Chapter 7 Cyclotomic Extensions A cyclotomic extension Q(ζ n ) of the rationals is formed by adjoining a primitive n th root of unity ζ n. In this chapter, we will find an integral basis and calculate

WOLLONGONG COLLEGE AUSTRALIA. Diploma in Information Technology

First Name: Family Name: Student Number: Class/Tutorial: WOLLONGONG COLLEGE AUSTRALIA A College of the University of Wollongong Diploma in Information Technology Mid-Session Test Summer Session 008-00

U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009. Notes on Algebra

U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009 Notes on Algebra These notes contain as little theory as possible, and most results are stated without proof. Any introductory

If n is odd, then 3n + 7 is even.

Proof: Proof: We suppose... that 3n + 7 is even. that 3n + 7 is even. Since n is odd, there exists an integer k so that n = 2k + 1. that 3n + 7 is even. Since n is odd, there exists an integer k so that

= 2 + 1 2 2 = 3 4, Now assume that P (k) is true for some fixed k 2. This means that

Instructions. Answer each of the questions on your own paper, and be sure to show your work so that partial credit can be adequately assessed. Credit will not be given for answers (even correct ones) without

Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm.

Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm. We begin by defining the ring of polynomials with coefficients in a ring R. After some preliminary results, we specialize

SOLUTIONS FOR PROBLEM SET 2

SOLUTIONS FOR PROBLEM SET 2 A: There exist primes p such that p+6k is also prime for k = 1,2 and 3. One such prime is p = 11. Another such prime is p = 41. Prove that there exists exactly one prime p such

(0, 0) : order 1; (0, 1) : order 4; (0, 2) : order 2; (0, 3) : order 4; (1, 0) : order 2; (1, 1) : order 4; (1, 2) : order 2; (1, 3) : order 4.

11.01 List the elements of Z 2 Z 4. Find the order of each of the elements is this group cyclic? Solution: The elements of Z 2 Z 4 are: (0, 0) : order 1; (0, 1) : order 4; (0, 2) : order 2; (0, 3) : order

(LMCS, p. 317) V.1. First Order Logic. This is the most powerful, most expressive logic that we will examine.

(LMCS, p. 317) V.1 First Order Logic This is the most powerful, most expressive logic that we will examine. Our version of first-order logic will use the following symbols: variables connectives (,,,,

9.2 Summation Notation

9. Summation Notation 66 9. Summation Notation In the previous section, we introduced sequences and now we shall present notation and theorems concerning the sum of terms of a sequence. We begin with a

The Division Algorithm for Polynomials Handout Monday March 5, 2012

The Division Algorithm for Polynomials Handout Monday March 5, 0 Let F be a field (such as R, Q, C, or F p for some prime p. This will allow us to divide by any nonzero scalar. (For some of the following,

196 Chapter 7. Logical Agents

7 LOGICAL AGENTS In which we design agents that can form representations of the world, use a process of inference to derive new representations about the world, and use these new representations to deduce

Factoring & Primality

Factoring & Primality Lecturer: Dimitris Papadopoulos In this lecture we will discuss the problem of integer factorization and primality testing, two problems that have been the focus of a great amount

We would like to state the following system of natural deduction rules preserving falsity:

A Natural Deduction System Preserving Falsity 1 Wagner de Campos Sanz Dept. of Philosophy/UFG/Brazil sanz@fchf.ufg.br Abstract This paper presents a natural deduction system preserving falsity. This new

Basic Concepts of Point Set Topology Notes for OU course Math 4853 Spring 2011

Basic Concepts of Point Set Topology Notes for OU course Math 4853 Spring 2011 A. Miller 1. Introduction. The definitions of metric space and topological space were developed in the early 1900 s, largely

11 Ideals. 11.1 Revisiting Z

11 Ideals The presentation here is somewhat different than the text. In particular, the sections do not match up. We have seen issues with the failure of unique factorization already, e.g., Z[ 5] = O Q(

How many numbers there are?

How many numbers there are? RADEK HONZIK Radek Honzik: Charles University, Department of Logic, Celetná 20, Praha 1, 116 42, Czech Republic radek.honzik@ff.cuni.cz Contents 1 What are numbers 2 1.1 Natural

Beyond Propositional Logic Lukasiewicz s System

Beyond Propositional Logic Lukasiewicz s System Consider the following set of truth tables: 1 0 0 1 # # 1 0 # 1 1 0 # 0 0 0 0 # # 0 # 1 0 # 1 1 1 1 0 1 0 # # 1 # # 1 0 # 1 1 0 # 0 1 1 1 # 1 # 1 Brandon

First-Order Logics and Truth Degrees

First-Order Logics and Truth Degrees George Metcalfe Mathematics Institute University of Bern LATD 2014, Vienna Summer of Logic, 15-19 July 2014 George Metcalfe (University of Bern) First-Order Logics

Row Ideals and Fibers of Morphisms

Michigan Math. J. 57 (2008) Row Ideals and Fibers of Morphisms David Eisenbud & Bernd Ulrich Affectionately dedicated to Mel Hochster, who has been an inspiration to us for many years, on the occasion

Integer roots of quadratic and cubic polynomials with integer coefficients

Integer roots of quadratic and cubic polynomials with integer coefficients Konstantine Zelator Mathematics, Computer Science and Statistics 212 Ben Franklin Hall Bloomsburg University 400 East Second Street

THE FUNDAMENTAL THEOREM OF ARBITRAGE PRICING

THE FUNDAMENTAL THEOREM OF ARBITRAGE PRICING 1. Introduction The Black-Scholes theory, which is the main subject of this course and its sequel, is based on the Efficient Market Hypothesis, that arbitrages

Ultraproducts and Applications I

Ultraproducts and Applications I Brent Cody Virginia Commonwealth University September 2, 2013 Outline Background of the Hyperreals Filters and Ultrafilters Construction of the Hyperreals The Transfer

Mathematics Review for MS Finance Students

Mathematics Review for MS Finance Students Anthony M. Marino Department of Finance and Business Economics Marshall School of Business Lecture 1: Introductory Material Sets The Real Number System Functions,

A Second Course in Mathematics Concepts for Elementary Teachers: Theory, Problems, and Solutions

A Second Course in Mathematics Concepts for Elementary Teachers: Theory, Problems, and Solutions Marcel B. Finan Arkansas Tech University c All Rights Reserved First Draft February 8, 2006 1 Contents 25

DEGREES OF CATEGORICITY AND THE HYPERARITHMETIC HIERARCHY

DEGREES OF CATEGORICITY AND THE HYPERARITHMETIC HIERARCHY BARBARA F. CSIMA, JOHANNA N. Y. FRANKLIN, AND RICHARD A. SHORE Abstract. We study arithmetic and hyperarithmetic degrees of categoricity. We extend

Schedule. Logic (master program) Literature & Online Material. gic. Time and Place. Literature. Exercises & Exam. Online Material

OLC mputational gic Schedule Time and Place Thursday, 8:15 9:45, HS E Logic (master program) Georg Moser Institute of Computer Science @ UIBK week 1 October 2 week 8 November 20 week 2 October 9 week 9

Notes on Factoring. MA 206 Kurt Bryan

The General Approach Notes on Factoring MA 26 Kurt Bryan Suppose I hand you n, a 2 digit integer and tell you that n is composite, with smallest prime factor around 5 digits. Finding a nontrivial factor

ADDITIVE GROUPS OF RINGS WITH IDENTITY

ADDITIVE GROUPS OF RINGS WITH IDENTITY SIMION BREAZ AND GRIGORE CĂLUGĂREANU Abstract. A ring with identity exists on a torsion Abelian group exactly when the group is bounded. The additive groups of torsion-free

Number Theory Hungarian Style. Cameron Byerley s interpretation of Csaba Szabó s lectures

Number Theory Hungarian Style Cameron Byerley s interpretation of Csaba Szabó s lectures August 20, 2005 2 0.1 introduction Number theory is a beautiful subject and even cooler when you learn about it

FACTORING CERTAIN INFINITE ABELIAN GROUPS BY DISTORTED CYCLIC SUBSETS

International Electronic Journal of Algebra Volume 6 (2009) 95-106 FACTORING CERTAIN INFINITE ABELIAN GROUPS BY DISTORTED CYCLIC SUBSETS Sándor Szabó Received: 11 November 2008; Revised: 13 March 2009

LOW-DEGREE PLANAR MONOMIALS IN CHARACTERISTIC TWO

LOW-DEGREE PLANAR MONOMIALS IN CHARACTERISTIC TWO PETER MÜLLER AND MICHAEL E. ZIEVE Abstract. Planar functions over finite fields give rise to finite projective planes and other combinatorial objects.

Degrees that are not degrees of categoricity

Degrees that are not degrees of categoricity Bernard A. Anderson Department of Mathematics and Physical Sciences Gordon State College banderson@gordonstate.edu www.gordonstate.edu/faculty/banderson Barbara

Subsets of Euclidean domains possessing a unique division algorithm

Subsets of Euclidean domains possessing a unique division algorithm Andrew D. Lewis 2009/03/16 Abstract Subsets of a Euclidean domain are characterised with the following objectives: (1) ensuring uniqueness

You know from calculus that functions play a fundamental role in mathematics.

CHPTER 12 Functions You know from calculus that functions play a fundamental role in mathematics. You likely view a function as a kind of formula that describes a relationship between two (or more) quantities.

LAKE ELSINORE UNIFIED SCHOOL DISTRICT

LAKE ELSINORE UNIFIED SCHOOL DISTRICT Title: PLATO Algebra 1-Semester 2 Grade Level: 10-12 Department: Mathematics Credit: 5 Prerequisite: Letter grade of F and/or N/C in Algebra 1, Semester 2 Course Description:

GROUPS ACTING ON A SET

GROUPS ACTING ON A SET MATH 435 SPRING 2012 NOTES FROM FEBRUARY 27TH, 2012 1. Left group actions Definition 1.1. Suppose that G is a group and S is a set. A left (group) action of G on S is a rule for

Which Semantics for Neighbourhood Semantics?

Which Semantics for Neighbourhood Semantics? Carlos Areces INRIA Nancy, Grand Est, France Diego Figueira INRIA, LSV, ENS Cachan, France Abstract In this article we discuss two alternative proposals for

Prime Numbers and Irreducible Polynomials

Prime Numbers and Irreducible Polynomials M. Ram Murty The similarity between prime numbers and irreducible polynomials has been a dominant theme in the development of number theory and algebraic geometry.

Rigorous Software Development CSCI-GA 3033-009

Rigorous Software Development CSCI-GA 3033-009 Instructor: Thomas Wies Spring 2013 Lecture 11 Semantics of Programming Languages Denotational Semantics Meaning of a program is defined as the mathematical

Math 166 - Week in Review #4. A proposition, or statement, is a declarative sentence that can be classified as either true or false, but not both.

Math 166 Spring 2007 c Heather Ramsey Page 1 Math 166 - Week in Review #4 Sections A.1 and A.2 - Propositions, Connectives, and Truth Tables A proposition, or statement, is a declarative sentence that

TEXAS A&M UNIVERSITY. Prime Factorization. A History and Discussion. Jason R. Prince. April 4, 2011

TEXAS A&M UNIVERSITY Prime Factorization A History and Discussion Jason R. Prince April 4, 2011 Introduction In this paper we will discuss prime factorization, in particular we will look at some of the

ON FUNCTIONAL SYMBOL-FREE LOGIC PROGRAMS

PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY Physical and Mathematical Sciences 2012 1 p. 43 48 ON FUNCTIONAL SYMBOL-FREE LOGIC PROGRAMS I nf or m at i cs L. A. HAYKAZYAN * Chair of Programming and Information

Breaking The Code. Ryan Lowe. Ryan Lowe is currently a Ball State senior with a double major in Computer Science and Mathematics and

Breaking The Code Ryan Lowe Ryan Lowe is currently a Ball State senior with a double major in Computer Science and Mathematics and a minor in Applied Physics. As a sophomore, he took an independent study

A Problem Course in Mathematical Logic Version 1.6. Stefan Bilaniuk

A Problem Course in Mathematical Logic Version 1.6 Stefan Bilaniuk Department of Mathematics Trent University Peterborough, Ontario Canada K9J 7B8 E-mail address: sbilaniuk@trentu.ca 1991 Mathematics Subject

Introduction to Logic in Computer Science: Autumn 2006

Introduction to Logic in Computer Science: Autumn 2006 Ulle Endriss Institute for Logic, Language and Computation University of Amsterdam Ulle Endriss 1 Plan for Today Now that we have a basic understanding

Group Theory. Contents

Group Theory Contents Chapter 1: Review... 2 Chapter 2: Permutation Groups and Group Actions... 3 Orbits and Transitivity... 6 Specific Actions The Right regular and coset actions... 8 The Conjugation

Discrete Mathematics II: Set Theory for Computer Science Part IA Comp. Sci. Lecture Notes

Discrete Mathematics II: Set Theory for Computer Science Part IA Comp. Sci. Lecture Notes Glynn Winskel c Glynn Winskel February 10, 2012 2 Syllabus for Discrete Mathematics II Lecturer: Professor Glynn

G = G 0 > G 1 > > G k = {e}

Proposition 49. 1. A group G is nilpotent if and only if G appears as an element of its upper central series. 2. If G is nilpotent, then the upper central series and the lower central series have the same

A Hajós type result on factoring finite abelian groups by subsets II

Comment.Math.Univ.Carolin. 51,1(2010) 1 8 1 A Hajós type result on factoring finite abelian groups by subsets II Keresztély Corrádi, Sándor Szabó Abstract. It is proved that if a finite abelian group is

Prime power degree representations of the symmetric and alternating groups

Prime power degree representations of the symmetric and alternating groups Antal Balog, Christine Bessenrodt, Jørn B. Olsson, Ken Ono Appearing in the Journal of the London Mathematical Society 1 Introduction

A simple algorithm with no simple verication

A simple algorithm with no simple verication Laszlo Csirmaz Central European University Abstract The correctness of a simple sorting algorithm is resented, which algorithm is \evidently wrong" at the rst

On the number-theoretic functions ν(n) and Ω(n)

ACTA ARITHMETICA LXXVIII.1 (1996) On the number-theoretic functions ν(n) and Ω(n) by Jiahai Kan (Nanjing) 1. Introduction. Let d(n) denote the divisor function, ν(n) the number of distinct prime factors,

x < y iff x < y, or x and y are incomparable and x χ(x,y) < y χ(x,y).

12. Large cardinals The study, or use, of large cardinals is one of the most active areas of research in set theory currently. There are many provably different kinds of large cardinals whose descriptions

The cyclotomic polynomials

The cyclotomic polynomials Notes by G.J.O. Jameson 1. The definition and general results We use the notation e(t) = e 2πit. Note that e(n) = 1 for integers n, e(s + t) = e(s)e(t) for all s, t. e( 1 ) =

Cycles in a Graph Whose Lengths Differ by One or Two

Cycles in a Graph Whose Lengths Differ by One or Two J. A. Bondy 1 and A. Vince 2 1 LABORATOIRE DE MATHÉMATIQUES DISCRÉTES UNIVERSITÉ CLAUDE-BERNARD LYON 1 69622 VILLEURBANNE, FRANCE 2 DEPARTMENT OF MATHEMATICS

Chapter 13: Basic ring theory

Chapter 3: Basic ring theory Matthew Macauley Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/ Math 42, Spring 24 M. Macauley (Clemson) Chapter 3: Basic ring

Primality - Factorization

Primality - Factorization Christophe Ritzenthaler November 9, 2009 1 Prime and factorization Definition 1.1. An integer p > 1 is called a prime number (nombre premier) if it has only 1 and p as divisors.

RIGIDITY OF HOLOMORPHIC MAPS BETWEEN FIBER SPACES

RIGIDITY OF HOLOMORPHIC MAPS BETWEEN FIBER SPACES GAUTAM BHARALI AND INDRANIL BISWAS Abstract. In the study of holomorphic maps, the term rigidity refers to certain types of results that give us very specific

Summary Last Lecture. Automated Reasoning. Outline of the Lecture. Definition sequent calculus. Theorem (Normalisation and Strong Normalisation)

Summary Summary Last Lecture sequent calculus Automated Reasoning Georg Moser Institute of Computer Science @ UIBK Winter 013 (Normalisation and Strong Normalisation) let Π be a proof in minimal logic

2 Primality and Compositeness Tests

Int. J. Contemp. Math. Sciences, Vol. 3, 2008, no. 33, 1635-1642 On Factoring R. A. Mollin Department of Mathematics and Statistics University of Calgary, Calgary, Alberta, Canada, T2N 1N4 http://www.math.ucalgary.ca/

2.1 Complexity Classes

15-859(M): Randomized Algorithms Lecturer: Shuchi Chawla Topic: Complexity classes, Identity checking Date: September 15, 2004 Scribe: Andrew Gilpin 2.1 Complexity Classes In this lecture we will look

1 The Concept of a Mapping

Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan 1 The Concept of a Mapping The concept of a mapping (aka function) is important throughout mathematics. We have been dealing

Degree Hypergroupoids Associated with Hypergraphs

Filomat 8:1 (014), 119 19 DOI 10.98/FIL1401119F Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat Degree Hypergroupoids Associated

The program also provides supplemental modules on topics in geometry and probability and statistics.

Algebra 1 Course Overview Students develop algebraic fluency by learning the skills needed to solve equations and perform important manipulations with numbers, variables, equations, and inequalities. Students

Discrete Mathematics For Computer Science

Notes for Part IA CST 2013/14 Discrete Mathematics For Computer Science Lecture plan 1. Preliminaries (pages 4 10) and introduction (pages 11 37). 2. On implication

The Ideal Class Group

Chapter 5 The Ideal Class Group We will use Minkowski theory, which belongs to the general area of geometry of numbers, to gain insight into the ideal class group of a number field. We have already mentioned

( ) which must be a vector

MATH 37 Linear Transformations from Rn to Rm Dr. Neal, WKU Let T : R n R m be a function which maps vectors from R n to R m. Then T is called a linear transformation if the following two properties are

SMALL SKEW FIELDS CÉDRIC MILLIET

SMALL SKEW FIELDS CÉDRIC MILLIET Abstract A division ring of positive characteristic with countably many pure types is a field Wedderburn showed in 1905 that finite fields are commutative As for infinite

Lecture Notes on Discrete Mathematics

Lecture Notes on Discrete Mathematics A. K. Lal September 26, 2012 2 Contents 1 Preliminaries 5 1.1 Basic Set Theory.................................... 5 1.2 Properties of Integers.................................

MTH124: Honors Algebra I

MTH124: Honors Algebra I This course prepares students for more advanced courses while they develop algebraic fluency, learn the skills needed to solve equations, and perform manipulations with numbers,

Computing divisors and common multiples of quasi-linear ordinary differential equations

Computing divisors and common multiples of quasi-linear ordinary differential equations Dima Grigoriev CNRS, Mathématiques, Université de Lille Villeneuve d Ascq, 59655, France Dmitry.Grigoryev@math.univ-lille1.fr

4. CLASSES OF RINGS 4.1. Classes of Rings class operator A-closed Example 1: product Example 2:

4. CLASSES OF RINGS 4.1. Classes of Rings Normally we associate, with any property, a set of objects that satisfy that property. But problems can arise when we allow sets to be elements of larger sets

Lecture Notes for MA 132 Foundations

Lecture Notes for MA 132 Foundations D. Mond 1 Introduction Alongside the subject matter of this course is the overriding aim of introducing you to university mathematics. Mathematics is, above all, the

Chapter ML:IV. IV. Statistical Learning. Probability Basics Bayes Classification Maximum a-posteriori Hypotheses

Chapter ML:IV IV. Statistical Learning Probability Basics Bayes Classification Maximum a-posteriori Hypotheses ML:IV-1 Statistical Learning STEIN 2005-2015 Area Overview Mathematics Statistics...... Stochastics

MOP 2007 Black Group Integer Polynomials Yufei Zhao. Integer Polynomials. June 29, 2007 Yufei Zhao yufeiz@mit.edu

Integer Polynomials June 9, 007 Yufei Zhao yufeiz@mit.edu We will use Z[x] to denote the ring of polynomials with integer coefficients. We begin by summarizing some of the common approaches used in dealing

Notes on Richard Dedekind s Was sind und was sollen die Zahlen?

Notes on Richard Dedekind s Was sind und was sollen die Zahlen? David E. Joyce, Clark University December 2005 Contents Introduction 2 I. Sets and their elements. 2 II. Functions on a set. 5 III. One-to-one

A Propositional Dynamic Logic for CCS Programs

A Propositional Dynamic Logic for CCS Programs Mario R. F. Benevides and L. Menasché Schechter {mario,luis}@cos.ufrj.br Abstract This work presents a Propositional Dynamic Logic in which the programs are

ON LIMIT LAWS FOR CENTRAL ORDER STATISTICS UNDER POWER NORMALIZATION. E. I. Pancheva, A. Gacovska-Barandovska

Pliska Stud. Math. Bulgar. 22 (2015), STUDIA MATHEMATICA BULGARICA ON LIMIT LAWS FOR CENTRAL ORDER STATISTICS UNDER POWER NORMALIZATION E. I. Pancheva, A. Gacovska-Barandovska Smirnov (1949) derived four

An Introductory Course in Elementary Number Theory. Wissam Raji

An Introductory Course in Elementary Number Theory Wissam Raji 2 Preface These notes serve as course notes for an undergraduate course in number theory. Most if not all universities worldwide offer introductory

SEQUENCES OF MAXIMAL DEGREE VERTICES IN GRAPHS. Nickolay Khadzhiivanov, Nedyalko Nenov

Serdica Math. J. 30 (2004), 95 102 SEQUENCES OF MAXIMAL DEGREE VERTICES IN GRAPHS Nickolay Khadzhiivanov, Nedyalko Nenov Communicated by V. Drensky Abstract. Let Γ(M) where M V (G) be the set of all vertices

Last time we had arrived at the following provisional interpretation of Aquinas second way:

Aquinas Third Way Last time we had arrived at the following provisional interpretation of Aquinas second way: 1. 2. 3. 4. At least one thing has an efficient cause. Every causal chain must either be circular,

P NP for the Reals with various Analytic Functions

P NP for the Reals with various Analytic Functions Mihai Prunescu Abstract We show that non-deterministic machines in the sense of [BSS] defined over wide classes of real analytic structures are more powerful