Summary. Operations on Fuzzy Sets. Zadeh s Definitions. Zadeh s Operations TNorms SNorms. Properties of Fuzzy Sets Fuzzy Measures


 Georgiana Briggs
 1 years ago
 Views:
Transcription
1 Summary Operations on Fuzzy Sets Zadeh s Operations TNorms SNorms Adriano Cruz 00 NCE e IM/UFRJ Properties of Fuzzy Sets Fuzzy Measures One should not increase, beyond what is necessary, the number of entities required to explain anything. Occam's Adriano Cruz NCE e IM  UFRJ Operations of Fuzzy Sets Zadeh s Definitions Lofty Zadeh put forward the basic set operations is his seminal paper Fuzzy Sets, Information and Control, 1965 These operations reduce to the boolean operations when crisp sets are Adriano Cruz NCE e IM  UFRJ Operations of Fuzzy Sets 3
2 Why these operators? The crisp set operators are very well defined and understood, however when fuzzy sets are considered this definition is fuzzy and many other operations can be considered. Fuzzy set operators must obey a set of rules that generalize the operations. The so called Tnorms (T(x,y)) and the Tconorms or Snorms (S(x,y)). Tnorms generalize the and operator and t conorms generalize the or operator T Adriano Cruz NCE e IM  UFRJ Operations of Fuzzy Sets Adriano Cruz NCE e IM  UFRJ Operations of Fuzzy Sets 8 Intersection operation Tnorms Any tnorm operator, denoted as t(x,y) must satisfy five axioms. Tnorms map from [0,1]x[0,1] [0,1] Let µ A (x), µ B (x), µ C (x) and µ D (x) four functions (sets). In order to simplify the notation we will use the letters a, b, c e d to represent them. T.1 T(0,0) = 0 T. T(a,b) = T(b,a) commutative T.3 T(a,1) = a neuter T.4 T(T(a,b),c)=T(a,T(b,c)) associative T.5 T(c,d) <=T(a,b) if c<=a and d<=b Adriano Cruz NCE e IM  UFRJ Operations of Fuzzy Sets Adriano Cruz NCE e IM  UFRJ Operations of Fuzzy Sets 10 Tnorms: comments Minimum, Tnorm? It can be proved that the minimum operation is a tnorm The product operator is also a tnorm Obviously there are other operations that satisfy these axioms It can be proved that for any tnorm Τ(µ Α (x), µ Β (x)) <= min(µ Α (x), µ Β (x)) T.1 min(0,0) = 0 T. min(a,b) = min(b,a) T.3 min(a,1) = a T.4 min(min(a,b),c) = min(a,min(b,c)) = min(a,b,c) T.5 min(c,d) <= min(a,b) if c <= a and d <= Adriano Cruz NCE e IM  UFRJ Operations of Fuzzy Sets Adriano Cruz NCE e IM  UFRJ Operations of Fuzzy Sets 1
3 Union Any snorm operator denoted as s(x,y) must satisfy five axioms Snorms map [0,1]x[0,1] [0,1] Let µ A (x), µ B (x), µ C (x) e µ D (x) four fuzzy sets. In order to simplify the notation we will use the letters a,b,c and d. Snorms or Tconorms S.1 S(1,1) = 1 S. S(a,b) = S(b,a) commutative S.3 S(a,0) = a neuter S.4 S(S(a,b),c)=S(a,S(b,c)) associative S.5 S(c,d) <=S(a,b) if c<=a and d<=b Adriano Cruz NCE e IM  UFRJ Operations of Fuzzy Sets Adriano Cruz NCE e IM  UFRJ Operations of Fuzzy Sets 14 Snorms: comments 1 It can be proved that the maximum is a s norm Obviously there are other operations that satisfy these axioms. The addition operation do not satisfy the S.1 axiom, so it can not be used. It can be proved that for any Snorm we have S(µ Α (x), µ Β (x)) >= max(µ Α (x), µ Β (x)) Snorms: comments Note that it is not required the Snorm to be idempotent, that is S(a,a)=a, therefore the union of a set to itself it is not required to be equal to itself. Nor is required that the Snorm to be Adriano Cruz NCE e IM  UFRJ Operations of Fuzzy Sets Adriano Cruz NCE e IM  UFRJ Operations of Fuzzy Sets 16 Maximum, Snorm? Algebraic sum, Snorm? S.1 max(0,0) = 0 S. max(a,b) = max(b,a) S.3 max(a,1) = a S.4 max(max(a,b),c) = max(a,max(b,c)) = max(a,b,c) S.5 max(c,d) <= max(a,b) if c <= a and d <= b µ A B a,b =a+b a b S S. a+b a b=b+a b a comutativa S. 3 a+ 0 a 0 Adriano Cruz NCE e IM  UFRJ Operations of Fuzzy Sets Adriano Cruz NCE e IM  UFRJ Operations of Fuzzy Sets 18
4 Algebraic Sum, Snorm? S.4 S((a+b),c) = (a+bab) + c (a+bab)c = a+bab+cacbc+abc = a+(b+cbc)a(b+cbc) = S(a,(b+c)) = a + b + c ab ac bc + abc S.5 if c <= a, d <= b, a, b, c, d <= 1 a + b ab >= c + d cd Other examples Prove that T(a,b) <= min(a,b) T5: T(a,b) <= T(a,1) = a T: T(a,b) = T(b,a) T5: T(b,a) <= T(b,1) = b T: T(a,b) <= Adriano Cruz NCE e IM  UFRJ Operations of Fuzzy Sets Adriano Cruz NCE e IM  UFRJ Operations of Fuzzy Sets 0 Pairs of Tnorms and Snorms Tnorm  Drastic Product: min x,y if max x,y 1 DP x,y 0 x,y 1 Snorm  Drastic Sum: max x,y if min x,y 0 DS x,y 1 x,y> 0 Pairs of Tnorms and Snorms Tnorm  Bounded Difference: BD x,y max 0, x+y 1 Snorm  Bounded Sum: BS x,y min 1, Adriano Cruz NCE e IM  UFRJ Operations of Fuzzy Sets Adriano Cruz NCE e IM  UFRJ Operations of Fuzzy Sets Pairs of Tnorms and Snorms Tnorm Einstein Product: Pairs of Tnorms and Snorms Tnorm Algebraic Product: xy EP x,y x+y xy Snorm  Einstein Sum: ES x,y x+y 1+x. y AP x,y =xy Snorm  Algebraic Sum: AS x,y =x+y Adriano Cruz NCE e IM  UFRJ Operations of Fuzzy Sets Adriano Cruz NCE e IM  UFRJ Operations of Fuzzy Sets 4
5 Pairs of Tnorms and Snorms Four Tnorm operators Tnorm Hamacher Product: HP x,y xy x+y xy Snorm  Hamacher Sum: x+y xy HS x,y 1 Adriano Cruz NCE e IM  UFRJ Operations of Fuzzy Sets Adriano Cruz NCE e IM  UFRJ Operations of Fuzzy Sets 6 Four Tconorm operators Pairs of Tnorms and Snorms Tnorm DuboisPrade: xy DPr T x,y max p,x,y Obs. p is a parameter that ranges from 0 to 1. Snorm DuboisPrade: x+y xy min 1 p,x,y DPr S x,y max p,1 x,1 Adriano Cruz NCE e IM  UFRJ Operations of Fuzzy Sets Adriano Cruz NCE e IM  UFRJ Operations of Fuzzy Sets 8 DuboisPrade Operators When p=1 DuboisPrade Tnorm becomes the Algebraic Product (xy) DuboisPrade Snorm becomes the Algebraic Sum (x+yxy) When p=0 DuboisPrade Tnorm becomes the min(xy) DuboisPrade Snorm becomes the max(xy) Pairs of Tnorms and Snorms Tnorm Yager: Y T x,y 1 min 1, 1 x p 1 y p 1 p Obs. p is a parameter that ranges from 0 to. Snorm Yager: Y T x,y min 1, x p +y p 1 Adriano Cruz NCE e IM  UFRJ Operations of Fuzzy Sets Adriano Cruz NCE e IM  UFRJ Operations of Fuzzy Sets 30
6 Yager Operators When p=1.0 Yager Tnorm becomes the bounded difference (max(0,x+y1)) Yager Snorm becomes the bounded sum (min(1,x+y)) Complement When p> Yager Tnorm converges to min(x,y) Yager Snorm converges to Adriano Cruz NCE e IM  UFRJ Operations of Fuzzy Sets Adriano Cruz NCE e IM  UFRJ Operations of Fuzzy Sets 3 Fuzzy Complement axioms Fuzzy Complements A fuzzy complement operator is a continuous function N:[0,1] :[0,1] [0,1] which meets the following axioms: N(0)=1 and N(1) = 0 (boundary) (a.1) N(a) N(b) ) if a b (monotonicity) (a.) Another optional requirements are N(x) is continuous (a.3) N(N(a))= ))=a (involution) (a.4) Continuous a.3 All functions a.1 e a. Involutive a.4 Adriano Cruz NCE e IM  UFRJ Operations of Fuzzy Sets Adriano Cruz NCE e IM  UFRJ Operations of Fuzzy Sets 34 Usual Fuzzy Complement Consider  N(x)=1x N(0)=1 and N(1) = 0 (boundary) N(a) N(b) if a b N(N(x))=1(1x)= )=x Continuous in the interval (monotonicity) Another Ex of Complement 1 for a t Consider N x 0 a>t 1 Example of complement 0.9 t,a 0,1 N (x) Adriano Cruz NCE e IM  UFRJ Operations of Fuzzy Sets Adriano Cruz NCE e IM  UFRJ Operations of Fuzzy Sets 36
7 Another Ex of Complement 1 Consider N x 1 for a t 0 a>t t,a 0,1 Satisfy only the axiomatic requirements: N(1)=0, N(0)=1 N(x) ) is monotonic N(x) ) is not continuous N(x) ) is not involutive Sugeno s complement The operator is defined as N s a 1 a 1+sa where s is a parameter greater than 1. For each s, we obtain a particular Adriano Cruz NCE e IM  UFRJ Operations of Fuzzy Sets Adriano Cruz NCE e IM  UFRJ Operations of Fuzzy Sets 38 Sugeno s complement Yager s complement The operator is defined as N y a 1 a y 1 y where y is a positive Adriano Cruz NCE e IM  UFRJ Operations of Fuzzy Sets Adriano Cruz NCE e IM  UFRJ Operations of Fuzzy Sets 40 Yager s complement Complement equilibrium The point of equilibrium is any x for which N(x)=x For a classical fuzzy set x=1x x = 0.5 Equilibrium can be used to measure Adriano Cruz NCE e IM  UFRJ Operations of Fuzzy Sets Adriano Cruz NCE e IM  UFRJ Operations of Fuzzy Sets 4
8 Fuzzy Sets Properties Properties Comutativity Associativity Distributivity Absorption A B=B A A B=B A A B C A B C A B C A B C A B C A B A C A B C A B A C A A B =A A A B Adriano Cruz NCE e IM  UFRJ Operations of Fuzzy Sets Adriano Cruz NCE e IM  UFRJ Operations of Fuzzy Sets 44 Fuzzy Sets Properties Identity De Morgan A =A A A X=X A X=A A B A B A B A Adriano Cruz NCE e IM  UFRJ Operations of Fuzzy Sets 45 Checking Properties Remember that a if a b min a,b = b if b<a a+b a b min a,b = and b if a b max a,b = a if b<a a+b+ a b max a,b Adriano Cruz NCE e IM  UFRJ Operations of Fuzzy Sets 46 Checking Properties Checking Properties Lets check the absorption property A A B =A max µ A x,min µ A x,µ B x =µ A x A B = A A B = a+b a b a+ a+b a b a a+b a b A A B = = If a b A A B = A A B = 3a+b a b a b+ a b 3a +b a b a b+ a b 4 3a +b a b a b a b 4 Adriano Cruz NCE e IM  UFRJ Operations of Fuzzy Sets Adriano Cruz NCE e IM  UFRJ Operations of Fuzzy Sets 48
9 Checking Properties Laws of Aristotle A A B = if a<b A A B = A A B = 3a +b a b a b+ a b 4 3a +b+ a b a b a b 4 a Law of NonContradiction: One cannot say of something that it is and that it is not in the same respect and at the same time. One element must belong to a set or its complement. Since the intersection between one set and its complement may be not empty we may have A Adriano Cruz NCE e IM  UFRJ Operations of Fuzzy Sets Adriano Cruz NCE e IM  UFRJ Operations of Fuzzy Sets 50 Law of noncontradiction Laws of Aristotle 1.0 Non adults adults Law of excluded middle: for any proposition P, it is true that (P or notp). adults adults So the union of a set and its complement should give all the universe adults adults However the result may be not the universe A A Adriano Cruz NCE e IM  UFRJ Operations of Fuzzy Sets Adriano Cruz NCE e IM  UFRJ Operations of Fuzzy Sets 5 Law of noncontradiction 1.0 Non adults adults Measuring adults adults Adriano Cruz NCE e IM  UFRJ Operations of Fuzzy Sets Adriano Cruz NCE e IM  UFRJ Operations of Fuzzy Sets 54
10 Fuzzy Entropy Fuzzy Entropy The entropy of a fuzzy set is defined as c A A E A c A A c is a counting operation (addition or integration) defined over the set. Note that for a crisp set the numerator is always 0 and the entropy of a crisp set is always Adriano Cruz NCE e IM  UFRJ Operations of Fuzzy Sets 55 1 The entropy of the adult fuzzy set is c A A = 5 c A A = = 35 E A = 5 35 = 0.14 No adults adults adult Adriano Cruz NCE e IM  UFRJ Operations of Fuzzy Sets 56 Fuzziness Measurements A measure of fuzziness is a function f : X P(X) is the set of all fuzzy subsets of X There are three requirements that a meaningful measure must satisfy Only one is unique; the other depend on the meaning of fuzziness Requirements F1: f(a) = 0 iff A is a crisp set A B means A is less fuzzy than B F: if A B then f A f B F3: f(a) assumes the maximum value iff A is maximally Adriano Cruz NCE e IM  UFRJ Operations of Fuzzy Sets Adriano Cruz NCE e IM  UFRJ Operations of Fuzzy Sets 58 Measurement Based on Distance One measure of fuzziness is defined in terms of a metric distance from the set A to the nearest crisp set. Distance from point A(a 0,a 1,,a n ) to B(b 0,b 1,,b n ) d p A,B p n i=1 a i b i p Measurement Based on Distance If p= the distance is the Euclidean distance, if p=1 the distance it is the Hamming distance. d p A,B p n i=1 a i b i Adriano Cruz NCE e IM  UFRJ Operations of Fuzzy Sets Adriano Cruz NCE e IM  UFRJ Operations of Fuzzy Sets 60
11 The Geometry of Sets Crisp Sets can be view as points in a space Fuzzy sets are also part of the same space Using these concepts it is possible to measure distances from crisp to fuzzy Adriano Cruz NCE e IM  UFRJ Operations of Fuzzy Sets 61 Classic Power Set Classic Power Set: the set of all subsets of a classic set. Let consider X={x 1,x,x 3 } Power Set is represented by X X ={, {x 1 }, {x }, {x 3 }, {x 1,x }, {x 1,x 3 }, {x,x 3 }, Adriano Cruz NCE e IM  UFRJ Operations of Fuzzy Sets 6 Vertices The vertices in space The 8 sets can correspond to 8 vectors (0,0,1) x3 (1,0,1) X ={, {x 1 }, {x }, {x 3 }, {x 1,x }, {x 1,x 3 }, {x,x 3 }, X} (0,1,1) (1,1,1) X ={(0,0,0),(1,0,0),(0,1,0),(0,0,1),(1,1,0), (1,0,1),(0,1,1),(1,1,1)} The 8 sets are the vertices of a Adriano Cruz NCE e IM  UFRJ Operations of Fuzzy Sets 63 (0,1,0) x x (0,0,0) 1 (1,0,0) Adriano Cruz NCE e IM  UFRJ Operations of Fuzzy Sets 64 Fuzzy Power Set The Fuzzy Cube The Fuzzy Power set is the set of all fuzzy (0,0,1) x 3 (1,0,1) subsets of X={x 1,x,x 3 } It is represented by F( X ) A Fuzzy subset of X is a point in a cube (0,1,1) 0.7 (1,1,1) A={(x 1,0.5),(x,0.3),(x 3,0.7)} The Fuzzy Power set is the unit hypercube 0.3 x (0,1,0) 0.5 (1,1,0) x1 Adriano Cruz NCE e IM  UFRJ Operations of Fuzzy Sets Adriano Cruz NCE e IM  UFRJ Operations of Fuzzy Sets 66
12 Fuzzy Distances Let X={x 1,x } and A={(x 1,1/3),(x,3/4)} Maximal Fuzziness x Let X={x 1 1,x } and A={(x 1,1/),(x,1/)} x 1 n=1 3/4 n= A={(x1,1/3), (x,3/4)} /4 A={(x1,1/), (x,1/)} /4 n= n=1 1/4 0,0 1/ 1 x1 0,0 1/3 /3 1 Adriano Cruz NCE e IM  UFRJ Operations of Fuzzy Sets Adriano Cruz NCE e IM  UFRJ Operations of Fuzzy Sets 68 Fuzzy Operations Fuzzy Operations in the Space Let X={x 1,x } and A={(x 1,1/3),(x,3/4)} Let A represent the complement of A A ={(x 1,/3),(x,1/4)} (0,1) 3/4 x A(1/3,3/4) A A (1,1) A A ={(x 1,/3),(x,3/4)} A A ={(x 1,1/3),(x,1/4)} 1/4 φ A A 1/3 /3 A (/3,1/4) (1,0) x Adriano Cruz NCE e IM  UFRJ Operations of Fuzzy Sets Adriano Cruz NCE e IM  UFRJ Operations of Fuzzy Sets 70 Paradox at the Midpoint Classical logic forbids the middle point by the noncontradiction and excluded middle axioms The Liar from Crete Let S be he is a liar, let nots be he is not a liar Since S nots and nots S t(s)=t(nots)=1t(s) t(s)=0.5 Cardinality of a Fuzzy Set The cardinality of a fuzzy set is equal to the sum of the membership degrees of all elements. The cardinality is represented by A n A µ A x i Adriano Cruz NCE e IM  UFRJ Operations of Fuzzy Sets Adriano Cruz NCE e IM  UFRJ Operations of Fuzzy Sets 7
13 Distance The distance d p between two sets represented by points in the space is defined as d p A,B p n i=1 µ A x i µ B x i p If p= the distance is the Euclidean distance, if p=1 the distance it is the Hamming distance Distance and Cardinality If the point B is the empty set (the origin) d 1 A,O µ A x i 0 i=1 So the cardinality of a fuzzy set is the Hamming distance to the origin n d 1 A,O A µ A x i n i= Adriano Cruz NCE e IM  UFRJ Operations of Fuzzy Sets Adriano Cruz NCE e IM  UFRJ Operations of Fuzzy Sets 74 Fuzzy Cardinality Fuzzy Entropy (0,1) x (1,1) How fuzzy is a fuzzy set? 3/4 A Fuzzy entropy varies from 0 to 1. Cube vertices has entropy 0. A =d 1 (A,φ) The middle point has entropy 1. φ 1/3 (1,0) x Adriano Cruz NCE e IM  UFRJ Operations of Fuzzy Sets Adriano Cruz NCE e IM  UFRJ Operations of Fuzzy Sets 76 Fuzzy Operations in the Space Fuzzy Entropy Geometry (0,1) 3/4 x A A A (1,1) (0,1) 3/4 x a A (1,1) 1/4 A A A b φ (1,0) 1/3 /3 x1 A A E A A Adriano Cruz NCE e IM  UFRJ Operations of Fuzzy Sets 77 φ 1/3 E A a b d1 A,A near d 1 A,A far Adriano Cruz NCE e IM  UFRJ Operations of Fuzzy Sets 78 x1
14 Fuzzy entropy, max and min T(x,y) min(x,y) max(x,y) S(x,y) So the value of 1 for the middle point does not hold when other Tnorm is chosen. Let A= {(x 1,0.5),(x,0.5)} E(A)=0.5/0.5=1 Let T(x,y)=x.y and C(x,y)=x+yxy E(A)=0.5/0.75=0.333 Subsets Sets contain subsets. A is a subset of B (A B) iff every element of A is an element of B. A is a subset of B iff A belongs to the power set of B (A B iff A B Adriano Cruz NCE e IM  UFRJ Operations of Fuzzy Sets Adriano Cruz NCE e IM  UFRJ Operations of Fuzzy Sets 80 Subsethood examples Consider A={(x 1,1/3),(x =1/)} and B={(x 1,1/),(x =3/4)} A B, but B A (0,1) 3/4 1/ x A B (1,1) Not Fuzzy Subsethood The so called membership dominated definition is not fuzzy. The fuzzy power set of B (F( B )) is the hyper rectangle docked at the origin of the hyper cube. Any set is either a subset or not. φ 1/3 1/ (1,0) Adriano Cruz NCE e IM  UFRJ Operations of Fuzzy Sets Adriano Cruz NCE e IM  UFRJ Operations of Fuzzy Sets 8 Fuzzy power set size F( B ) has infinity cardinality. For finite dimensional sets the size of F( B ) is the Lebesgue measure or x volume V(B) (1,1) (0,1) n V B µ B x i i=1 3/4 1/ A B Fuzzy Subsethood Let S(A,B)=Degree(A B)=µ F( B ) (A) Suppose only element j violates µ A (x j ) µ B (x j ), so A is not totally subset of B. Counting violations and their magnitudes shows the degree of subsethood. (1,0) φ 1/3 1/ x Adriano Cruz NCE e IM  UFRJ Operations of Fuzzy Sets Adriano Cruz NCE e IM  UFRJ Operations of Fuzzy Sets 84
15 Fuzzy Subsethood Supersethood(A,B)=1S(A,B) Sum all violations=max(0,µ A (x j )µ B (x j )) 0 S(A,B) 1 x X max 0, µ A x µ B x Supersethood A,B A max 0, µ A x µ B x S A,B 1 x X A Subsethood measures Consider A={(x 1,0.5),(x =0.5)} and B={(x 1,0.5),(x =0.9)} max 0, max 0, S A,B = S B,A = 1 S A,B max 0, max 0, S B,A = Adriano Cruz NCE e IM  UFRJ Operations of Fuzzy Sets Adriano Cruz NCE e IM  UFRJ Operations of Fuzzy Sets 86
Basic Concepts of Point Set Topology Notes for OU course Math 4853 Spring 2011
Basic Concepts of Point Set Topology Notes for OU course Math 4853 Spring 2011 A. Miller 1. Introduction. The definitions of metric space and topological space were developed in the early 1900 s, largely
More informationINTRODUCTORY SET THEORY
M.Sc. program in mathematics INTRODUCTORY SET THEORY Katalin Károlyi Department of Applied Analysis, Eötvös Loránd University H1088 Budapest, Múzeum krt. 68. CONTENTS 1. SETS Set, equal sets, subset,
More informationAll of mathematics can be described with sets. This becomes more and
CHAPTER 1 Sets All of mathematics can be described with sets. This becomes more and more apparent the deeper into mathematics you go. It will be apparent in most of your upper level courses, and certainly
More informationAlgebra & Number Theory. A. Baker
Algebra & Number Theory [0/0/2009] A. Baker Department of Mathematics, University of Glasgow. Email address: a.baker@maths.gla.ac.uk URL: http://www.maths.gla.ac.uk/ ajb Contents Chapter. Basic Number
More informationChapter 5. Banach Spaces
9 Chapter 5 Banach Spaces Many linear equations may be formulated in terms of a suitable linear operator acting on a Banach space. In this chapter, we study Banach spaces and linear operators acting on
More information3. SETS, FUNCTIONS & RELATIONS
3. SETS, FUNCTIONS & RELATIONS If I see the moon, then the moon sees me 'Cos seeing's symmetric as you can see. If I tell Aunt Maude and Maude tells the nation Then I've told the nation 'cos the gossiping
More informationCHAPTER 1. Internal Set Theory
CHAPTER 1 Internal Set Theory Ordinarily in mathematics, when one introduces a new concept one defines it. For example, if this were a book on blobs I would begin with a definition of this new predicate:
More informationSwitching Algebra and Logic Gates
Chapter 2 Switching Algebra and Logic Gates The word algebra in the title of this chapter should alert you that more mathematics is coming. No doubt, some of you are itching to get on with digital design
More informationTopics in Number Theory, Algebra, and Geometry. Ambar N. Sengupta
Topics in Number Theory, Algebra, and Geometry Ambar N. Sengupta December, 2006 2 Ambar N. Sengupta Contents Introductory Remarks........................... 5 1 Topics in Number Theory 7 1.1 Basic Notions
More information1 Sets and Set Notation.
LINEAR ALGEBRA MATH 27.6 SPRING 23 (COHEN) LECTURE NOTES Sets and Set Notation. Definition (Naive Definition of a Set). A set is any collection of objects, called the elements of that set. We will most
More informationThe Set Data Model CHAPTER 7. 7.1 What This Chapter Is About
CHAPTER 7 The Set Data Model The set is the most fundamental data model of mathematics. Every concept in mathematics, from trees to real numbers, is expressible as a special kind of set. In this book,
More informationNUMBER RINGS. P. Stevenhagen
NUMBER RINGS P. Stevenhagen Universiteit Leiden 2012 Date of this online version: September 24, 2012 Please send any comments on this text to psh@math.leidenuniv.nl. Mail address of the author: P. Stevenhagen
More informationMost of our traditional tools for formal modeling,
Fuzzy set theory H.J. Zimmermann Since its inception in 1965, the theory of fuzzy sets has advanced in a variety of ways and in many disciplines. Applications of this theory can be found, for example,
More informationAn example of a computable
An example of a computable absolutely normal number Verónica Becher Santiago Figueira Abstract The first example of an absolutely normal number was given by Sierpinski in 96, twenty years before the concept
More informationYou know from calculus that functions play a fundamental role in mathematics.
CHPTER 12 Functions You know from calculus that functions play a fundamental role in mathematics. You likely view a function as a kind of formula that describes a relationship between two (or more) quantities.
More informationNumber Theory for Mathematical Contests. David A. SANTOS dsantos@ccp.edu
Number Theory for Mathematical Contests David A. SANTOS dsantos@ccp.edu August 13, 2005 REVISION Contents Preface 1 Preliminaries 1 1.1 Introduction.................. 1 1.2 WellOrdering.................
More informationPrimes. Name Period Number Theory
Primes Name Period A Prime Number is a whole number whose only factors are 1 and itself. To find all of the prime numbers between 1 and 100, complete the following exercise: 1. Cross out 1 by Shading in
More informationAn Introductory Course in Elementary Number Theory. Wissam Raji
An Introductory Course in Elementary Number Theory Wissam Raji 2 Preface These notes serve as course notes for an undergraduate course in number theory. Most if not all universities worldwide offer introductory
More informationNotes on Introductory PointSet Topology
Notes on Introductory PointSet Topology Allen Hatcher Chapter 1. Basic PointSet Topology............... 1 Topological Spaces 1, Interior, Closure, and Boundary 5, Basis for a Topology 7, Metric Spaces
More informationSimplifying Logic Circuits with Karnaugh Maps
Simplifying Logic Circuits with Karnaugh Maps The circuit at the top right is the logic equivalent of the Boolean expression: f = abc + abc + abc Now, as we have seen, this expression can be simplified
More informationSpatial Point Processes and their Applications
Spatial Point Processes and their Applications Adrian Baddeley School of Mathematics & Statistics, University of Western Australia Nedlands WA 6009, Australia email: adrian@maths.uwa.edu.au A spatial
More informationReading material on the limit set of a Fuchsian group
Reading material on the limit set of a Fuchsian group Recommended texts Many books on hyperbolic geometry and Kleinian and Fuchsian groups contain material about limit sets. The presentation given here
More informationWHAT ARE MATHEMATICAL PROOFS AND WHY THEY ARE IMPORTANT?
WHAT ARE MATHEMATICAL PROOFS AND WHY THEY ARE IMPORTANT? introduction Many students seem to have trouble with the notion of a mathematical proof. People that come to a course like Math 216, who certainly
More informationCritical points of once continuously differentiable functions are important because they are the only points that can be local maxima or minima.
Lecture 0: Convexity and Optimization We say that if f is a once continuously differentiable function on an interval I, and x is a point in the interior of I that x is a critical point of f if f (x) =
More informationProbability: Theory and Examples. Rick Durrett. Edition 4.1, April 21, 2013
i Probability: Theory and Examples Rick Durrett Edition 4.1, April 21, 213 Typos corrected, three new sections in Chapter 8. Copyright 213, All rights reserved. 4th edition published by Cambridge University
More informationA Course on Number Theory. Peter J. Cameron
A Course on Number Theory Peter J. Cameron ii Preface These are the notes of the course MTH6128, Number Theory, which I taught at Queen Mary, University of London, in the spring semester of 2009. There
More informationNotes on descriptive set theory and applications to Banach spaces. Th. Schlumprecht
Notes on descriptive set theory and applications to Banach spaces Th. Schlumprecht Contents Chapter 1. Notation 5 Chapter 2. Polish spaces 7 1. Introduction 7 2. Transfer Theorems 9 3. Spaces of compact
More informationA SELFGUIDE TO OMINIMALITY
A SELFGUIDE TO OMINIMALITY CAMERINO TUTORIAL JUNE 2007 Y. PETERZIL, U. OF HAIFA 1. How to read these notes? These notes were written for the tutorial in the Camerino Modnet Summer school. The main source
More informationELEMENTS OF ANALYTIC NUMBER THEORY
ELEMENTS OF ANALYTIC NUMBER THEORY P. S. Kolesnikov, E. P. Vdovin Lecture course Novosibirsk, Russia 2013 Contents Chapter 1. Algebraic and transcendental numbers 4 1.1. Field of algebraic numbers. Ring
More informationOPRE 6201 : 2. Simplex Method
OPRE 6201 : 2. Simplex Method 1 The Graphical Method: An Example Consider the following linear program: Max 4x 1 +3x 2 Subject to: 2x 1 +3x 2 6 (1) 3x 1 +2x 2 3 (2) 2x 2 5 (3) 2x 1 +x 2 4 (4) x 1, x 2
More information