Spss Lab 7: Ttests Section 1


 Aubrey Bridges
 1 years ago
 Views:
Transcription
1 Spss Lab 7: Ttests Sectio I this lab, we will be usig everythig we have leared i our text ad applyig that iformatio to uderstad ttests for parametric ad oparametric data. THERE WILL BE TWO SECTIONS FOR THIS LAB, EACH CONTAINING TASKS TO COMPLETE. SEE ME WHEN YOU FINISHE ONE SECTION TO RECEIVE THE NEXT SECTION. Task : Your Data Go to our course webpage ( Uder the lab sectio you will fid SpiderRM.sav ad SpiderBG.sav The data is arraged as if the same participats were used i each coditio (so each participat was exposed to a picture of a spider ad their axiety was measured, ad at some other time the same participats were exposed to the real spider ad their axiety was measured agai). Each row i the data editor represets a differet participat s data.. Dowload SpiderRM.sav (RM is for repeated measures) ad SpiderBG.sav (BG is for betwee group) to your computer to use for the assigmet.. Create a Word file Lab7.doc to put your solutios to the tasks below. Put your ame at the top of the file. Task : Depedet ttest Costructig a depedet ttest is very straightforward i SPSS. Usig SpiderRM.sav, access the mai dialogue box by. Goig to Aalyze > Compare Meas > PairedSamples T Test. Select the two variables from the list (at the same time, so they are both highlighted i blue) ad move them to the box labeled Paired Variables usig the arrow. At this poit, if you wat to carry out several ttests the you would select aother pair of variables, trasfer them to the variables list, ad the select aother pair ad so o. 3. Click o the Optios butto 4. I the ew dialogue box, chage the cofidece iterval to 99% 5. Click OK 6. Copy your three charts from the Output widow to your Word documet. Aswer the followig questios i your Word documet: a. What is the risk of chagig the cofidece iterval from 95% to 99%? b. Lookig at the first table created, is the Paired Sample Statistics table showig you the results from idepedetmeas or repeatedmeasures? ~Page ~
2 c. Usig the results from the same table, Paired Sample Statistics, describe the differeces i the data created by the picture of the spider ad the real spider. d. Lookig at the last table created, is the Paired Sample Test table showig you the results from idepedetmeas or repeatedmeas? e. Usig the results from the same table, Paired Sample Test, describe the differeces i the data created by the picture of spider ad the real spider. f. Usig what you have leared, o average, which participats experieced sigificatly greater axiety? Justify your aswer by discussig the tscore ad the chose alpha value. Task 3: Idepedet ttest Costructig a idepedet ttest is very straightforward i SPSS. Usig SpiderBG.sav, access the mai dialogue box by. Go to Aalyze > Compare Meas > Idepedet Samples T Test. Oce the dialog box is activated, select the depedet variable from the list (axiety) ad trasfer it to the box labeled Test Variable(s) by usig the arrow. 3. Next select the idepedet variable (group) ad the trasfer it to the box labeled Groupig Variable. 4. Click the butto for Defie Groups 5. Eter 0 for the Group (the picture group) 6. Eter for the Group (the real group) 7. Click Cotiue 8. Click OK 9. Copy your ew tables to your Word documet. Aswer the followig questio i your Word documet: g. What differeces do you otice i your Group Statistics table ad your Paired Sample Statistics (the first table you copied for the lab) table? The secod table cotais the mai test statistics. Oe row is labeled Equal variaces assumed while the other is labeled Equal variaces ot assumed. This has to do with the equal variace assumptio; we oly have to pay attetio to the first row. We wat to compare the results i Sig.(tailed) colum with the data i the t colum (the tvalue). Aswer the followig questio i your Word Documet: h. What ca you ifer about the axiety caused by the pictures ad by real spiders? ~Page ~
3 Spss Lab 7: Ttests Sectio Sometimes our data does ot fit the ormal curve (oparametric data). I class you were give a hadout about two tests that are alteratives to our idepedet ttest ad hadle oparametric data. Task 4: Your Data For this sectio, you will eed to create your data set with its associated values. The study results that you are eterig are from a eurologist that carried out a experimet to ivestigate the depressat effects of certai recreatioal drugs. She tested 0 clubbers i all: 0 were give a Ecstasy tablet to take o Saturday ight ad 0 were allowed oly to drik alcohol. Levels of depressio were measured usig the Beck Depressio Ivetory (BDI) the day after ad midweek. To create your SPSS data,. Ope SPSS ad create a ew Data file.. Save the file as lab7.sav 3. Add your variables: Name Label Drug Type of Drug subdi Beck Depressio Ivetory (Su) wedbdi Beck Depressio Ivetory (Wed) 4. Ad your associated values: Drug subdi wedbdi Ecstasy 5 8 Ecstasy Ecstasy 6 35 Ecstasy 8 4 Ecstasy 9 39 Ecstasy 7 3 Ecstasy 7 7 Ecstasy 6 9 Ecstasy 3 36 Ecstasy 0 35 Alcohol 6 5 Alcohol 5 6 Alcohol 0 30 Alcohol 5 8 Alcohol 6 9 Alcohol 3 7 Alcohol 4 6 Alcohol 9 7 Alcohol 8 3 Alcohol 8 0 ~Page 3~
4 Task 5: Uderstadig simplified data (To uderstad this sectio, you must read the packet I gave you coverig the Wilcoxo ad MaWhitey tests.) Both of the tests you are about to do work very similarly. First imagie that there is o differece i depressio levels betwee Ecstasy ad Alcohol users. Suppose we were to rak the data igorig the group to which a perso beloged from lowest to highest (i.e. give the lowest score a rak of ad the ext lowest a rak of etc.). Aswer the followig questio i your word documet: i. If you summed the raks of both groups separately (give the above coditios), what umber of high ad low raks would you expect i each group? j. What about the summed total of raks i each group? Now let s thik about what would happe if there was a differece betwee the groups. Let s imagie that people i the Ecstasy group are more depressed tha the people i the Alcohol group. Aswer the followig questio i your word documet: k. If you summed the raks of both groups separately (give the above coditios), what umber of high ad low raks would you expect i each group? l. What about the summed total of raks i each group? The MaWhitey ad Wilcoxo raksum tests both work o this priciple. I fact, whe the groups have uequal umbers of participats i them the the test statistic for Wilcoxo s raksum test is simply the sum of the raks i the group that cotais the fewer people; whe the group sizes are equal it s the value of the smaller summed rak. Task 6: Uderstadig our data Let s apply this rakig idea to our data set ad watch what happes. First we will eed to add some more variables to lab7.sav. After subdi, add surak ad suactualrak.. Similarly after wedbdi, add wedrak ad wedactualrak. 3. Sort the Wedesday scores i ascedig order 4. Now assig raks i wedrak from (for the smallest value) to 0 (for the largest value) Now we wat to assig the actual raks for the wedbdi values. This will ot always match up with the wedrak values because whe the scores occur more tha oce i the data set (e.g. i these data a score of 6 occurs twice ad a score of 35 occurs three times). These tied raks eed to be give all the same ~Page 4~
5 rak. So assig a rak that is the average of the potetial raks for those scores. For example, with the 6s, you would take (3 + 4)/=3.5; so uder wedactualrak for the wedbdi values of 6 ad 6, you would type 3.5 ad Assig the appropriate values for wedactualrak After you ve raked the data, add up all the raks for the two groups. Aswer the followig questios i your Word documet: m. What is the sum of raks for the Alcohol group?. What is the sum of raks for the Ecstasy group? We take the lowest of these sums to be our test statistic. Aswer the followig questios i your Word documet: o. So, what is the test statistic for Wedesday? Repeat the process above (steps 5) to calculate surak ad suactualrak. I SPSS Data View, select all your data ad copy it (Edit > Copy). Go to your Word Documet ad paste the data ito it (Edit > paste). With the data still highlighted, create a table aroud it (Table > Isert > Table) Aswer the followig questios i your Word documet (about the Suday group): p. What is the sum of raks for the Alcohol group? q. What is the sum of raks for the Ecstasy group? r. So, what is the test statistic for Suday? Task 7: Sigificace usig the Wilcoxo raksum test Now we eed to determie whether this test statistic is sigificat. Give is the sample size of group (Alcohol) ad is the sample size of group (Ecstasy) Calculate the mea = ( ) + + ( + + ) Ad stadard error = Aswer the followig questios i your Word documet: s. What is the mea ad stadard error? t. Now use a zscore to covert the test statistic to a zscore for both Suday ad Wedesday. u. What is your critical value whe p<0.05 for a twotailed test? ~Page 5~
6 v. Is there a sigificat differece betwee the groups o Wedesday ad/or Suday? Task 8: Sigificace usig the MaWhitey test This test is basically the same to with Wilcoxo raksum test, but your sigificace formulas will be reduced to oe. Give is the sample size of group (Alcohol) ad is the sample size of group (Ecstasy) R = the sum of raks for Ecstasy data for the give day R = the sum of raks for Alcohol data for the give day Test statistic for the Alcohol data: Test statistic for the Ecstasy data: + + ( + ) R + R ( ) Aswer the followig questios i your Word documet: w. What is the value for the test statistic for the Suday Ecstasy data? x. What is the value for the test statistic for the Suday Alcohol data? y. Usig the MaWhitey U table (Appedix B.9A i your text), what is your critical value whe p<0.05 for a twotailed test? z. Is there a sigificat differece betwee the Ecstasy ad Alcohol groups o Suday? aa. Repeat the above aalysis (w through z) for Wedesday. Task 9: MaWhitey Utest & Wilcoxo sigedraks test Now let s have SPSS do the work for us.. Ope your lab7.sav. Click o Aalyze > Noparametric Tests > Idepedet Samples 3. Add subdi ad wedbdi to the box labeled Test Variable List by highlightig the variable ad clickig the arrow. 4. Select drug as the idepedet variable by highlightig it ad clickig the appropriate arrow to move it to the box labeled Groupig Variable. 5. Click o the Defie Groups butto SPSS eeds to kow what umeric codes you assiged to your two groups. We coded the Ecstasy group as (so put a i group ) ad the Alcohol group as (so put a i group ). 6. Click Cotiue 7. Uder Test Type, you should have a check mark ext to MaWhitey U 8. Click OK ~Page 6~
7 Copy your two charts from your output widow to your Word documet. Aswer the followig questios i your Word documet: bb. Lookig at the charts you copied, do your results from task 7 & 8 match (if ot they should)? cc. How ca you determie if there was a sigificat differece based o the charts aloe? Task 0: Wrapup Prit out Lab7.doc ad sig the hoor code. Tur i your electroic versio of Lab7.doc via blackboard ad the paper copy to Laura by the ed of the lab sessio. ~Page 7~
TIEE Teaching Issues and Experiments in Ecology  Volume 1, January 2004
TIEE Teachig Issues ad Experimets i Ecology  Volume 1, Jauary 2004 EXPERIMENTS Evirometal Correlates of Leaf Stomata Desity Bruce W. Grat ad Itzick Vatick Biology, Wideer Uiversity, Chester PA, 19013
More informationMannWhitney U 2 Sample Test (a.k.a. Wilcoxon Rank Sum Test)
NoParametric ivariate Statistics: WilcoxoMaWhitey 2 Sample Test 1 MaWhitey 2 Sample Test (a.k.a. Wilcoxo Rak Sum Test) The (Wilcoxo) MaWhitey (WMW) test is the oparametric equivalet of a pooled
More informationZTEST / ZSTATISTIC: used to test hypotheses about. µ when the population standard deviation is unknown
ZTEST / ZSTATISTIC: used to test hypotheses about µ whe the populatio stadard deviatio is kow ad populatio distributio is ormal or sample size is large TTEST / TSTATISTIC: used to test hypotheses about
More informationChapter 14 Nonparametric Statistics
Chapter 14 Noparametric Statistics A.K.A. distributiofree statistics! Does ot deped o the populatio fittig ay particular type of distributio (e.g, ormal). Sice these methods make fewer assumptios, they
More informationLesson 17 Pearson s Correlation Coefficient
Outlie Measures of Relatioships Pearso s Correlatio Coefficiet (r) types of data scatter plots measure of directio measure of stregth Computatio covariatio of X ad Y uique variatio i X ad Y measurig
More informationConfidence Intervals for One Mean with Tolerance Probability
Chapter 421 Cofidece Itervals for Oe Mea with Tolerace Probability Itroductio This procedure calculates the sample size ecessary to achieve a specified distace from the mea to the cofidece limit(s) with
More information15.075 Exam 3. Instructor: Cynthia Rudin TA: Dimitrios Bisias. November 22, 2011
15.075 Exam 3 Istructor: Cythia Rudi TA: Dimitrios Bisias November 22, 2011 Gradig is based o demostratio of coceptual uderstadig, so you eed to show all of your work. Problem 1 A compay makes highdefiitio
More informationConfidence Intervals for One Mean
Chapter 420 Cofidece Itervals for Oe Mea Itroductio This routie calculates the sample size ecessary to achieve a specified distace from the mea to the cofidece limit(s) at a stated cofidece level for a
More informationNow here is the important step
LINEST i Excel The Excel spreadsheet fuctio "liest" is a complete liear least squares curve fittig routie that produces ucertaity estimates for the fit values. There are two ways to access the "liest"
More informationSECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES
SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES Read Sectio 1.5 (pages 5 9) Overview I Sectio 1.5 we lear to work with summatio otatio ad formulas. We will also itroduce a brief overview of sequeces,
More informationKey Ideas Section 81: Overview hypothesis testing Hypothesis Hypothesis Test Section 82: Basics of Hypothesis Testing Null Hypothesis
Chapter 8 Key Ideas Hypothesis (Null ad Alterative), Hypothesis Test, Test Statistic, Pvalue Type I Error, Type II Error, Sigificace Level, Power Sectio 81: Overview Cofidece Itervals (Chapter 7) are
More informationStatistics Lecture 14. Introduction to Inference. Administrative Notes. Hypothesis Tests. Last Class: Confidence Intervals
Statistics 111  Lecture 14 Itroductio to Iferece Hypothesis Tests Admiistrative Notes Sprig Break! No lectures o Tuesday, March 8 th ad Thursday March 10 th Exteded Sprig Break! There is o Stat 111 recitatio
More informationHypothesis testing. Null and alternative hypotheses
Hypothesis testig Aother importat use of samplig distributios is to test hypotheses about populatio parameters, e.g. mea, proportio, regressio coefficiets, etc. For example, it is possible to stipulate
More informationLesson 15 ANOVA (analysis of variance)
Outlie Variability betwee group variability withi group variability total variability Fratio Computatio sums of squares (betwee/withi/total degrees of freedom (betwee/withi/total mea square (betwee/withi
More informationCS103X: Discrete Structures Homework 4 Solutions
CS103X: Discrete Structures Homewor 4 Solutios Due February 22, 2008 Exercise 1 10 poits. Silico Valley questios: a How may possible sixfigure salaries i whole dollar amouts are there that cotai at least
More information1 Computing the Standard Deviation of Sample Means
Computig the Stadard Deviatio of Sample Meas Quality cotrol charts are based o sample meas ot o idividual values withi a sample. A sample is a group of items, which are cosidered all together for our aalysis.
More informationHypothesis Tests Applied to Means
The Samplig Distributio of the Mea Hypothesis Tests Applied to Meas Recall that the samplig distributio of the mea is the distributio of sample meas that would be obtaied from a particular populatio (with
More informationDefinition. A variable X that takes on values X 1, X 2, X 3,...X k with respective frequencies f 1, f 2, f 3,...f k has mean
1 Social Studies 201 October 13, 2004 Note: The examples i these otes may be differet tha used i class. However, the examples are similar ad the methods used are idetical to what was preseted i class.
More informationOverview. Learning Objectives. Point Estimate. Estimation. Estimating the Value of a Parameter Using Confidence Intervals
Overview Estimatig the Value of a Parameter Usig Cofidece Itervals We apply the results about the sample mea the problem of estimatio Estimatio is the process of usig sample data estimate the value of
More information1. C. The formula for the confidence interval for a population mean is: x t, which was
s 1. C. The formula for the cofidece iterval for a populatio mea is: x t, which was based o the sample Mea. So, x is guarateed to be i the iterval you form.. D. Use the rule : pvalue
More informationPSYCHOLOGICAL STATISTICS
UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION B Sc. Cousellig Psychology (0 Adm.) IV SEMESTER COMPLEMENTARY COURSE PSYCHOLOGICAL STATISTICS QUESTION BANK. Iferetial statistics is the brach of statistics
More informationDetermining the sample size
Determiig the sample size Oe of the most commo questios ay statisticia gets asked is How large a sample size do I eed? Researchers are ofte surprised to fid out that the aswer depeds o a umber of factors
More information5: Introduction to Estimation
5: Itroductio to Estimatio Cotets Acroyms ad symbols... 1 Statistical iferece... Estimatig µ with cofidece... 3 Samplig distributio of the mea... 3 Cofidece Iterval for μ whe σ is kow before had... 4 Sample
More informationRiemann Sums y = f (x)
Riema Sums Recall that we have previously discussed the area problem I its simplest form we ca state it this way: The Area Problem Let f be a cotiuous, oegative fuctio o the closed iterval [a, b] Fid
More informationx : X bar Mean (i.e. Average) of a sample
A quick referece for symbols ad formulas covered i COGS14: MEAN OF SAMPLE: x = x i x : X bar Mea (i.e. Average) of a sample x i : X sub i This stads for each idividual value you have i your sample. For
More information0.7 0.6 0.2 0 0 96 96.5 97 97.5 98 98.5 99 99.5 100 100.5 96.5 97 97.5 98 98.5 99 99.5 100 100.5
Sectio 13 KolmogorovSmirov test. Suppose that we have a i.i.d. sample X 1,..., X with some ukow distributio P ad we would like to test the hypothesis that P is equal to a particular distributio P 0, i.e.
More informationCompare Multiple Response Variables
Compare Multiple Respose Variables STATGRAPHICS Mobile Rev. 4/7/006 This procedure compares the data cotaied i three or more Respose colums. It performs a oeway aalysis of variace to determie whether
More informationAQA STATISTICS 1 REVISION NOTES
AQA STATISTICS 1 REVISION NOTES AVERAGES AND MEASURES OF SPREAD www.mathsbox.org.uk Mode : the most commo or most popular data value the oly average that ca be used for qualitative data ot suitable if
More informationOutput Analysis (2, Chapters 10 &11 Law)
B. Maddah ENMG 6 Simulatio 05/0/07 Output Aalysis (, Chapters 10 &11 Law) Comparig alterative system cofiguratio Sice the output of a simulatio is radom, the comparig differet systems via simulatio should
More informationMeasures of Central Tendency
Measures of Cetral Tedecy A studet s grade will be determied by exam grades ( each exam couts twice ad there are three exams, HW average (couts oce, fial exam ( couts three times. Fid the average if the
More informationBaan Service Master Data Management
Baa Service Master Data Maagemet Module Procedure UP069A US Documetiformatio Documet Documet code : UP069A US Documet group : User Documetatio Documet title : Master Data Maagemet Applicatio/Package :
More informationBaanERP. BaanERP Windows Client Installation Guide
BaaERP A publicatio of: Baa Developmet B.V. P.O.Box 143 3770 AC Bareveld The Netherlads Prited i the Netherlads Baa Developmet B.V. 1999. All rights reserved. The iformatio i this documet is subject to
More informationUsing Excel to Construct Confidence Intervals
OPIM 303 Statistics Ja Stallaert Usig Excel to Costruct Cofidece Itervals This hadout explais how to costruct cofidece itervals i Excel for the followig cases: 1. Cofidece Itervals for the mea of a populatio
More informationMocks.ie Maths LC HL Further Calculus mocks.ie Page 1
Maths Leavig Cert Higher Level Further Calculus Questio Paper By Cillia Fahy ad Darro Higgis Mocks.ie Maths LC HL Further Calculus mocks.ie Page Further Calculus ad Series, Paper II Q8 Table of Cotets:.
More informationMeasures of Spread and Boxplots Discrete Math, Section 9.4
Measures of Spread ad Boxplots Discrete Math, Sectio 9.4 We start with a example: Example 1: Comparig Mea ad Media Compute the mea ad media of each data set: S 1 = {4, 6, 8, 10, 1, 14, 16} S = {4, 7, 9,
More informationSimple Annuities Present Value.
Simple Auities Preset Value. OBJECTIVES (i) To uderstad the uderlyig priciple of a preset value auity. (ii) To use a CASIO CFX9850GB PLUS to efficietly compute values associated with preset value auities.
More information1 Correlation and Regression Analysis
1 Correlatio ad Regressio Aalysis I this sectio we will be ivestigatig the relatioship betwee two cotiuous variable, such as height ad weight, the cocetratio of a ijected drug ad heart rate, or the cosumptio
More informationConfidence Intervals for the Mean of Nonnormal Data Class 23, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom
Cofidece Itervals for the Mea of Noormal Data Class 23, 8.05, Sprig 204 Jeremy Orloff ad Joatha Bloom Learig Goals. Be able to derive the formula for coservative ormal cofidece itervals for the proportio
More informationI. Chisquared Distributions
1 M 358K Supplemet to Chapter 23: CHISQUARED DISTRIBUTIONS, TDISTRIBUTIONS, AND DEGREES OF FREEDOM To uderstad tdistributios, we first eed to look at aother family of distributios, the chisquared distributios.
More informationOnesample test of proportions
Oesample test of proportios The Settig: Idividuals i some populatio ca be classified ito oe of two categories. You wat to make iferece about the proportio i each category, so you draw a sample. Examples:
More informationIntro to Sequences / Arithmetic Sequences and Series Levels
Itro to Sequeces / Arithmetic Sequeces ad Series Levels Level : pg. 569: #7, 0, 33 Pg. 575: #, 7, 8 Pg. 584: #8, 9, 34, 36 Levels, 3, ad 4(Fiboacci Sequece Extesio) See Hadout Check for Uderstadig Level
More informationRepeating Decimals are decimal numbers that have number(s) after the decimal point that repeat in a pattern.
5.5 Fractios ad Decimals Steps for Chagig a Fractio to a Decimal. Simplify the fractio, if possible. 2. Divide the umerator by the deomiator. d d Repeatig Decimals Repeatig Decimals are decimal umbers
More informationIncremental calculation of weighted mean and variance
Icremetal calculatio of weighted mea ad variace Toy Fich faf@cam.ac.uk dot@dotat.at Uiversity of Cambridge Computig Service February 009 Abstract I these otes I eplai how to derive formulae for umerically
More informationConfidence Intervals. CI for a population mean (σ is known and n > 30 or the variable is normally distributed in the.
Cofidece Itervals A cofidece iterval is a iterval whose purpose is to estimate a parameter (a umber that could, i theory, be calculated from the populatio, if measuremets were available for the whole populatio).
More informationUSING STATISTICAL FUNCTIONS ON A SCIENTIFIC CALCULATOR
USING STATISTICAL FUNCTIONS ON A SCIENTIFIC CALCULATOR Objective:. Improve calculator skills eeded i a multiple choice statistical eamiatio where the eam allows the studet to use a scietific calculator..
More informationDefinition. Definition. 72 Estimating a Population Proportion. Definition. Definition
7 stimatig a Populatio Proportio I this sectio we preset methods for usig a sample proportio to estimate the value of a populatio proportio. The sample proportio is the best poit estimate of the populatio
More informationGCSE STATISTICS. 4) How to calculate the range: The difference between the biggest number and the smallest number.
GCSE STATISTICS You should kow: 1) How to draw a frequecy diagram: e.g. NUMBER TALLY FREQUENCY 1 3 5 ) How to draw a bar chart, a pictogram, ad a pie chart. 3) How to use averages: a) Mea  add up all
More informationChapter 10 Student Lecture Notes 101
Chapter 0 tudet Lecture Notes 0 Basic Busiess tatistics (9 th Editio) Chapter 0 Twoample Tests with Numerical Data 004 PreticeHall, Ic. Chap 0 Chapter Topics Comparig Two Idepedet amples Z test for
More informationSoving Recurrence Relations
Sovig Recurrece Relatios Part 1. Homogeeous liear 2d degree relatios with costat coefficiets. Cosider the recurrece relatio ( ) T () + at ( 1) + bt ( 2) = 0 This is called a homogeeous liear 2d degree
More informationHere are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed.
This documet was writte ad copyrighted by Paul Dawkis. Use of this documet ad its olie versio is govered by the Terms ad Coditios of Use located at http://tutorial.math.lamar.edu/terms.asp. The olie versio
More informationWinter Camp 2012 Sequences Alexander Remorov. Sequences. Alexander Remorov
Witer Camp 202 Sequeces Alexader Remorov Sequeces Alexader Remorov alexaderrem@gmail.com Warmup Problem : Give a positive iteger, cosider a sequece of real umbers a 0, a,..., a defied as a 0 = 2 ad =
More informationDescriptive statistics deals with the description or simple analysis of population or sample data.
Descriptive statistics Some basic cocepts A populatio is a fiite or ifiite collectio of idividuals or objects. Ofte it is impossible or impractical to get data o all the members of the populatio ad a small
More informationConfidence Intervals for Linear Regression Slope
Chapter 856 Cofidece Iterval for Liear Regreio Slope Itroductio Thi routie calculate the ample ize eceary to achieve a pecified ditace from the lope to the cofidece limit at a tated cofidece level for
More informationwhen n = 1, 2, 3, 4, 5, 6, This list represents the amount of dollars you have after n days. Note: The use of is read as and so on.
Geometric eries Before we defie what is meat by a series, we eed to itroduce a related topic, that of sequeces. Formally, a sequece is a fuctio that computes a ordered list. uppose that o day 1, you have
More informationCOMP 251 Assignment 2 Solutions
COMP 251 Assigmet 2 Solutios Questio 1 Exercise 8.34 Treat the umbers as 2digit umbers i radix. Each digit rages from 0 to 1. Sort these 2digit umbers ith the RADIXSORT algorithm preseted i Sectio
More informationAnalyzing Longitudinal Data from Complex Surveys Using SUDAAN
Aalyzig Logitudial Data from Complex Surveys Usig SUDAAN Darryl Creel Statistics ad Epidemiology, RTI Iteratioal, 312 Trotter Farm Drive, Rockville, MD, 20850 Abstract SUDAAN: Software for the Statistical
More informationSum of Exterior Angles of Polygons TEACHER NOTES
Sum of Exterior Agles of Polygos TEACHER NOTES Math Objectives Studets will determie that the iterior agle of a polygo ad a exterior agle of a polygo form a liear pair (i.e., the two agles are supplemetary).
More informationInference on Proportion. Chapter 8 Tests of Statistical Hypotheses. Sampling Distribution of Sample Proportion. Confidence Interval
Chapter 8 Tests of Statistical Hypotheses 8. Tests about Proportios HT  Iferece o Proportio Parameter: Populatio Proportio p (or π) (Percetage of people has o health isurace) x Statistic: Sample Proportio
More informationMath C067 Sampling Distributions
Math C067 Samplig Distributios Sample Mea ad Sample Proportio Richard Beigel Some time betwee April 16, 2007 ad April 16, 2007 Examples of Samplig A pollster may try to estimate the proportio of voters
More informationCHAPTER 3 THE TIME VALUE OF MONEY
CHAPTER 3 THE TIME VALUE OF MONEY OVERVIEW A dollar i the had today is worth more tha a dollar to be received i the future because, if you had it ow, you could ivest that dollar ad ear iterest. Of all
More informationDesktop Management. Desktop Management Tools
Desktop Maagemet 9 Desktop Maagemet Tools Mac OS X icludes three desktop maagemet tools that you might fid helpful to work more efficietly ad productively: u Stacks puts expadable folders i the Dock. Clickig
More informationThe Poisson Distribution
Lecture 5 The Poisso Distributio 5.1 Itroductio Example 5.1: Drowigs i Malta The book [Mou98] cites data from the St. Luke s Hospital Gazette, o the mothly umber of drowigs o Malta, over a period of early
More informationHomework 7 Solutions Total Points
Homework 7 Solutios  165 Total Poits STAT 201502 Lecture 11, 12, & 13 Material 1. Studies that compare treatmets for chroic medical coditios such as headaches ca use the same subjects for each treatmet.
More informationSum and Product Rules. Combinatorics. Some Subtler Examples
Combiatorics Sum ad Product Rules Problem: How to cout without coutig. How do you figure out how may thigs there are with a certai property without actually eumeratig all of them. Sometimes this requires
More informationSection 73 Estimating a Population. Requirements
Sectio 73 Estimatig a Populatio Mea: σ Kow Key Cocept This sectio presets methods for usig sample data to fid a poit estimate ad cofidece iterval estimate of a populatio mea. A key requiremet i this sectio
More informationNPTEL STRUCTURAL RELIABILITY
NPTEL Course O STRUCTURAL RELIABILITY Module # 0 Lecture 1 Course Format: Web Istructor: Dr. Aruasis Chakraborty Departmet of Civil Egieerig Idia Istitute of Techology Guwahati 1. Lecture 01: Basic Statistics
More information7. Sample Covariance and Correlation
1 of 8 7/16/2009 6:06 AM Virtual Laboratories > 6. Radom Samples > 1 2 3 4 5 6 7 7. Sample Covariace ad Correlatio The Bivariate Model Suppose agai that we have a basic radom experimet, ad that X ad Y
More informationSequences II. Chapter 3. 3.1 Convergent Sequences
Chapter 3 Sequeces II 3. Coverget Sequeces Plot a graph of the sequece a ) = 2, 3 2, 4 3, 5 + 4,...,,... To what limit do you thik this sequece teds? What ca you say about the sequece a )? For ǫ = 0.,
More informationCase Study. Normal and t Distributions. Density Plot. Normal Distributions
Case Study Normal ad t Distributios Bret Halo ad Bret Larget Departmet of Statistics Uiversity of Wiscosi Madiso October 11 13, 2011 Case Study Body temperature varies withi idividuals over time (it ca
More informationMathematical goals. Starting points. Materials required. Time needed
Level A1 of challege: C A1 Mathematical goals Startig poits Materials required Time eeded Iterpretig algebraic expressios To help learers to: traslate betwee words, symbols, tables, ad area represetatios
More informationEstimating the Mean and Variance of a Normal Distribution
Estimatig the Mea ad Variace of a Normal Distributio Learig Objectives After completig this module, the studet will be able to eplai the value of repeatig eperimets eplai the role of the law of large umbers
More information5.4 Amortization. Question 1: How do you find the present value of an annuity? Question 2: How is a loan amortized?
5.4 Amortizatio Questio 1: How do you fid the preset value of a auity? Questio 2: How is a loa amortized? Questio 3: How do you make a amortizatio table? Oe of the most commo fiacial istrumets a perso
More informationHow to set up your GMC Online account
How to set up your GMC Olie accout Mai title Itroductio GMC Olie is a secure part of our website that allows you to maage your registratio with us. Over 100,000 doctors already use GMC Olie. We wat every
More informationMaximum Likelihood Estimators.
Lecture 2 Maximum Likelihood Estimators. Matlab example. As a motivatio, let us look at oe Matlab example. Let us geerate a radom sample of size 00 from beta distributio Beta(5, 2). We will lear the defiitio
More informationWeek 3 Conditional probabilities, Bayes formula, WEEK 3 page 1 Expected value of a random variable
Week 3 Coditioal probabilities, Bayes formula, WEEK 3 page 1 Expected value of a radom variable We recall our discussio of 5 card poker hads. Example 13 : a) What is the probability of evet A that a 5
More informationProperties of MLE: consistency, asymptotic normality. Fisher information.
Lecture 3 Properties of MLE: cosistecy, asymptotic ormality. Fisher iformatio. I this sectio we will try to uderstad why MLEs are good. Let us recall two facts from probability that we be used ofte throughout
More informationEngineering 323 Beautiful Homework Set 3 1 of 7 Kuszmar Problem 2.51
Egieerig 33 eautiful Homewor et 3 of 7 Kuszmar roblem.5.5 large departmet store sells sport shirts i three sizes small, medium, ad large, three patters plaid, prit, ad stripe, ad two sleeve legths log
More informationSection 11.3: The Integral Test
Sectio.3: The Itegral Test Most of the series we have looked at have either diverged or have coverged ad we have bee able to fid what they coverge to. I geeral however, the problem is much more difficult
More informationChapter 5: Inner Product Spaces
Chapter 5: Ier Product Spaces Chapter 5: Ier Product Spaces SECION A Itroductio to Ier Product Spaces By the ed of this sectio you will be able to uderstad what is meat by a ier product space give examples
More informationConfidence Intervals and Sample Size
8/7/015 C H A P T E R S E V E N Cofidece Itervals ad Copyright 015 The McGrawHill Compaies, Ic. Permissio required for reproductio or display. 1 Cofidece Itervals ad Outlie 71 Cofidece Itervals for the
More informationConfidence Intervals for the Population Mean
Cofidece Itervals Math 283 Cofidece Itervals for the Populatio Mea Recall that from the empirical rule that the iterval of the mea plus/mius 2 times the stadard deviatio will cotai about 95% of the observatios.
More information4.1 Sigma Notation and Riemann Sums
0 the itegral. Sigma Notatio ad Riema Sums Oe strategy for calculatig the area of a regio is to cut the regio ito simple shapes, calculate the area of each simple shape, ad the add these smaller areas
More informationhp calculators HP 30S Base Conversions Numbers in Different Bases Practice Working with Numbers in Different Bases
Numbers i Differet Bases Practice Workig with Numbers i Differet Bases Numbers i differet bases Our umber system (called HiduArabic) is a decimal system (it s also sometimes referred to as deary system)
More informationTHE REGRESSION MODEL IN MATRIX FORM. For simple linear regression, meaning one predictor, the model is. for i = 1, 2, 3,, n
We will cosider the liear regressio model i matrix form. For simple liear regressio, meaig oe predictor, the model is i = + x i + ε i for i =,,,, This model icludes the assumptio that the ε i s are a sample
More informationModule 4: Mathematical Induction
Module 4: Mathematical Iductio Theme 1: Priciple of Mathematical Iductio Mathematical iductio is used to prove statemets about atural umbers. As studets may remember, we ca write such a statemet as a predicate
More informationTILE PATTERNS & GRAPHING
TILE PATTERNS & GRAPHING LESSON 1 THE BIG IDEA Tile patters provide a meaigful cotext i which to geerate equivalet algebraic expressios ad develop uderstadig of the cocept of a variable. Such patters are
More informationConcept #1. Goals for Presentation. I m going to be a mathematics teacher: Where did this stuff come from? Why didn t I know this before?
I m goig to be a mathematics teacher: Why did t I kow this before? Steve Williams Associate Professor of Mathematics/ Coordiator of Secodary Mathematics Educatio Lock Have Uiversity of PA swillia@lhup.edu
More informationDescriptive Statistics Summary Tables
Chapter 201 Descriptive Statistics Summary Tables Itroductio This procedure is used to summarize cotiuous data. Large volumes of such data may be easily summarized i statistical tables of meas, couts,
More informationME 101 Measurement Demonstration (MD 1) DEFINITIONS Precision  A measure of agreement between repeated measurements (repeatability).
INTRODUCTION This laboratory ivestigatio ivolves makig both legth ad mass measuremets of a populatio, ad the assessig statistical parameters to describe that populatio. For example, oe may wat to determie
More informationProject Deliverables. CS 361, Lecture 28. Outline. Project Deliverables. Administrative. Project Comments
Project Deliverables CS 361, Lecture 28 Jared Saia Uiversity of New Mexico Each Group should tur i oe group project cosistig of: About 612 pages of text (ca be loger with appedix) 612 figures (please
More informationReview for Test 3. b. Construct the 90% and 95% confidence intervals for the population mean. Interpret the CIs.
Review for Test 3 1 From a radom sample of 36 days i a recet year, the closig stock prices of Hasbro had a mea of $1931 From past studies we kow that the populatio stadard deviatio is $237 a Should you
More informationFourier Series and the Wave Equation Part 2
Fourier Series ad the Wave Equatio Part There are two big ideas i our work this week. The first is the use of liearity to break complicated problems ito simple pieces. The secod is the use of the symmetries
More informationConfidence Intervals
Cofidece Itervals Cofidece Itervals are a extesio of the cocept of Margi of Error which we met earlier i this course. Remember we saw: The sample proportio will differ from the populatio proportio by more
More informationHypergeometric Distributions
7.4 Hypergeometric Distributios Whe choosig the startig lieup for a game, a coach obviously has to choose a differet player for each positio. Similarly, whe a uio elects delegates for a covetio or you
More informationx(x 1)(x 2)... (x k + 1) = [x] k n+m 1
1 Coutig mappigs For every real x ad positive iteger k, let [x] k deote the fallig factorial ad x(x 1)(x 2)... (x k + 1) ( ) x = [x] k k k!, ( ) k = 1. 0 I the sequel, X = {x 1,..., x m }, Y = {y 1,...,
More informationSan Francisco State University
Sa Fracisco State Uiversity Michael Bar Typig Math i Microsoft Word I. Itroductio There are at least two ways to type professioally lookig mathematical objects i Microsoft Word. Older versios of MS Word
More informationElementary Theory of Russian Roulette
Elemetary Theory of Russia Roulette iterestig patters of fractios Satoshi Hashiba Daisuke Miematsu Ryohei Miyadera Itroductio. Today we are goig to study mathematical theory of Russia roulette. If some
More informationSolving Inequalities
Solvig Iequalities Say Thaks to the Authors Click http://www.ck12.org/saythaks (No sig i required) To access a customizable versio of this book, as well as other iteractive cotet, visit www.ck12.org CK12
More informationChapter 10. Hypothesis Tests Regarding a Parameter. 10.1 The Language of Hypothesis Testing
Chapter 10 Hypothesis Tests Regardig a Parameter A secod type of statistical iferece is hypothesis testig. Here, rather tha use either a poit (or iterval) estimate from a simple radom sample to approximate
More information