# Polynomials and Vieta s Formulas

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Polynomials and Vieta s Formulas Misha Lavrov ARML Practice 2/9/2014

2 Review problems 1 If a 0 = 0 and a n = 3a n 1 + 2, find a If b 0 = 0 and b n = n 2 b n 1, find b 100.

3 Review problems 1 If a 0 = 0 and a n = 3a n 1 + 2, find a 100. Since a n + 1 = 3a n = 3(a n 1 + 1), we have a n + 1 = 3 n (a 0 + 1) = 3 n, so a 100 = If b 0 = 0 and b n = n 2 b n 1, find b 100.

4 Review problems 1 If a 0 = 0 and a n = 3a n 1 + 2, find a 100. Since a n + 1 = 3a n = 3(a n 1 + 1), we have a n + 1 = 3 n (a 0 + 1) = 3 n, so a 100 = If b 0 = 0 and b n = n 2 b n 1, find b 100. Let s n = ( 1) n b n, so that s n = s n 1 + ( 1) n n 2. With s 0 = 0, n this means s n = ( 1) k k 2. Therefore k=1 b 100 = s 100 = To simplify this, observe that k 2 (k 1) 2 = k + (k 1), so b 100 = = 5050.

5 Vieta s Formulas The quadratic version Suppose that x = r 1 and x = r 2 are the two solutions to the quadratic equation x 2 + px + q = 0. Then r 1 r 2 = q and r 1 + r 2 = p. To prove this, simply expand (x r 1 )(x r 2 ). Slightly more generally, suppose that x = r 1 and x = r 2 are the two solutions of ax 2 + bx + c = 0. Then r 1 r 2 = c a and r 1 + r 2 = b a. This follows from the first version, if we divide the equation by a. For this reason, we assume the leading coefficient is 1 whenever we can.

6 Vieta s Formulas Problems Let a and b be the roots of x 2 3x 1 = 0. Try to solve the problems below without finding a and b; it will be easier that way, anyway. 1 Find a quadratic equation whose roots are a 2 and b Compute a b+1. (Hint: find a quadratic equation whose 1 roots are a+1 and 1 b+1 by manipulating the original.) Surprise review problem: 3 Write a recurrence relation for the sequence x n = a n + b n. (We can actually use this to compute something like a 5 + b 5 more or less painlessly.)

7 Vieta s Formulas Solutions 1 We know ab = 1 and a + b = 3, and want to find a 2 b 2 and a 2 + b 2. These are given by: { a 2 b 2 = (ab) 2 = ( 1) 2 = 1 a 2 + b 2 = (a + b) 2 2ab = 3 2 2( 1) = 11. Therefore x 2 11x + 1 = 0 is the equation we want. Another approach: expand (x 2 3x 1)(x 2 + 3x 1) to get x 4 11x 2 + 1, then substitute x for x 2. Why does this work? 2 The equation (x 1) 2 3(x 1) 1 = 0, or x 2 5x + 3 = 0, has roots a + 1 and b + 1. Similarly, (1/x) 2 5(1/x) + 3 = 0, or 1 5x + 3x 2 1 = 0, has roots a+1 and 1 b+1. Therefore 1 a b+1 = The recurrence is x n = 3x n 1 + x n 2, with x 0 = 2 and x 1 = 3.

8 Vieta s Formulas The general version In general, given the equation x n + a n 1 x n 1 + a n 2 x n a 1 x + a 0 = 0, we know the following: The sum of the roots (with multiplicity) is a n 1. The product of the roots is ( 1) n a 0. In general, ( 1) k a n k is the sum of all k-fold products of the roots; for example, in a cubic equation with roots r 1, r 2, r 3, the coefficient of x is r 1 r 2 + r 1 r 3 + r 2 r 3. (Don t forget that if x n has a coefficient too, you should divide by it before applying these rules.)

9 Vieta s Formulas Problems 1 (HMMT 1998) Three of the roots of x 4 + ax 2 + bx + c = 0 are 2, 3, and 5. Find the value of a + b + c. 2 (AIME 2001) Find the sum of all the roots of the equation x ( 1 2 x) 2001 = 0. 3 (AIME 1996) Suppose the roots of x 3 + 3x 2 + 4x 11 = 0 are a, b, and c, and the roots of x 3 + rx 2 + sx + t = 0 are a + b, b + c, and c + a. By way of a warm-up, find r. The real problem is to find t.

10 Vieta s Formulas Solutions 1 The coefficient of x 3 is 0, so the sum of the roots is 0, and the fourth root must be 4. The polynomial factors as (x 2)(x 5)(x + 3)(x + 4). Setting x = 1 gives 1 + a + b + c = (1 2)(1 5)(1 + 3)(1 + 4) = 80, so a + b + c = Using Vieta s formulas is left as an exercise. A shortcut solution is to observe that if x is a root, so is 1 2 x, and each such pair yields a total of 1 2. There are 2000 roots, so the total is We have r = ((a + b) + (b + c) + (a + c)) = = 2(a + b + c) = 6. To evaluate t = (a + b)(a + c)(b + c), it helps to observe a + b + c = 3 and write a + b = 3 c and so on. Then t = P( 3) = 23.

11 More problems Let α, β, γ be the roots of x 3 3x Find a polynomial whose roots are α + 3, β + 3, and γ Find a polynomial whose roots are 1 α+3, 1 β+3, and 1 γ+3. 3 Compute 1 α β γ+3. 4 Find a polynomial whose roots are α 2, β 2, and γ 2. 5 Find a recurrence relation for x n = α n + β n + γ n, and use it to compute α 5 + β 5 + γ 5.

12 More problems Solutions 1 To increment all roots by 3, substitute x 3 for x. This yields x 3 12x x Reversing the coefficients to get 1 12x + 45x 2 53x 3 yields a polynomial whose roots are reciprocals of the polynomial above. (Do you see why?) 3 This is just the sum of the roots of the polynomial above: Observe that x 3 + 3x 2 1 has roots α, β, and γ. Therefore (x 3 3x 2 + 1)(x 3 + 3x 2 1) has roots ±α, ±β, ±γ and factors as (x 2 α 2 )(x 2 β 2 )(x 2 γ 2 ). Replacing x 2 by x yields our answer: x 3 9x 2 + 6x 1. 5 The recurrence is x n = 3x n 1 x n 3. We have x 0 = 3, x 1 = 3, and x 2 = 9, so x 3 = 24, x 4 = 69, and x 5 = 198.

13 Even more problems 1 (Canada 1988) For some integer a, the equations 1988x 2 + ax = 0 and 8891x 2 + ax = 0 share a common root. Find a. 2 (ARML 1989) If P(x) is a polynomial in x such that for all x, x x 17 18x 16 24x x 14 = (x 4 3x 2 2x+9) P(x), compute the sum of the coefficients of P(x).

14 Even more problems Solutions 1 Let x be the common root; then by subtracting the two equations, we have ( )x 2 + ( ) = 0 so x 2 1 = 0, and therefore x = ±1. Plug ±1 into one of the equations to get 1988 ± a = 0 and therefore a = ± The sum of the coefficients of P(x) is P(1). Setting x = 1, we get = ( )P(1). Solving, we obtain P(1) = 18.

### Vieta s Formulas and the Identity Theorem

Vieta s Formulas and the Identity Theorem This worksheet will work through the material from our class on 3/21/2013 with some examples that should help you with the homework The topic of our discussion

CHAPTER Roots of quadratic equations Learning objectives After studying this chapter, you should: know the relationships between the sum and product of the roots of a quadratic equation and the coefficients

### ( ) FACTORING. x In this polynomial the only variable in common to all is x.

FACTORING Factoring is similar to breaking up a number into its multiples. For example, 10=5*. The multiples are 5 and. In a polynomial it is the same way, however, the procedure is somewhat more complicated

### Factoring Polynomials

Factoring Polynomials 4-1-2014 The opposite of multiplying polynomials is factoring. Why would you want to factor a polynomial? Let p(x) be a polynomial. p(c) = 0 is equivalent to x c dividing p(x). Recall

### x n = 1 x n In other words, taking a negative expoenent is the same is taking the reciprocal of the positive expoenent.

Rules of Exponents: If n > 0, m > 0 are positive integers and x, y are any real numbers, then: x m x n = x m+n x m x n = xm n, if m n (x m ) n = x mn (xy) n = x n y n ( x y ) n = xn y n 1 Can we make sense

### Polynomials can be added or subtracted simply by adding or subtracting the corresponding terms, e.g., if

1. Polynomials 1.1. Definitions A polynomial in x is an expression obtained by taking powers of x, multiplying them by constants, and adding them. It can be written in the form c 0 x n + c 1 x n 1 + c

### 1.3 Algebraic Expressions

1.3 Algebraic Expressions A polynomial is an expression of the form: a n x n + a n 1 x n 1 +... + a 2 x 2 + a 1 x + a 0 The numbers a 1, a 2,..., a n are called coefficients. Each of the separate parts,

### STUDY GUIDE FOR SOME BASIC INTERMEDIATE ALGEBRA SKILLS

STUDY GUIDE FOR SOME BASIC INTERMEDIATE ALGEBRA SKILLS The intermediate algebra skills illustrated here will be used extensively and regularly throughout the semester Thus, mastering these skills is an

### 1.3 Polynomials and Factoring

1.3 Polynomials and Factoring Polynomials Constant: a number, such as 5 or 27 Variable: a letter or symbol that represents a value. Term: a constant, variable, or the product or a constant and variable.

### Number Theory Homework.

Number Theory Homework. 1. Pythagorean triples and rational points on quadratics and cubics. 1.1. Pythagorean triples. Recall the Pythagorean theorem which is that in a right triangle with legs of length

### Factoring Polynomials and Solving Quadratic Equations

Factoring Polynomials and Solving Quadratic Equations Math Tutorial Lab Special Topic Factoring Factoring Binomials Remember that a binomial is just a polynomial with two terms. Some examples include 2x+3

MA 134 Lecture Notes August 20, 2012 Introduction The purpose of this lecture is to... Introduction The purpose of this lecture is to... Learn about different types of equations Introduction The purpose

### Solving Quadratic Equations by Factoring

4.7 Solving Quadratic Equations by Factoring 4.7 OBJECTIVE 1. Solve quadratic equations by factoring The factoring techniques you have learned provide us with tools for solving equations that can be written

### Algebra Revision Sheet Questions 2 and 3 of Paper 1

Algebra Revision Sheet Questions and of Paper Simple Equations Step Get rid of brackets or fractions Step Take the x s to one side of the equals sign and the numbers to the other (remember to change the

### Partial Fractions. Combining fractions over a common denominator is a familiar operation from algebra:

Partial Fractions Combining fractions over a common denominator is a familiar operation from algebra: From the standpoint of integration, the left side of Equation 1 would be much easier to work with than

### Partial Fractions. (x 1)(x 2 + 1)

Partial Fractions Adding rational functions involves finding a common denominator, rewriting each fraction so that it has that denominator, then adding. For example, 3x x 1 3x(x 1) (x + 1)(x 1) + 1(x +

### Complex Numbers. Misha Lavrov. ARML Practice 10/7/2012

Complex Numbers Misha Lavrov ARML Practice 10/7/2012 A short theorem Theorem (Complex numbers are weird) 1 = 1. Proof. The obvious identity 1 = 1 can be rewritten as 1 1 = 1 1. Distributing the square

### Generating Functions

Generating Functions If you take f(x =/( x x 2 and expand it as a power series by long division, say, then you get f(x =/( x x 2 =+x+2x 2 +x +5x 4 +8x 5 +x 6 +. It certainly seems as though the coefficient

### Mth 95 Module 2 Spring 2014

Mth 95 Module Spring 014 Section 5.3 Polynomials and Polynomial Functions Vocabulary of Polynomials A term is a number, a variable, or a product of numbers and variables raised to powers. Terms in an expression

### SOLVING POLYNOMIAL EQUATIONS

C SOLVING POLYNOMIAL EQUATIONS We will assume in this appendix that you know how to divide polynomials using long division and synthetic division. If you need to review those techniques, refer to an algebra

### Section 6.1 Factoring Expressions

Section 6.1 Factoring Expressions The first method we will discuss, in solving polynomial equations, is the method of FACTORING. Before we jump into this process, you need to have some concept of what

### expression is written horizontally. The Last terms ((2)( 4)) because they are the last terms of the two polynomials. This is called the FOIL method.

A polynomial of degree n (in one variable, with real coefficients) is an expression of the form: a n x n + a n 1 x n 1 + a n 2 x n 2 + + a 2 x 2 + a 1 x + a 0 where a n, a n 1, a n 2, a 2, a 1, a 0 are

### 1.1 Solving a Linear Equation ax + b = 0

1.1 Solving a Linear Equation ax + b = 0 To solve an equation ax + b = 0 : (i) move b to the other side (subtract b from both sides) (ii) divide both sides by a Example: Solve x = 0 (i) x- = 0 x = (ii)

### Equations, Inequalities & Partial Fractions

Contents Equations, Inequalities & Partial Fractions.1 Solving Linear Equations 2.2 Solving Quadratic Equations 1. Solving Polynomial Equations 1.4 Solving Simultaneous Linear Equations 42.5 Solving Inequalities

### Summer Mathematics Packet Say Hello to Algebra 2. For Students Entering Algebra 2

Summer Math Packet Student Name: Say Hello to Algebra 2 For Students Entering Algebra 2 This summer math booklet was developed to provide students in middle school an opportunity to review grade level

### NSM100 Introduction to Algebra Chapter 5 Notes Factoring

Section 5.1 Greatest Common Factor (GCF) and Factoring by Grouping Greatest Common Factor for a polynomial is the largest monomial that divides (is a factor of) each term of the polynomial. GCF is the

### JUST THE MATHS UNIT NUMBER 1.8. ALGEBRA 8 (Polynomials) A.J.Hobson

JUST THE MATHS UNIT NUMBER 1.8 ALGEBRA 8 (Polynomials) by A.J.Hobson 1.8.1 The factor theorem 1.8.2 Application to quadratic and cubic expressions 1.8.3 Cubic equations 1.8.4 Long division of polynomials

### a 1 x + a 0 =0. (3) ax 2 + bx + c =0. (4)

ROOTS OF POLYNOMIAL EQUATIONS In this unit we discuss polynomial equations. A polynomial in x of degree n, where n 0 is an integer, is an expression of the form P n (x) =a n x n + a n 1 x n 1 + + a 1 x

### Step 1: Set the equation equal to zero if the function lacks. Step 2: Subtract the constant term from both sides:

In most situations the quadratic equations such as: x 2 + 8x + 5, can be solved (factored) through the quadratic formula if factoring it out seems too hard. However, some of these problems may be solved

### CLASS NOTES. We bring down (copy) the leading coefficient below the line in the same column.

SYNTHETIC DIVISION CLASS NOTES When factoring or evaluating polynomials we often find that it is convenient to divide a polynomial by a linear (first degree) binomial of the form x k where k is a real

### 3. Power of a Product: Separate letters, distribute to the exponents and the bases

Chapter 5 : Polynomials and Polynomial Functions 5.1 Properties of Exponents Rules: 1. Product of Powers: Add the exponents, base stays the same 2. Power of Power: Multiply exponents, bases stay the same

### Integrals of Rational Functions

Integrals of Rational Functions Scott R. Fulton Overview A rational function has the form where p and q are polynomials. For example, r(x) = p(x) q(x) f(x) = x2 3 x 4 + 3, g(t) = t6 + 4t 2 3, 7t 5 + 3t

### ASS.PROF.DR Thamer Information Theory 4th Class in Communication. Finite Field Arithmetic. (Galois field)

Finite Field Arithmetic (Galois field) Introduction: A finite field is also often known as a Galois field, after the French mathematician Pierre Galois. A Galois field in which the elements can take q

66 (9-1) Chapter 9 Quadratic Equations and Quadratic Functions the members will sell 5000 00x tickets. So the total revenue for the tickets is given by R x (5000 00x). a) What is the revenue if the tickets

### LINEAR RECURSIVE SEQUENCES. The numbers in the sequence are called its terms. The general form of a sequence is. a 1, a 2, a 3,...

LINEAR RECURSIVE SEQUENCES BJORN POONEN 1. Sequences A sequence is an infinite list of numbers, like 1) 1, 2, 4, 8, 16, 32,.... The numbers in the sequence are called its terms. The general form of a sequence

### Partial Fractions Examples

Partial Fractions Examples Partial fractions is the name given to a technique of integration that may be used to integrate any ratio of polynomials. A ratio of polynomials is called a rational function.

### Equations and Inequalities

Rational Equations Overview of Objectives, students should be able to: 1. Solve rational equations with variables in the denominators.. Recognize identities, conditional equations, and inconsistent equations.

### An Insight into Division Algorithm, Remainder and Factor Theorem

An Insight into Division Algorithm, Remainder and Factor Theorem Division Algorithm Recall division of a positive integer by another positive integer For eample, 78 7, we get and remainder We confine the

### 1.7. Partial Fractions. 1.7.1. Rational Functions and Partial Fractions. A rational function is a quotient of two polynomials: R(x) = P (x) Q(x).

.7. PRTIL FRCTIONS 3.7. Partial Fractions.7.. Rational Functions and Partial Fractions. rational function is a quotient of two polynomials: R(x) = P (x) Q(x). Here we discuss how to integrate rational

### Factoring Trinomials: The ac Method

6.7 Factoring Trinomials: The ac Method 6.7 OBJECTIVES 1. Use the ac test to determine whether a trinomial is factorable over the integers 2. Use the results of the ac test to factor a trinomial 3. For

### Algebra Tiles Activity 1: Adding Integers

Algebra Tiles Activity 1: Adding Integers NY Standards: 7/8.PS.6,7; 7/8.CN.1; 7/8.R.1; 7.N.13 We are going to use positive (yellow) and negative (red) tiles to discover the rules for adding and subtracting

### Alum Rock Elementary Union School District Algebra I Study Guide for Benchmark III

Alum Rock Elementary Union School District Algebra I Study Guide for Benchmark III Name Date Adding and Subtracting Polynomials Algebra Standard 10.0 A polynomial is a sum of one ore more monomials. Polynomial

### Actually, if you have a graphing calculator this technique can be used to find solutions to any equation, not just quadratics. All you need to do is

QUADRATIC EQUATIONS Definition ax 2 + bx + c = 0 a, b, c are constants (generally integers) Roots Synonyms: Solutions or Zeros Can have 0, 1, or 2 real roots Consider the graph of quadratic equations.

### Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any.

Algebra 2 - Chapter Prerequisites Vocabulary Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any. P1 p. 1 1. counting(natural) numbers - {1,2,3,4,...}

### Definition 1.1 If x is any real number and n is a positive integer, then. x 1 = x. x 2 = x x x 3 = x x x

1.2 Exponents and Radicals Definition 1.1 If x is any real number and n is a positive integer, then x 1 = x x 2 = x x x = x x x... x n = x x... x }{{} n times Here, the number x is called the base and

### 6.4 The Remainder Theorem

6.4. THE REMAINDER THEOREM 6.3.2 Check the two divisions we performed in Problem 6.12 by multiplying the quotient by the divisor, then adding the remainder. 6.3.3 Find the quotient and remainder when x

### Solving Rational Equations

Lesson M Lesson : Student Outcomes Students solve rational equations, monitoring for the creation of extraneous solutions. Lesson Notes In the preceding lessons, students learned to add, subtract, multiply,

### MINI LESSON. Lesson 5b Solving Quadratic Equations

MINI LESSON Lesson 5b Solving Quadratic Equations Lesson Objectives By the end of this lesson, you should be able to: 1. Determine the number and type of solutions to a QUADRATIC EQUATION by graphing 2.

### Factoring Polynomials

Factoring Polynomials Factoring Factoring is the process of writing a polynomial as the product of two or more polynomials. The factors of 6x 2 x 2 are 2x + 1 and 3x 2. In this section, we will be factoring

0.7 Quadratic Equations 8 0.7 Quadratic Equations In Section 0..1, we reviewed how to solve basic non-linear equations by factoring. The astute reader should have noticed that all of the equations in that

### 2.5 Zeros of a Polynomial Functions

.5 Zeros of a Polynomial Functions Section.5 Notes Page 1 The first rule we will talk about is Descartes Rule of Signs, which can be used to determine the possible times a graph crosses the x-axis and

Section 5.4 The Quadratic Formula 481 5.4 The Quadratic Formula Consider the general quadratic function f(x) = ax + bx + c. In the previous section, we learned that we can find the zeros of this function

### SECTION 0.6: POLYNOMIAL, RATIONAL, AND ALGEBRAIC EXPRESSIONS

(Section 0.6: Polynomial, Rational, and Algebraic Expressions) 0.6.1 SECTION 0.6: POLYNOMIAL, RATIONAL, AND ALGEBRAIC EXPRESSIONS LEARNING OBJECTIVES Be able to identify polynomial, rational, and algebraic

### SOLVING POLYNOMIAL EQUATIONS. 0 = x 3 + ax 2 + bx + c = ( y 1 3 a) 3 ( 1 + a y 3 a) 2 ( 1 + b y. 3 a) + c = y 3 + y ( b 1 3 a2) + c ab c + 2

SOLVING POLYNOMIAL EQUATIONS FRANZ LEMMERMEYER 1 Cubic Equations Consider x 3 + ax + bx + c = 0 Using the same trick as above we can transform this into a cubic equation in which the coefficient of x vanishes:

### Winter Camp 2011 Polynomials Alexander Remorov. Polynomials. Alexander Remorov alexanderrem@gmail.com

Polynomials Alexander Remorov alexanderrem@gmail.com Warm-up Problem 1: Let f(x) be a quadratic polynomial. Prove that there exist quadratic polynomials g(x) and h(x) such that f(x)f(x + 1) = g(h(x)).

### Functions and Equations

Centre for Education in Mathematics and Computing Euclid eworkshop # Functions and Equations c 014 UNIVERSITY OF WATERLOO Euclid eworkshop # TOOLKIT Parabolas The quadratic f(x) = ax + bx + c (with a,b,c

### Introduction to polynomials

Worksheet 4.5 Polynomials Section 1 Introduction to polynomials A polynomial is an expression of the form p(x) = p 0 + p 1 x + p 2 x 2 + + p n x n, (n N) where p 0, p 1,..., p n are constants and x os

### 5-6 The Remainder and Factor Theorems

Use synthetic substitution to find f (4) and f ( 2) for each function. 1. f (x) = 2x 3 5x 2 x + 14 Divide the function by x 4. The remainder is 58. Therefore, f (4) = 58. Divide the function by x + 2.

### Inverses. Stephen Boyd. EE103 Stanford University. October 27, 2015

Inverses Stephen Boyd EE103 Stanford University October 27, 2015 Outline Left and right inverses Inverse Solving linear equations Examples Pseudo-inverse Left and right inverses 2 Left inverses a number

### The x-intercepts of the graph are the x-values for the points where the graph intersects the x-axis. A parabola may have one, two, or no x-intercepts.

Chapter 10-1 Identify Quadratics and their graphs A parabola is the graph of a quadratic function. A quadratic function is a function that can be written in the form, f(x) = ax 2 + bx + c, a 0 or y = ax

### Zeros of Polynomial Functions

Zeros of Polynomial Functions Objectives: 1.Use the Fundamental Theorem of Algebra to determine the number of zeros of polynomial functions 2.Find rational zeros of polynomial functions 3.Find conjugate

### AIP Factoring Practice/Help

The following pages include many problems to practice factoring skills. There are also several activities with examples to help you with factoring if you feel like you are not proficient with it. There

### SOLVING QUADRATIC EQUATIONS BY THE NEW TRANSFORMING METHOD (By Nghi H Nguyen Updated Oct 28, 2014))

SOLVING QUADRATIC EQUATIONS BY THE NEW TRANSFORMING METHOD (By Nghi H Nguyen Updated Oct 28, 2014)) There are so far 8 most common methods to solve quadratic equations in standard form ax² + bx + c = 0.

9.3 Solving Quadratic Equations by Using the Quadratic Formula 9.3 OBJECTIVES 1. Solve a quadratic equation by using the quadratic formula 2. Determine the nature of the solutions of a quadratic equation

### The Fibonacci Sequence and Recursion

The Fibonacci Sequence and Recursion (Handout April 6, 0) The Fibonacci sequence,,,3,,8,3,,34,,89,44,... is defined recursively by {, for n {0,}; F n = F n + F n, for n. Note that the first two terms in

### The Point-Slope Form

7. The Point-Slope Form 7. OBJECTIVES 1. Given a point and a slope, find the graph of a line. Given a point and the slope, find the equation of a line. Given two points, find the equation of a line y Slope

### Math 1111 Journal Entries Unit I (Sections , )

Math 1111 Journal Entries Unit I (Sections 1.1-1.2, 1.4-1.6) Name Respond to each item, giving sufficient detail. You may handwrite your responses with neat penmanship. Your portfolio should be a collection

### 3.3. Solving Polynomial Equations. Introduction. Prerequisites. Learning Outcomes

Solving Polynomial Equations 3.3 Introduction Linear and quadratic equations, dealt within Sections 3.1 and 3.2, are members of a class of equations, called polynomial equations. These have the general

### FACTORING ax 2 bx c. Factoring Trinomials with Leading Coefficient 1

5.7 Factoring ax 2 bx c (5-49) 305 5.7 FACTORING ax 2 bx c In this section In Section 5.5 you learned to factor certain special polynomials. In this section you will learn to factor general quadratic polynomials.

### Algebra. Indiana Standards 1 ST 6 WEEKS

Chapter 1 Lessons Indiana Standards - 1-1 Variables and Expressions - 1-2 Order of Operations and Evaluating Expressions - 1-3 Real Numbers and the Number Line - 1-4 Properties of Real Numbers - 1-5 Adding

### Zeros of a Polynomial Function

Zeros of a Polynomial Function An important consequence of the Factor Theorem is that finding the zeros of a polynomial is really the same thing as factoring it into linear factors. In this section we

### Simplifying finite sums

Simplifying finite sums Misha Lavrov ARML Practice 1/26/2014 Warm-up 1. Find 1 + 2 + 3 + + 100. (The story goes that Gauss was given this problem by his teacher in elementary school to eep him busy so

### Section 2.3. Learning Objectives. Graphing Quadratic Functions

Section 2.3 Quadratic Functions Learning Objectives Quadratic function, equations, and inequities Properties of quadratic function and their graphs Applications More general functions Graphing Quadratic

### MATH 65 NOTEBOOK CERTIFICATIONS

MATH 65 NOTEBOOK CERTIFICATIONS Review Material from Math 60 2.5 4.3 4.4a Chapter #8: Systems of Linear Equations 8.1 8.2 8.3 Chapter #5: Exponents and Polynomials 5.1 5.2a 5.2b 5.3 5.4 5.5 5.6a 5.7a 1

### SMT 2014 Algebra Test Solutions February 15, 2014

1. Alice and Bob are painting a house. If Alice and Bob do not take any breaks, they will finish painting the house in 20 hours. If, however, Bob stops painting once the house is half-finished, then the

### MATH 10034 Fundamental Mathematics IV

MATH 0034 Fundamental Mathematics IV http://www.math.kent.edu/ebooks/0034/funmath4.pdf Department of Mathematical Sciences Kent State University January 2, 2009 ii Contents To the Instructor v Polynomials.

### Factoring Polynomials

Factoring a Polynomial Expression Factoring a polynomial is expressing the polynomial as a product of two or more factors. Simply stated, it is somewhat the reverse process of multiplying. To factor polynomials,

### Dividing Polynomials VOCABULARY

- Dividing Polynomials TEKS FOCUS TEKS ()(C) Determine the quotient of a polynomial of degree three and degree four when divided by a polynomial of degree one and of degree two. TEKS ()(A) Apply mathematics

### minimal polyonomial Example

Minimal Polynomials Definition Let α be an element in GF(p e ). We call the monic polynomial of smallest degree which has coefficients in GF(p) and α as a root, the minimal polyonomial of α. Example: We

### Introduction to Polynomials 513 to 508 Chapter 2 Polynomials Unit NOTE: Some pages in this packet are from Tanton s, Algebra, Chapter 7, Pages 4 11

Introduction to Polynomials 513 to 508 Chapter 2 Polynomials Unit NOTE: Some pages in this packet are from Tanton s, Algebra, Chapter 7, Pages 4 11 Before you start this assignment, read the front page

### a) x 2 8x = 25 x 2 8x + 16 = (x 4) 2 = 41 x = 4 ± 41 x + 1 = ± 6 e) x 2 = 5 c) 2x 2 + 2x 7 = 0 2x 2 + 2x = 7 x 2 + x = 7 2

Solving Quadratic Equations By Square Root Method Solving Quadratic Equations By Completing The Square Consider the equation x = a, which we now solve: x = a x a = 0 (x a)(x + a) = 0 x a = 0 x + a = 0

Factoring the trinomial ax 2 + bx + c when a = 1 A trinomial in the form x 2 + bx + c can be factored to equal (x + m)(x + n) when the product of m x n equals c and the sum of m + n equals b. (Note: the

### Date: Section P.2: Exponents and Radicals. Properties of Exponents: Example #1: Simplify. a.) 3 4. b.) 2. c.) 3 4. d.) Example #2: Simplify. b.) a.

Properties of Exponents: Section P.2: Exponents and Radicals Date: Example #1: Simplify. a.) 3 4 b.) 2 c.) 34 d.) Example #2: Simplify. a.) b.) c.) d.) 1 Square Root: Principal n th Root: Example #3: Simplify.

### Chapter 8. Quadratic Equations and Functions

Chapter 8. Quadratic Equations and Functions 8.1. Solve Quadratic Equations KYOTE Standards: CR 0; CA 11 In this section, we discuss solving quadratic equations by factoring, by using the square root property

### Chapter R.4 Factoring Polynomials

Chapter R.4 Factoring Polynomials Introduction to Factoring To factor an expression means to write the expression as a product of two or more factors. Sample Problem: Factor each expression. a. 15 b. x

### Session 3 Solving Linear and Quadratic Equations and Absolute Value Equations

Session 3 Solving Linear and Quadratic Equations and Absolute Value Equations 1 Solving Equations An equation is a statement expressing the equality of two mathematical expressions. It may have numeric

### 3.5 Spline interpolation

3.5 Spline interpolation Given a tabulated function f k = f(x k ), k = 0,... N, a spline is a polynomial between each pair of tabulated points, but one whose coefficients are determined slightly non-locally.

### A new approach to solving the cubic: Cardan s solution revealed 1

354 THE MATHEMATICAL GAZETTE, 1993, VOL 77 A new approach to solving the cubic: Cardan s solution revealed 1 R W D Nickalls The cubic holds a double fascination, since not only is it interesting in its

### not to be republished NCERT QUADRATIC EQUATIONS CHAPTER 4 (A) Main Concepts and Results

QUADRATIC EQUATIONS (A) Main Concepts and Results Quadratic equation : A quadratic equation in the variable x is of the form ax + bx + c = 0, where a, b, c are real numbers and a 0. Roots of a quadratic

### 8.2 Solving Linear Recurrence Relations

8.2 Solving Linear Recurrence Relations Determine if recurrence relation is homogeneous or nonhomogeneous. Determine if recurrence relation is linear or nonlinear. Determine whether or not the coefficients

### 6 EXTENDING ALGEBRA. 6.0 Introduction. 6.1 The cubic equation. Objectives

6 EXTENDING ALGEBRA Chapter 6 Extending Algebra Objectives After studying this chapter you should understand techniques whereby equations of cubic degree and higher can be solved; be able to factorise

### 3. Polynomials. 3.1 Parabola primer

3. Polynomials 3.1 Parabola primer A parabola is the graph of a quadratic (degree 2) polynomial, that is, a parabola is polynomial of the form: standard form: y = ax 2 + bx + c. When we are given a polynomial

### Factoring and Applications

Factoring and Applications What is a factor? The Greatest Common Factor (GCF) To factor a number means to write it as a product (multiplication). Therefore, in the problem 48 3, 4 and 8 are called the

### Algebra 1 Chapter 3 Vocabulary. equivalent - Equations with the same solutions as the original equation are called.

Chapter 3 Vocabulary equivalent - Equations with the same solutions as the original equation are called. formula - An algebraic equation that relates two or more real-life quantities. unit rate - A rate

### 6.1 Add & Subtract Polynomial Expression & Functions

6.1 Add & Subtract Polynomial Expression & Functions Objectives 1. Know the meaning of the words term, monomial, binomial, trinomial, polynomial, degree, coefficient, like terms, polynomial funciton, quardrtic