2.5 Zeros of a Polynomial Functions


 Ruth Cornelia Sanders
 1 years ago
 Views:
Transcription
1 .5 Zeros of a Polynomial Functions Section.5 Notes Page 1 The first rule we will talk about is Descartes Rule of Signs, which can be used to determine the possible times a graph crosses the xaxis and has a zero. A sign change is a place in f where you have + to or to +. Descartes Rule of Signs 1.) The number of positive real zeros of f equals the number of sign changes in f (x) or less an even integer..) The number of negative real zeros of f equals the number of sign changes in or less an even integer. Less an even integer means we keep subtracting from the number of sign changes until we get to zero or an negative number. Suppose that the number of sign changes was 6. Then we keep subtracting to get the other answers. We will get 6, 6, 6, 6 which is 6,,, 0. If we have 5, then our answers are 5,, or 1. EXAMPLE: Use Descartes Rule of Signs to find the number of possible positive and negative zeros of 6 x x 6x x. Positive Zeros: 6 We need to count the number of sign changes in x x 6x x. The brackets above indicate the place where we have + to or to +. In this case we have sign changes. To write our answer, we start with and then keep subtracting to get the other answers since it is less an even integer. So the number of positive real zeros is or or 0. You keep subtracting until you get a zero or a negative number. Negative Zeros: In order to find the negative zeros we must look at f ( x) : 6 x x x 6 x 5 Put in a x for x in the equation for f. 6 x x 6x x As we notice above there are two sign changes in f ( x). The number of sign changes will be or 0. Again we keep subtracting from our answer until we get to 0 or a negative number. EXAMPLE: Use Descartes Rule of Signs to find the number of possible positive and negative zeros of x x. Positive Zeros: We need to count the number of sign changes in x x. We see that there are sign changes, so as our answer we would write: or 1.
2 Negative Zeros: In order to find the negative zeros we must look at f ( x) : 5 5x x x x x Section.5 Notes Page We notice there are no sign changes in. This means there are no negative sign changes (0). Rational Zeros Theorem Let n a x a a n n 1 n 1 x... 0 be a polynomial. Then the number of possible real zeros of f is: factors of a0 factors of a n To review a factor is a number that evenly divides into something. For example, the factors of 6 are 1, and. EXAMPLE: List the possible real zeros of: x 7x x 8 Using the Rational Zeros Theorem we will write the factors of 8 over the factors of :,, 8 Now divide each number on top by each on the bottom. You will get the list of zeros: 1 8,, 8,,,,. These do not need to be in any special order. This list represents all the possible places the graph could cross the xaxis. EXAMPLE: Given x 8x 0, a.) Use Descartes Rule of Signs to find the number of c.) Find the zeros using synthetic division. a.) We need to find the number of sign changes of x 8x 0. There is only one sign change, so the number of positive real zeros is 1. For the negative zeros we need to look at : ( x) x 8 x 11 0 x 8x 0 f You will get: There are two sign changes. Therefore the number of negative real zeros is or 0.
3 b.) We need to use the Rational Zeros Theorem to find our list of possible zeros. Section.5 Notes Page,, 1 10, 0 Now divide each number on top by each on the bottom. You will get:,, 10, 0. This is our list of possible zeros. c.) Now we need to see which one is a zero. In order to do this, pick a zero to test and use synthetic division with the original equation. If we get a zero for the remainder we know that this is a zero. For example, let s first test the xvalue 1. We need to set up and do the synthetic division: We don t get a zero for the remainder, so we know 1 is not one of our answers Let s try a different number. We will now test x = We do get a zero, so x = 1 is one of our answers. We could go through this process for all the other possible zeros in our list, but since we found one we can find the other ones in an easier way. The last row of our synthetic division was This means our new equation is x 9x 0. We can set this equation equal to zero to get the other solutions. You will get x 9x 0 0. Factoring this we will get ( x )( x 5) 0, so our other answers are x =  and x = 5. So our answer for this one would be: x = 5, , and 1. This confirms Descartes Rule of Signs. We have one positive zero and two negative zeros. EXAMPLE: Given x x 19x 6, a.) Use Descartes Rule of Signs to find the number of c.) Find the zeros using synthetic division. a.) We need to find the number of sign changes of: x x 19x 6 There are two sign changes, so the number of positive real zeros is or 0. For the negative zeros we need to look at : ( x) x 11 x x 19 6 x x 19x 6 f You will get: There are two sign changes. Therefore the number of negative real zeros is or 0. b.) We need to use the Rational Zeros Theorem to find our list of possible zeros.,, 6 Now divide each number on top by each on the bottom. You will get: 1,, 6,,. I did not put 6, because this is the same as. We already have it.
4 Section.5 Notes Page c.) Now we need to see which one is a zero. We need to start testing zeros. We will start with x = 1 again We do get a zero here. This will leave us with an x cubed equation which we will not be able to factor very easily. We need to find another zero so that we can reduce this cube to a square After more trail and error we get x = is another zero Let s look at the first row of numbers we got when we used x = 1. We got Since we know x =  is also a zero, let s use synthetic division with this row and the second zero we found, x = : This will leave us with x 8x which we can set equal to zero to find the other answers. (We also could have done synthetic division with the other row 80 above: and used x = 1. Does not matter which one you do). Now we can solve x 8x 0. Factoring we will get: ( x )(x 1) 0. Solving this we will get x =, x = 1/. Putting this all together our final answer for part c will be x = 1, 1/,, and. This confirms our Descartes Rule of Signs. We got two positive zeros and two negative zeros. EXAMPLE: Given x x x x, a.) Use Descartes Rule of Signs to find the number of c.) Find the zeros using synthetic division. a.) We need to find the number of sign changes of: x x x x There is only one sign change, so the number of positive real zeros is 1. For the negative zeros we need to look at : ( x) x x x x x x x f You will get: There are three sign changes. Therefore the number of negative real zeros is or 1. b.) We need to use the Rational Zeros Theorem to find our list of possible zeros., 1 Now divide each number on top by each on the bottom. You will get:,. c.) Now we need to see which one is a zero. We need to start testing zeros. We will start with x = 1 again We do get a zero here. This will leave us with an x cubed equation which we 10 will not be able to factor very easily. We need to find another zero so that we can reduce this cube to a square.
5 We find that x = 1 is another zero Section.5 Notes Page 5 Let s look at the first row of numbers we got when we used x = 1. We got Since we know x = 1 is also a zero, let s use synthetic division with this row and the second zero we found, x = 1: This will leave us with x x which we can set equal to zero to find the 1 other answers. (We also could have done synthetic division with the other row 1 0 above: and used x = 1. Does not matter which one you do). Now we can solve x x 0. Factoring we will get: ( x )( x ) 0. Solving this we will get x = . Putting this all together our final answer for part c will be x. But what about Descartes Rule of Signs? We got only two negative zeros and one positive zero. Descartes told us that we should have three negative zeros. When we solved ( x )( x ) 0 this actually gave us a double root,  and . So technically the answers are x, which would satisfy Descartes. We don t need to write a repeated root more than once. EXAMPLE: Given x x 65, a.) Use Descartes Rule of Signs to find the number of 1 c.) Find the zeros using synthetic division given f ( 5) 0 and f 0. a.) We need to find the number of sign changes of: x x 65 There are two sign changes, so the number of positive real zeros is or 0. For the negative zeros we need to look at : x x 65 ( x) ( x) 5( x) 11( x) 65 You will get: There are two sign changes. Therefore the number of negative real zeros is or 0. b.) We need to use the Rational Zeros Theorem to find our list of possible zeros. 65 Dividing gives us ,,,,. c.) We were given the first two zeros so we don t need to do trial and error on this one. We will do synthetic division twice to get a quadratic. It doesn t matter which zero you start with. I will start with x =
6 Section.5 Notes Page 6 ½ Again it does not matter what zero you start with. Since we started out with a fourth power, doing synthetic division twice brought this down to a quadratic. We now have to solve x 1x 6 0. We notice there is a common factor of. We can divide both sides of the equation by to make our calculations easier. You will get x 6x 1 0. This cannot be factored, so we must use the quadratic formula: 6 6 (1)(1) i x i. (1) We do not get a real number as a result, but we still need to include this in our answer. We write our answer as x = 1, 5, i. Does Descartes Rule take into consideration the complex numbers? NO! Descartes only gives you the possible REAL negative and positive zeros. In part a it said we would either get positive real zeros or no positive real zeros. This was the same for the negative zeros. We should get either two or none of them. In our case we have two positive zeros and no negative zeros, so this does fit Descartes Rule of Signs.
Zero: If P is a polynomial and if c is a number such that P (c) = 0 then c is a zero of P.
MATH 11011 FINDING REAL ZEROS KSU OF A POLYNOMIAL Definitions: Polynomial: is a function of the form P (x) = a n x n + a n 1 x n 1 + + a x + a 1 x + a 0. The numbers a n, a n 1,..., a 1, a 0 are called
More informationIn this lesson you will learn to find zeros of polynomial functions that are not factorable.
2.6. Rational zeros of polynomial functions. In this lesson you will learn to find zeros of polynomial functions that are not factorable. REVIEW OF PREREQUISITE CONCEPTS: A polynomial of n th degree has
More informationZeros of Polynomial Functions
Review: Synthetic Division Find (x 25x  5x 3 + x 4 ) (5 + x). Factor Theorem Solve 2x 35x 2 + x + 2 =0 given that 2 is a zero of f(x) = 2x 35x 2 + x + 2. Zeros of Polynomial Functions Introduction
More information317 1525 5 1510 25 32 5 0. 1b) since the remainder is 0 I need to factor the numerator. Synthetic division tells me this is true
Section 5.2 solutions #110: a) Perform the division using synthetic division. b) if the remainder is 0 use the result to completely factor the dividend (this is the numerator or the polynomial to the
More informationZeros of a Polynomial Function
Zeros of a Polynomial Function An important consequence of the Factor Theorem is that finding the zeros of a polynomial is really the same thing as factoring it into linear factors. In this section we
More informationZeros of Polynomial Functions
Zeros of Polynomial Functions The Rational Zero Theorem If f (x) = a n x n + a n1 x n1 + + a 1 x + a 0 has integer coefficients and p/q (where p/q is reduced) is a rational zero, then p is a factor of
More informationProcedure for Graphing Polynomial Functions
Procedure for Graphing Polynomial Functions P(x) = a n x n + a n1 x n1 + + a 1 x + a 0 To graph P(x): As an example, we will examine the following polynomial function: P(x) = 2x 3 3x 2 23x + 12 1. Determine
More informationMarch 29, 2011. 171S4.4 Theorems about Zeros of Polynomial Functions
MAT 171 Precalculus Algebra Dr. Claude Moore Cape Fear Community College CHAPTER 4: Polynomial and Rational Functions 4.1 Polynomial Functions and Models 4.2 Graphing Polynomial Functions 4.3 Polynomial
More informationCLASS NOTES. We bring down (copy) the leading coefficient below the line in the same column.
SYNTHETIC DIVISION CLASS NOTES When factoring or evaluating polynomials we often find that it is convenient to divide a polynomial by a linear (first degree) binomial of the form x k where k is a real
More informationZeros of Polynomial Functions
Zeros of Polynomial Functions Objectives: 1.Use the Fundamental Theorem of Algebra to determine the number of zeros of polynomial functions 2.Find rational zeros of polynomial functions 3.Find conjugate
More informationPolynomials can be added or subtracted simply by adding or subtracting the corresponding terms, e.g., if
1. Polynomials 1.1. Definitions A polynomial in x is an expression obtained by taking powers of x, multiplying them by constants, and adding them. It can be written in the form c 0 x n + c 1 x n 1 + c
More informationPOLYNOMIAL FUNCTIONS
POLYNOMIAL FUNCTIONS Polynomial Division.. 314 The Rational Zero Test.....317 Descarte s Rule of Signs... 319 The Remainder Theorem.....31 Finding all Zeros of a Polynomial Function.......33 Writing a
More informationMINI LESSON. Lesson 5b Solving Quadratic Equations
MINI LESSON Lesson 5b Solving Quadratic Equations Lesson Objectives By the end of this lesson, you should be able to: 1. Determine the number and type of solutions to a QUADRATIC EQUATION by graphing 2.
More information3. Power of a Product: Separate letters, distribute to the exponents and the bases
Chapter 5 : Polynomials and Polynomial Functions 5.1 Properties of Exponents Rules: 1. Product of Powers: Add the exponents, base stays the same 2. Power of Power: Multiply exponents, bases stay the same
More informationSolutions to SelfTest for Chapter 4 c4sts  p1
Solutions to SelfTest for Chapter 4 c4sts  p1 1. Graph a polynomial function. Label all intercepts and describe the end behavior. a. P(x) = x 4 2x 3 15x 2. (1) Domain = R, of course (since this is a
More information3.2 The Factor Theorem and The Remainder Theorem
3. The Factor Theorem and The Remainder Theorem 57 3. The Factor Theorem and The Remainder Theorem Suppose we wish to find the zeros of f(x) = x 3 + 4x 5x 4. Setting f(x) = 0 results in the polynomial
More informationQuadratic Equations and Inequalities
MA 134 Lecture Notes August 20, 2012 Introduction The purpose of this lecture is to... Introduction The purpose of this lecture is to... Learn about different types of equations Introduction The purpose
More informationSECTION 2.5: FINDING ZEROS OF POLYNOMIAL FUNCTIONS
SECTION 2.5: FINDING ZEROS OF POLYNOMIAL FUNCTIONS Assume f ( x) is a nonconstant polynomial with real coefficients written in standard form. PART A: TECHNIQUES WE HAVE ALREADY SEEN Refer to: Notes 1.31
More informationThe Quadratic Formula
Definition of the Quadratic Formula The Quadratic Formula uses the a, b and c from numbers; they are the "numerical coefficients"., where a, b and c are just The Quadratic Formula is: For ax 2 + bx + c
More information5.1 The Remainder and Factor Theorems; Synthetic Division
5.1 The Remainder and Factor Theorems; Synthetic Division In this section you will learn to: understand the definition of a zero of a polynomial function use long and synthetic division to divide polynomials
More informationActually, if you have a graphing calculator this technique can be used to find solutions to any equation, not just quadratics. All you need to do is
QUADRATIC EQUATIONS Definition ax 2 + bx + c = 0 a, b, c are constants (generally integers) Roots Synonyms: Solutions or Zeros Can have 0, 1, or 2 real roots Consider the graph of quadratic equations.
More informationQuestion 1a of 14 ( 2 Identifying the roots of a polynomial and their importance 91008 )
Quiz: Factoring by Graphing Question 1a of 14 ( 2 Identifying the roots of a polynomial and their importance 91008 ) (x3)(x6), (x6)(x3), (1x3)(1x6), (1x6)(1x3), (x3)*(x6), (x6)*(x3), (1x 3)*(1x6),
More informationSYNTHETIC DIVISION AND THE FACTOR THEOREM
628 (11 48) Chapter 11 Functions In this section Synthetic Division The Factor Theorem Solving Polynomial Equations 11.6 SYNTHETIC DIVISION AND THE FACTOR THEOREM In this section we study functions defined
More informationWest WindsorPlainsboro Regional School District Algebra I Part 2 Grades 912
West WindsorPlainsboro Regional School District Algebra I Part 2 Grades 912 Unit 1: Polynomials and Factoring Course & Grade Level: Algebra I Part 2, 9 12 This unit involves knowledge and skills relative
More information3.7 Complex Zeros; Fundamental Theorem of Algebra
SECTION.7 Complex Zeros; Fundamental Theorem of Algebra 2.7 Complex Zeros; Fundamental Theorem of Algebra PREPARING FOR THIS SECTION Before getting started, review the following: Complex Numbers (Appendix,
More informationSTUDY GUIDE FOR SOME BASIC INTERMEDIATE ALGEBRA SKILLS
STUDY GUIDE FOR SOME BASIC INTERMEDIATE ALGEBRA SKILLS The intermediate algebra skills illustrated here will be used extensively and regularly throughout the semester Thus, mastering these skills is an
More informationALGEBRA 2 CRA 2 REVIEW  Chapters 16 Answer Section
ALGEBRA 2 CRA 2 REVIEW  Chapters 16 Answer Section MULTIPLE CHOICE 1. ANS: C 2. ANS: A 3. ANS: A OBJ: 53.1 Using Vertex Form SHORT ANSWER 4. ANS: (x + 6)(x 2 6x + 36) OBJ: 64.2 Solving Equations by
More information56 The Remainder and Factor Theorems
Use synthetic substitution to find f (4) and f ( 2) for each function. 1. f (x) = 2x 3 5x 2 x + 14 Divide the function by x 4. The remainder is 58. Therefore, f (4) = 58. Divide the function by x + 2.
More informationAlgebra Tiles Activity 1: Adding Integers
Algebra Tiles Activity 1: Adding Integers NY Standards: 7/8.PS.6,7; 7/8.CN.1; 7/8.R.1; 7.N.13 We are going to use positive (yellow) and negative (red) tiles to discover the rules for adding and subtracting
More informationIntroduction to polynomials
Worksheet 4.5 Polynomials Section 1 Introduction to polynomials A polynomial is an expression of the form p(x) = p 0 + p 1 x + p 2 x 2 + + p n x n, (n N) where p 0, p 1,..., p n are constants and x os
More informationPrecalculus A 2016 Graphs of Rational Functions
37 Precalculus A 2016 Graphs of Rational Functions Determine the equations of the vertical and horizontal asymptotes, if any, of each function. Graph each function with the asymptotes labeled. 1. ƒ(x)
More information1 8 solve quadratic equations by using the quadratic formula and the discriminate September with 16, 2016 notes.noteb
WARM UP 1. Write 15x 2 + 6x = 14x 2 12 in standard form. ANSWER x 2 + 6x +12 = 0 2. Evaluate b 2 4ac when a = 3, b = 6, and c = 5. ANSWER 24 3. A student is solving an equation by completing the square.
More informationAdditional Examples of using the Elimination Method to Solve Systems of Equations
Additional Examples of using the Elimination Method to Solve Systems of Equations. Adjusting Coecients and Avoiding Fractions To use one equation to eliminate a variable, you multiply both sides of that
More informationFOIL FACTORING. Factoring is merely undoing the FOIL method. Let s look at an example: Take the polynomial x²+4x+4.
FOIL FACTORING Factoring is merely undoing the FOIL method. Let s look at an example: Take the polynomial x²+4x+4. First we take the 3 rd term (in this case 4) and find the factors of it. 4=1x4 4=2x2 Now
More informationDeterminants can be used to solve a linear system of equations using Cramer s Rule.
2.6.2 Cramer s Rule Determinants can be used to solve a linear system of equations using Cramer s Rule. Cramer s Rule for Two Equations in Two Variables Given the system This system has the unique solution
More informationJUST THE MATHS UNIT NUMBER 1.8. ALGEBRA 8 (Polynomials) A.J.Hobson
JUST THE MATHS UNIT NUMBER 1.8 ALGEBRA 8 (Polynomials) by A.J.Hobson 1.8.1 The factor theorem 1.8.2 Application to quadratic and cubic expressions 1.8.3 Cubic equations 1.8.4 Long division of polynomials
More informationBasic Math Refresher A tutorial and assessment of basic math skills for students in PUBP704.
Basic Math Refresher A tutorial and assessment of basic math skills for students in PUBP704. The purpose of this Basic Math Refresher is to review basic math concepts so that students enrolled in PUBP704:
More informationMATH 100 PRACTICE FINAL EXAM
MATH 100 PRACTICE FINAL EXAM Lecture Version Name: ID Number: Instructor: Section: Do not open this booklet until told to do so! On the separate answer sheet, fill in your name and identification number
More information1.3 Algebraic Expressions
1.3 Algebraic Expressions A polynomial is an expression of the form: a n x n + a n 1 x n 1 +... + a 2 x 2 + a 1 x + a 0 The numbers a 1, a 2,..., a n are called coefficients. Each of the separate parts,
More informationPower of the Quadratic Formula
Power of the Quadratic Formula Name 1. Consider the equation y = x 4 8x 2 + 4. It may be a surprise, but we can use the quadratic the quadratic formula to first solve for x 2. Once we know the value of
More informationCHAPTER 4. Test Bank Exercises in. Exercise Set 4.1
Test Bank Exercises in CHAPTER 4 Exercise Set 4.1 1. Graph the quadratic function f(x) = x 2 2x 3. Indicate the vertex, axis of symmetry, minimum 2. Graph the quadratic function f(x) = x 2 2x. Indicate
More informationAPPLICATIONS AND MODELING WITH QUADRATIC EQUATIONS
APPLICATIONS AND MODELING WITH QUADRATIC EQUATIONS Now that we are starting to feel comfortable with the factoring process, the question becomes what do we use factoring to do? There are a variety of classic
More informationAlgebra. Indiana Standards 1 ST 6 WEEKS
Chapter 1 Lessons Indiana Standards  11 Variables and Expressions  12 Order of Operations and Evaluating Expressions  13 Real Numbers and the Number Line  14 Properties of Real Numbers  15 Adding
More informationIn order to master the techniques explained here it is vital that you undertake plenty of practice exercises so that they become second nature.
Indices or Powers A knowledge of powers, or indices as they are often called, is essential for an understanding of most algebraic processes. In this section of text you will learn about powers and rules
More information0.7 Quadratic Equations
0.7 Quadratic Equations 8 0.7 Quadratic Equations In Section 0..1, we reviewed how to solve basic nonlinear equations by factoring. The astute reader should have noticed that all of the equations in that
More informationAlgebra II Pacing Guide First Nine Weeks
First Nine Weeks SOL Topic Blocks.4 Place the following sets of numbers in a hierarchy of subsets: complex, pure imaginary, real, rational, irrational, integers, whole and natural. 7. Recognize that the
More informationFirst Degree Equations First degree equations contain variable terms to the first power and constants.
Section 4 7: Solving 2nd Degree Equations First Degree Equations First degree equations contain variable terms to the first power and constants. 2x 6 = 14 2x + 3 = 4x 15 First Degree Equations are solved
More informationSect 6.7  Solving Equations Using the Zero Product Rule
Sect 6.7  Solving Equations Using the Zero Product Rule 116 Concept #1: Definition of a Quadratic Equation A quadratic equation is an equation that can be written in the form ax 2 + bx + c = 0 (referred
More informationPolynomials Classwork
Polynomials Classwork What Is a Polynomial Function? Numerical, Analytical and Graphical Approaches Anatomy of an n th degree polynomial function Def.: A polynomial function of degree n in the vaiable
More informationPartial Fractions. Combining fractions over a common denominator is a familiar operation from algebra:
Partial Fractions Combining fractions over a common denominator is a familiar operation from algebra: From the standpoint of integration, the left side of Equation 1 would be much easier to work with than
More informationNow that we have a handle on the integers, we will turn our attention to other types of numbers.
1.2 Rational Numbers Now that we have a handle on the integers, we will turn our attention to other types of numbers. We start with the following definitions. Definition: Rational Number any number that
More informationChapter 1 Notes: Quadratic Functions
1 Chapter 1 Notes: Quadratic Functions (Textbook Lessons 1.1 1.2) Graphing Quadratic Function A function defined by an equation of the form, The graph is a Ushape called a. Standard Form Vertex Form axis
More informationRational Exponents. Squaring both sides of the equation yields. and to be consistent, we must have
8.6 Rational Exponents 8.6 OBJECTIVES 1. Define rational exponents 2. Simplify expressions containing rational exponents 3. Use a calculator to estimate the value of an expression containing rational exponents
More informationCONTENTS. Please note:
CONTENTS Introduction...iv. Number Systems... 2. Algebraic Expressions.... Factorising...24 4. Solving Linear Equations...8. Solving Quadratic Equations...0 6. Simultaneous Equations.... Long Division
More information1.1 Solving a Linear Equation ax + b = 0
1.1 Solving a Linear Equation ax + b = 0 To solve an equation ax + b = 0 : (i) move b to the other side (subtract b from both sides) (ii) divide both sides by a Example: Solve x = 0 (i) x = 0 x = (ii)
More informationProblem Set 7  Fall 2008 Due Tuesday, Oct. 28 at 1:00
18.781 Problem Set 7  Fall 2008 Due Tuesday, Oct. 28 at 1:00 Throughout this assignment, f(x) always denotes a polynomial with integer coefficients. 1. (a) Show that e 32 (3) = 8, and write down a list
More informationPolynomials. Dr. philippe B. laval Kennesaw State University. April 3, 2005
Polynomials Dr. philippe B. laval Kennesaw State University April 3, 2005 Abstract Handout on polynomials. The following topics are covered: Polynomial Functions End behavior Extrema Polynomial Division
More informationMethod To Solve Linear, Polynomial, or Absolute Value Inequalities:
Solving Inequalities An inequality is the result of replacing the = sign in an equation with ,, or. For example, 3x 2 < 7 is a linear inequality. We call it linear because if the < were replaced with
More informationWorksheet 4.7. Polynomials. Section 1. Introduction to Polynomials. A polynomial is an expression of the form
Worksheet 4.7 Polynomials Section 1 Introduction to Polynomials A polynomial is an expression of the form p(x) = p 0 + p 1 x + p 2 x 2 + + p n x n (n N) where p 0, p 1,..., p n are constants and x is a
More informationIn a triangle with a right angle, there are 2 legs and the hypotenuse of a triangle.
PROBLEM STATEMENT In a triangle with a right angle, there are legs and the hypotenuse of a triangle. The hypotenuse of a triangle is the side of a right triangle that is opposite the 90 angle. The legs
More informationQUADRATIC EQUATIONS Use with Section 1.4
QUADRATIC EQUATIONS Use with Section 1.4 OBJECTIVES: Solve Quadratic Equations by Factoring Solve Quadratic Equations Using the Zero Product Property Solve Quadratic Equations Using the Quadratic Formula
More informationThe xintercepts of the graph are the xvalues for the points where the graph intersects the xaxis. A parabola may have one, two, or no xintercepts.
Chapter 101 Identify Quadratics and their graphs A parabola is the graph of a quadratic function. A quadratic function is a function that can be written in the form, f(x) = ax 2 + bx + c, a 0 or y = ax
More informationFinding Solutions of Polynomial Equations
DETAILED SOLUTIONS AND CONCEPTS  POLYNOMIAL EQUATIONS Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to ingrid.stewart@csn.edu. Thank you! PLEASE NOTE
More informationMath 119 Pretest Review Answers
Math 9 Pretest Review Answers Linear Equations Find the slope of the line passing through the given points:. (, 5); (0, ) 7/. (, 4); (, 0) Undefined. (, ); (, 4) 4. Find the equation of the line with
More informationAlgebra Practice Problems for Precalculus and Calculus
Algebra Practice Problems for Precalculus and Calculus Solve the following equations for the unknown x: 1. 5 = 7x 16 2. 2x 3 = 5 x 3. 4. 1 2 (x 3) + x = 17 + 3(4 x) 5 x = 2 x 3 Multiply the indicated polynomials
More informationPark Forest Math Team. Meet #5. Algebra. Selfstudy Packet
Park Forest Math Team Meet #5 Selfstudy Packet Problem Categories for this Meet: 1. Mystery: Problem solving 2. Geometry: Angle measures in plane figures including supplements and complements 3. Number
More informationPortable Assisted Study Sequence ALGEBRA IIA
SCOPE This course is divided into two semesters of study (A & B) comprised of five units each. Each unit teaches concepts and strategies recommended for intermediate algebra students. The first half of
More informationOfficial Math 112 Catalog Description
Official Math 112 Catalog Description Topics include properties of functions and graphs, linear and quadratic equations, polynomial functions, exponential and logarithmic functions with applications. A
More informationRational Exponents. Given that extension, suppose that. Squaring both sides of the equation yields. a 2 (4 1/2 ) 2 a 2 4 (1/2)(2) a a 2 4 (2)
SECTION 0. Rational Exponents 0. OBJECTIVES. Define rational exponents. Simplify expressions with rational exponents. Estimate the value of an expression using a scientific calculator. Write expressions
More informationSolving Quadratic Equations
9.3 Solving Quadratic Equations by Using the Quadratic Formula 9.3 OBJECTIVES 1. Solve a quadratic equation by using the quadratic formula 2. Determine the nature of the solutions of a quadratic equation
More information5.4 The Quadratic Formula
Section 5.4 The Quadratic Formula 481 5.4 The Quadratic Formula Consider the general quadratic function f(x) = ax + bx + c. In the previous section, we learned that we can find the zeros of this function
More informationAlgebra 12. A. Identify and translate variables and expressions.
St. Mary's College High School Algebra 12 The Language of Algebra What is a variable? A. Identify and translate variables and expressions. The following apply to all the skills How is a variable used
More information(2 4 + 9)+( 7 4) + 4 + 2
5.2 Polynomial Operations At times we ll need to perform operations with polynomials. At this level we ll just be adding, subtracting, or multiplying polynomials. Dividing polynomials will happen in future
More informationWelcome to Basic Math Skills!
Basic Math Skills Welcome to Basic Math Skills! Most students find the math sections to be the most difficult. Basic Math Skills was designed to give you a refresher on the basics of math. There are lots
More informationSOLVING EQUATIONS WITH RADICALS AND EXPONENTS 9.5. section ( 3 5 3 2 )( 3 25 3 10 3 4 ). The OddRoot Property
498 (9 3) Chapter 9 Radicals and Rational Exponents Replace the question mark by an expression that makes the equation correct. Equations involving variables are to be identities. 75. 6 76. 3?? 1 77. 1
More information3.3 Real Zeros of Polynomials
3.3 Real Zeros of Polynomials 69 3.3 Real Zeros of Polynomials In Section 3., we found that we can use synthetic division to determine if a given real number is a zero of a polynomial function. This section
More informationMath Common Core Sampler Test
High School Algebra Core Curriculum Math Test Math Common Core Sampler Test Our High School Algebra sampler covers the twenty most common questions that we see targeted for this level. For complete tests
More informationDividing Polynomials VOCABULARY
 Dividing Polynomials TEKS FOCUS TEKS ()(C) Determine the quotient of a polynomial of degree three and degree four when divided by a polynomial of degree one and of degree two. TEKS ()(A) Apply mathematics
More informationAn Insight into Division Algorithm, Remainder and Factor Theorem
An Insight into Division Algorithm, Remainder and Factor Theorem Division Algorithm Recall division of a positive integer by another positive integer For eample, 78 7, we get and remainder We confine the
More informationClear & Understandable Math
Chapter 1: Basic Algebra (Review) This chapter reviews many of the fundamental algebra skills that students should have mastered in Algebra 1. Students are encouraged to take the time to go over these
More informationDefinition 2.1 The line x = a is a vertical asymptote of the function y = f(x) if y approaches ± as x approaches a from the right or left.
Vertical and Horizontal Asymptotes Definition 2.1 The line x = a is a vertical asymptote of the function y = f(x) if y approaches ± as x approaches a from the right or left. This graph has a vertical asymptote
More informationMath 1111 Journal Entries Unit I (Sections , )
Math 1111 Journal Entries Unit I (Sections 1.11.2, 1.41.6) Name Respond to each item, giving sufficient detail. You may handwrite your responses with neat penmanship. Your portfolio should be a collection
More information2.5 ZEROS OF POLYNOMIAL FUNCTIONS. Copyright Cengage Learning. All rights reserved.
2.5 ZEROS OF POLYNOMIAL FUNCTIONS Copyright Cengage Learning. All rights reserved. What You Should Learn Use the Fundamental Theorem of Algebra to determine the number of zeros of polynomial functions.
More informationA.4 Polynomial Division; Synthetic Division
SECTION A.4 Polynomial Division; Synthetic Division 977 A.4 Polynomial Division; Synthetic Division OBJECTIVES 1 Divide Polynomials Using Long Division 2 Divide Polynomials Using Synthetic Division 1 Divide
More informationThinkwell s Homeschool Algebra 2 Course Lesson Plan: 34 weeks
Thinkwell s Homeschool Algebra 2 Course Lesson Plan: 34 weeks Welcome to Thinkwell s Homeschool Algebra 2! We re thrilled that you ve decided to make us part of your homeschool curriculum. This lesson
More informationIntroduction to Finite Systems: Z 6 and Z 7
Introduction to : Z 6 and Z 7 The main objective of this discussion is to learn more about solving linear and quadratic equations. The reader is no doubt familiar with techniques for solving these equations
More informationMath 002 Intermediate Algebra
Math 002 Intermediate Algebra Student Notes & Assignments Unit 4 Rational Exponents, Radicals, Complex Numbers and Equation Solving Unit 5 Homework Topic Due Date 7.1 BOOK pg. 491: 62, 64, 66, 72, 78,
More information8 Polynomials Worksheet
8 Polynomials Worksheet Concepts: Quadratic Functions The Definition of a Quadratic Function Graphs of Quadratic Functions  Parabolas Vertex Absolute Maximum or Absolute Minimum Transforming the Graph
More information10.1. Solving Quadratic Equations. Investigation: Rocket Science CONDENSED
CONDENSED L E S S O N 10.1 Solving Quadratic Equations In this lesson you will look at quadratic functions that model projectile motion use tables and graphs to approimate solutions to quadratic equations
More informationAlgebraic Concepts Algebraic Concepts Writing
Curriculum Guide: Algebra 2/Trig (AR) 2 nd Quarter 8/7/2013 2 nd Quarter, Grade 912 GRADE 912 Unit of Study: Matrices Resources: Textbook: Algebra 2 (Holt, Rinehart & Winston), Ch. 4 Length of Study:
More information3.3. Solving Polynomial Equations. Introduction. Prerequisites. Learning Outcomes
Solving Polynomial Equations 3.3 Introduction Linear and quadratic equations, dealt within Sections 3.1 and 3.2, are members of a class of equations, called polynomial equations. These have the general
More information(Refer Slide Time: 00:00:56 min)
Numerical Methods and Computation Prof. S.R.K. Iyengar Department of Mathematics Indian Institute of Technology, Delhi Lecture No # 3 Solution of Nonlinear Algebraic Equations (Continued) (Refer Slide
More informationa 1 x + a 0 =0. (3) ax 2 + bx + c =0. (4)
ROOTS OF POLYNOMIAL EQUATIONS In this unit we discuss polynomial equations. A polynomial in x of degree n, where n 0 is an integer, is an expression of the form P n (x) =a n x n + a n 1 x n 1 + + a 1 x
More informationEAP/GWL Rev. 1/2011 Page 1 of 5. Factoring a polynomial is the process of writing it as the product of two or more polynomial factors.
EAP/GWL Rev. 1/2011 Page 1 of 5 Factoring a polynomial is the process of writing it as the product of two or more polynomial factors. Example: Set the factors of a polynomial equation (as opposed to an
More informationFunctions and Equations
Centre for Education in Mathematics and Computing Euclid eworkshop # Functions and Equations c 014 UNIVERSITY OF WATERLOO Euclid eworkshop # TOOLKIT Parabolas The quadratic f(x) = ax + bx + c (with a,b,c
More informationReview Session #5 Quadratics
Review Session #5 Quadratics Discriminant How can you determine the number and nature of the roots without solving the quadratic equation? 1. Prepare the quadratic equation for solving in other words,
More informationA fairly quick tempo of solutions discussions can be kept during the arithmetic problems.
Distributivity and related number tricks Notes: No calculators are to be used Each group of exercises is preceded by a short discussion of the concepts involved and one or two examples to be worked out
More informationCHAPTER 2: POLYNOMIAL AND RATIONAL FUNCTIONS
CHAPTER 2: POLYNOMIAL AND RATIONAL FUNCTIONS 2.01 SECTION 2.1: QUADRATIC FUNCTIONS (AND PARABOLAS) PART A: BASICS If a, b, and c are real numbers, then the graph of f x = ax2 + bx + c is a parabola, provided
More informationBookTOC.txt. 1. Functions, Graphs, and Models. Algebra Toolbox. Sets. The Real Numbers. Inequalities and Intervals on the Real Number Line
College Algebra in Context with Applications for the Managerial, Life, and Social Sciences, 3rd Edition Ronald J. Harshbarger, University of South Carolina  Beaufort Lisa S. Yocco, Georgia Southern University
More informationSection 2.1 Intercepts; Symmetry; Graphing Key Equations
Intercepts: An intercept is the point at which a graph crosses or touches the coordinate axes. x intercept is 1. The point where the line crosses (or intercepts) the xaxis. 2. The xcoordinate of a point
More information