Transformations in Homogeneous Coordinates


 Lizbeth McDonald
 1 years ago
 Views:
Transcription
1 Tansfomations in Homogeneous Coodinates (Com S 4/ Notes) YanBin Jia Aug, 6 Homogeneous Tansfomations A pojective tansfomation of the pojective plane is a mapping L : P P defined as u a b c u au + bv + cw v d e f v = du + ev + fw, () w g h k w gu + hv + kw whee a,b,c,d,e,f,g,h,k R. The mati epesenting the mapping L of the pojective plane is called a homogeneous tansfomation mati. When g = h = and k, the mapping L is an affine tansfomation intoduced in the pevious lectue. Affine tansfomations coespond to tansfomations of the Catesian plane. Note that homogeneous coodinates (u,v,w) unde the mapping () has image au + bv + cw du + ev + fw gu + hv + kw A division b gives the image L(u,v,w) of (u,v,w). Thus L(u,v,w) and L(u,v,w) ae equivalent and coespond to the same point in homogeneous coodinates. Theefoe the definition of a tansfomation does not depend on the choice of homogeneous coodinates fo a given point. A tansfomation of the pojective space is a mapping M : P P given b s u v w. m m m m 4 m m m m 4 m m m m 4 m 4 m 4 m 4 m 44 The 4 4 mati (m ij ) is called the homogeneous tansfomation mati of M. If the mati is nonsingula, then M is called a nonsingula tansfomation. If m 4 = m 4 = m 4 = and m 44, then M is said to be an affine tansfomation. Affine tansfomations coespond to tanslations, scalings, otations, eflections, etc. of the theedimensional space. Appendices ae optional fo eading unless specificall equied. s u v w.
2 . Tanslation and Scaling We fist descibe the homogeneous tansfomation matices fo tanslations and scalings, in the plane and the space. Let us stat with tanslation: h Tans(h, k) = k. Then h k = + h + k which veifies that the point (,) is tanslated to ( + h, + k). A tanslation b a, b, c in the , , and zdiections, espectivel, has the tansfomation mati: Tans(a,b,c) = The point p = (,,z,) is tanslated to the point p a b c = Tans(a,b,c)p a = b c = + a + b z + c Accodingl, the point (,,z) in the Catesian space is tanslated to ( + a, + b,z + c). The homogeneous scaling mati is s Scale(s,s ) = s. Then s s. = Eample. The unit squae with vetices (, ), (, ), (, ), and (, ) is scaled about the oigin b factos of 4 and in the  and  diections, espectivel. We have 4 = z s s,..
3 So the image is a squae with vetices (4, ), (8, ), (8, 4), and (4, 4). A scaling about the oigin b factos s /s w, s /s w, and s z /s w in the , , and zdiections, espectivel, has the tansfomation mati (often, s w is chosen to be ): s Scale(s,s,s z,s w ) = s s z. s w Simila to the cases of tanslation and scaling, the tansfomation mati fo a plana otation about the oigin though an angle θ is cos θ sinθ Rot(θ) = sinθ cos θ.. Plana Rotation about a Point A otation though an angle θ about a point (a,b) is obtained b pefoming a tanslation which maps (a,b) to the oigin, followed b a otation though an angle θ about the oigin, and followed b a tanslation which maps the oigin to (a,b). The otation mati is Rot (a,b) (θ) = Tans(a,b)Rot(θ)Tans( a, b) a cos θ sinθ = b sin θ cos θ = cos θ sinθ acos θ + bsin θ + a sinθ cos θ asin θ bcos θ + b a b. () Eample. A squae has vetices p = (, ), p = (, ), p = (, ), and p 4 (, ). Detemine the new vetices of the squae afte a otation about p though an angle of π/4. The tansfomation mati is p 4 p 4 p p p p p, p Figue : Rotation about p. Rot (,) (π/4) = + Appl the tansfomation above to the homogeneous coodinates of the vetices: + =
4 Thus the new vetices ae p (.99,.99), p = (, ), p (.99,.), and p 4 (.88,.), as illustated in Figue.. Application Instancing A geometic object is ceated b defining its components. Fo eample, the font of a house in Figue consists of ectangles, which fom the walls, windows, and doo of the house. The ectangles ae scaled fom a squae, which is an eample of a pictue element. Fo convenience, pictue elements ae defined in thei own local coodinate sstems, and ae constucted fom gaphical pimitives which ae the basic building blocks. Pictue elements ae defined once but ma be used man times in the constuction of objects. Fo eample, a squae with vetices (,), (,), (,), and (,) can be obtained using the gaphical pimitive Line fo the line segment joining the points (, ) and (, ) though otations and tanslations. A tansfomed cop of a gaphical pimitive doo Figue : Font of a house obtained fom instances of squae and point. o pictue element is efeed to as an instance. The afoementioned squae, denoted Squae, is defined b fou instances of the line. The completed eal object is defined in wold coodinates b appling a tansfomation to each pictue element. The house in the figue is defined b si instances of the pictue element Squae, and one instance of the pimitive Point (fo the doo handle). In paticula, the font doo is obtained fom Squae b appling a scaling of. unit in the diection, followed b a tanslation of units in the diection and unit in the diection. In homogeneous coodinates, the tansfomation mati is given b Tans(,) Scale(.,) =. =. The vetices of the doo ae obtained b appling the above tansfomation mati to the vetices of the Squae pimitive, giving... =. So the vetices of the doo in wold coodinates ae (,), (.,), (.,), and (,).. Invese Tansfomations The identit tansfomation I is the tansfomation that leaves all points of the plane unchanged. Moe pecisel, I is the tansfomation fo which I L = L I = L, fo an plana tansfomation L. The tansfomation mati of the identit tansfomation in homogeneous coodinates is the identit mati I. The invese of a tansfomation L, denoted L, maps images of L back to the oiginal points. Moe pecisel, the invese L satisfies that L L = L L = I. 4
5 Lemma Let T be the mati of the homogeneous tansfomation L. If the invese tansfomation L eists, then T eists and is the tansfomation mati of L. Convesel, if T eists, then the tansfomation epesented b T is the invese tansfomation of L. Poof Suppose L has an invese L with tansfomation mati R. The concatenations L L and L L must be identit tansfomations. Accodingl, the tansfomation matices TR and RT ae equal to I. Thus R is the invese of mati T, that is, R = T. Convesel, suppose the mati T has an invese T, which defines a tansfomation R. Since T T = TT = I, it follows that R L and L R ae the identit tansfomation. B definition, R is the invese tansfomation. We easil obtain the inveses of tanslation, otation, and scaling: Tans(h,k) Rot(θ) = Tans( h, k), = Rot( θ), Scale(s,s ) = Scale(/s,/s ). A tansfomation L : P P with an invese L is called a nonsingula tansfomation. Lemma implies that a tansfomation is nonsingula if and onl if its tansfomation mati is nonsingula. Nonsingula matices A and B satisfies (AB) = B A. In homogeneous coodinates, the concatenation of tansfomations T and T, denoted T T, can be caied out with mati multiplications alone. Fo eample, a otation Rot(θ) about the oigin followed b a tanslation Tans(h,k) followed b a scaling Scale(s,s ) has the homogeneous tansfomation mati Scale(s,s ) Tans(h,k) Rot(θ) = = s s h k s cos θ s sin θ s h s sinθ s cos θ s k cos θ sin θ sin θ cos θ Eample. Detemine the tansfomation mati of the invese of the concatenation of tansfomations Tans(, ) Rot( π/). The tansfomation mati L of the invese is the invese of the coesponding mati poduct: L = ( ) Tans(, ) Rot( π/) = Rot( π/) Tans(, ) = Rot(π/) Tans(, ) + = +.
6 Reflection in an Abita Line How to detemine the tansfomation mati fo eflection in an abita line a + b + c =? If c = and eithe a = o b =, then it is the eflection in eithe  o ais that we consideed befoe. The mati is o. () In geneal, the eflection is obtained b tansfoming the line to one of the aes, eflecting in that ais, and then taking the invese of the fist tansfomation. Suppose b. Moe specificall, the eflection is accomplished in the following five steps:. The line intesects the ais in the point (, c/b).. Make a tanslation that maps (, c/b) to the oigin.. The slope of the line is tan θ = a/b, whee the angle θ made b the line with the ais emains the same afte the tanslation. Rotate the line about the oigin though an angle θ. This maps the line to the ais. 4. Appl a eflection in the ais.. Rotate about the oigin b θ and then tanslate b (, c/b). The concatenation of the above tansfomation is cos θ sinθ c/b sinθ cos θ = cos θ sin c θ sin θ cos θ b sin θ cos θ sin θ cos θ sin θ cos θ c b cos θ. cos θ sinθ sinθ cos θ c/b Since tan θ = a/b, it follows that cos θ = /( + tan θ) = b /(a + b ) and sin θ = cos θ = a /(a + b ). So sin θ cos θ = tan θ cos θ = ab/(a + b ). Substituting these epessions into (4) ields b a a +b ab a +b ab a +b a b a +b ac a +b bc a +b In homogeneous coodinates, multiplication b a facto does not change the point. So the above mati can be scaled b a facto a + b to emove all the denominatos in the enties, ielding the eflection mati b a ab ac Ref (a,b,c) = ab a b bc. a + b Note that the above mati agees with () in the cases of eflection in  and aes. Thus we have emoved the assumption b made fo deiving the eflection mati. 6.
7 4 Reflection in an Abita Plane Reflection in a plane a+b +cz +d = is obtained b tansfoming the eflection plane to one of the , z, o zplanes, eflecting in that plane, and finall tansfoming the plane back to the eflection plane. In this appendi, we ae back to the use of homogeneous coodinates so all the matices ae 4 4. Moe specificall, the tansfomation is obtained in the following steps.. Choose a point p = (p,p,p ) on the plane. Tanslate this point to the oigin so that the eflection plane becomes a + b + cz =. Denote = (a,b,c).. Then following steps of the method of geneal otation in Section A thee ae two angles θ and θ such that the composition of otations Rot ( θ ) Rot (θ ) aligns the vecto with the zais, and maps the tanslated eflection plane to the plane. We have θ = if = = ; othewise, sinθ and cos θ ae defined in () and (6), espectivel. Meanwhile, cos θ and sin θ ae given b () and (8).. Appl the eflection in the plane. 4. Appl the invese of the tansfomations in steps in evese ode. The geneal eflection mati is thus Tans(p,p,p )Rot ( θ )Rot (θ )Ref Rot ( θ )Rot (θ )Tans( p, p, p ). (4) We can easil veif the above eflection mati in the special cases whee the plane is paallel to the zplane, plane, o zplane. In the fist case, the mati (4) educes to Tans(p,p,p )Ref z Tans( p, p, p ). Eample 6. Let us detemine the tansfomation mati fo a eflection in the plane + z =. Pick a point, sa, (,, ), in the plane and tanslate it to the oigin. The tanslated plane is +z = which has a nomal (,, ). Net, we detemine that sin θ =, cosθ =, sin( θ ) = sin θ =. cos( θ ) = cosθ =. The eflection mati (4) becomes
8 = 9 We can simpl emove the multiplie 9 in font of the mati above since homogeneous coodinates ae used. Rotations about the Coodinate Aes Like a otation in the plane, a otation in the space takes about a line efeed to as its otation ais. An otation can be decomposed into thee pima otations about the , and , and zaes: Rot (θ ) = cos θ sinθ sin θ cos θ, Rot (θ ) = Rot z (θ z ) = cos θ sin θ sinθ cos θ cos θ z sin θ z sin θ z cos θ z Figue (a) shows the diection in which the pima otations take when the otation angle is positive. Figue (b) is a mnemonic that helps to emembe the diections. Fo instance, the positive sense of a otation about the ais has the effect of moving points on the zais towad the ais. Eample 4. A otation though an angle π/6 about the ais followed b a tanslation b,, espectivel along the , , and zaes has the tansfomation mati Tans(,, )Rot (π/6) = =.,. A Rotation about an Abita Line When the otation ais is an abita line, we obtain the tansfomation mati as follows. Fistl, tansfom the otation ais to one of the coodinate aes. Secondl, pefom a otation of the 8
9 z θ z z θ θ (a) Figue : Rotations about the coodinate aes. (b) equied angle θ about the coodinate ais. Finall, tansfom the coodinate ais back to the oiginal otation ais. Moe specificall, let the otation ais be the line l though the points p = (p,p,p ) and q = (q,q,q ). Denote = q p = (,, ). Then we pefom the following steps:. Tanslate the point p b ( p, p, p ) to the oigin O and the otation ais to the line O though O and the point.. Rotate the vecto about the ais until it lies in the zplane. This is shown in Figue 4(a). Suppose that the line O makes an angle θ with the zplane. If = =, then the line z z z θ p q θ θ θ θ O θ (a) (b) (c) Figue 4: Rotation about an abita ais pefomed b tansfoming the ais to the zais, appling the otation, and tansfoming back to the oiginal ais. is aligned with the ais and θ =. Othewise, we have sinθ =, () + cos θ =. (6) + 9
10 The desied otation Rot (θ ) maps to the point = (,, + ) shown in Figue 4(b).. Rotate the vecto about the ais to align it with the zais. This step is shown in Figue 4(b). The equied angle is found to be θ whee sinθ = cos θ = + +, () (8) 4. Appl a otation though an angle θ about the zais, as shown in Figue 4(c).. Appl the inveses of the tansfomations in steps in evese ode. Thus, the geneal otation though an angle θ about the line though two points p = (p,p,p ) and q = (q,q,q ) has the tansfomation mati Tans(p,p,p )Rot ( θ )Rot (θ )Rot z (θ)rot ( θ )Rot (θ )Tans( p, p, p ), (9) whee sin θ, cos θ, sinθ, and cos θ ae given in () (8) with (,, ) = q p. Eample. Compute the tansfomation mati of the otation though an angle θ about the line though the points p = (,, ) and q = (4,, ). We have = q p = (, 6, ). So + =, and sinθ =, cosθ =, sin θ =, and cosθ =. The otation mati is 4 cosθ + 4 cosθ sin θ + 6 cosθ 6 sin θ 6 cosθ + sin θ + cosθ + 6 = cosθ sinθ sinθ cosθ 6 cosθ + 6 sin θ 6 8 cosθ 8 cosθ 8 sin θ 9 cosθ + 6 sin θ + 8 sin θ cosθ sin θ cosθ + 9 cosθ + sin θ +. Refeences [] D. Mash. Applied Geomet fo Compute Gaphics and CAD. SpingeVelag, 999. [] J. Caig. Intoduction to Robotics: Mechanics and Contol. nd ed., AddisonWesle, 989. [] Wolfam MathWold.
Review Topics Lawrence B. Rees You may make a single copy of this document for personal use without written permission.
Review Topics Lawence. Rees 2006. You ma make a single cop of this document fo pesonal use without witten pemission. R.1 Vectos I assume that ou have alead studied vectos in pevious phsics couses. If ou
More information3D Viewing Pipeline Week 7, Lecture 13
CS 43/536 Compute Gaphics I 3D Viewing Pipeline Week 7, Lectue 3 David Been, William Regli and Maim Pesakhov Geometic and Intelligent Computing Laboato Depatment of Compute Science Deel Univesit http://gicl.cs.deel.edu
More informationMaths for Graphics programming. Rotations. Vectors recap. Sin, Cos and Tan (basic trig) What is the value of sin θ? Sin, Cos and Tan (basic trig)
5//6 Maths fo Gaphics pogamming Vectos ecap Can use unit vectos to define positions instead of points Adding/subtacting vectos gives ou elative positions Coss poducts can find ne diections Can tansfom
More informationProjection. Projection and 3D Transformations. Linear Projection. Linear Projection. Linear Projection. Orthographic Projection
Pojection and 3D Tansfomations CS84: Compute Gaphics Pof. James O Bien Pojection Pocess of going fom 3D scene to 2D scene Studied thoughout histo (e.g. paintes) Diffeent tpes of pojection Linea Othogaphic
More informationUNIT CIRCLE TRIGONOMETRY
UNIT CIRCLE TRIGONOMETRY The Unit Cicle is the cicle centeed at the oigin with adius unit (hence, the unit cicle. The equation of this cicle is + =. A diagam of the unit cicle is shown below: + =   
More informationNURBS Drawing Week 5, Lecture 10
CS 43/585 Compute Gaphics I NURBS Dawing Week 5, Lectue 1 David Been, William Regli and Maim Pesakhov Geometic and Intelligent Computing Laboato Depatment of Compute Science Deel Univesit http://gicl.cs.deel.edu
More informationModern Linear Algebra
Hochschule fü Witschaft und Recht Belin Belin School of Economics and Law Wintesemeste 04/05 D. Hon Mathematics fo Business and Economics LVN. 0069.0 Moden Linea Algeba (A Geometic Algeba cash couse,
More informationAngles in Standard Positions Lesson Plan
Angles in Standad Positions Lesson Plan B: Douglas A. Rub Date: 10/10/00 Class: PeCalculus II Gades: 11/1 INSTRUCTIONAL OBJECTIVES: At the end of this lesson, the student will be able to: 1. Coectl identif
More informationMoment and couple. In 3D, because the determination of the distance can be tedious, a vector approach becomes advantageous. r r
Moment and couple In 3D, because the detemination of the distance can be tedious, a vecto appoach becomes advantageous. o k j i M k j i M o ) ( ) ( ) ( + + M o M + + + + M M + O A Moment about an abita
More informationTransformations, continued
Tansfomations, continued D Rotation x,, x, y, y,, x, y,,, x, y, So if the ows of R ae othogonal unit vectos (othonomal), they ae the axes of a new coodinate system, and matix multiplication ewites (x,y,)
More informationCoordinate Systems L. M. Kalnins, March 2009
Coodinate Sstems L. M. Kalnins, Mach 2009 Pupose of a Coodinate Sstem The pupose of a coodinate sstem is to uniquel detemine the position of an object o data point in space. B space we ma liteall mean
More informationTrigonometric Functions of Any Angle
Tigonomet Module T2 Tigonometic Functions of An Angle Copight This publication The Nothen Albeta Institute of Technolog 2002. All Rights Reseved. LAST REVISED Decembe, 2008 Tigonometic Functions of An
More informationChapter 2. Functions of a Complex Variable
Chapte 2 25 Functions of a Complex Vaiable Basic concepts Let S denote a nonempty set of points in the complex zplane. If thee exists a ule f which assigns to each value z = x + iy belonging to S, one
More informationUnit Vectors. the unit vector rˆ. Thus, in the case at hand, 5.00 rˆ, means 5.00 m/s at 36.0.
Unit Vectos What is pobabl the most common mistake involving unit vectos is simpl leaving thei hats off. While leaving the hat off a unit vecto is a nast communication eo in its own ight, it also leads
More informationReview of Vectors. Appendix A A.1 DESCRIBING THE 3D WORLD: VECTORS. 3D Coordinates. Basic Properties of Vectors: Magnitude and Direction.
Appendi A Review of Vectos This appendi is a summa of the mathematical aspects of vectos used in electicit and magnetism. Fo a moe detailed intoduction to vectos, see Chapte 1. A.1 DESCRIBING THE 3D WORLD:
More informationSkills Needed for Success in Calculus 1
Skills Needed fo Success in Calculus Thee is much appehension fom students taking Calculus. It seems that fo man people, "Calculus" is snonmous with "difficult." Howeve, an teache of Calculus will tell
More informationChapter 5.3: Circular Trigonometric Functions
Chapte 5.3: Cicula Tigonometic Functions A efeence tiangle is fomed b dopping a pependicula (altitude) fom the teminal a of a standad position angle to the ais, that is, again, the ais. The efeence angle
More informationCS 4733 Notes: Stanford Arm Inverse Kinematics
CS 47 Notes: Stanfo Am Invese Kinematics Figue : Stanfo Robotic Am. The fame iagam shows the fist thee joints, which ae in a RRP configuation (RevoluteRevolutePismatic.. To solve invese kinematics
More informationVectors in three dimensions
Vectos in thee dimensions The concept of a vecto in thee dimensions is not mateially diffeent fom that of a vecto in two dimensions. It is still a quantity with magnitude and diection, except now thee
More informationVector Calculus: Are you ready? Vectors in 2D and 3D Space: Review
Vecto Calculus: Ae you eady? Vectos in D and 3D Space: Review Pupose: Make cetain that you can define, and use in context, vecto tems, concepts and fomulas listed below: Section 7.7. find the vecto defined
More information2. TRIGONOMETRIC FUNCTIONS OF GENERAL ANGLES
. TRIGONOMETRIC FUNCTIONS OF GENERAL ANGLES In ode to etend the definitions of the si tigonometic functions to geneal angles, we shall make use of the following ideas: In a Catesian coodinate sstem, an
More informationUnit Circle Lesson Plan
Unit Cicle Lesson Plan B: Douglas A. Rub Date: 0/0/2002 Class: PeCalculus Gades: /2 NSTRUCTONAL OBJECTVES: At the end of this lesson, the student will be able to:. Given a eal numbe that is an integal
More informationVECTOR MECHANICS FOR ENGINEERS: Statics of Particles. J. Walt Oler The McGrawHill Companies, Inc. All rights reserved.
VECTOR MECHANICS FOR ENGINEERS: STATICS Statics of Paticles J. Walt Ole Teas Tech Univesit 2007 The McGawHill Companies, Inc. All ights eseved. Vecto Mechanics fo Enginees: Statics Contents Intoduction
More informationHomework #4  Answers. The ISLM Model Due Mar 18
Winte Tem 2004 Alan Deadoff Homewok #4  Answes Page 1 of 12 Homewok #4  Answes The  Model Due Ma 18 1. Fun with the Keynesian Coss: a. Use the geomety of the Keynesian Coss diagam shown at the ight
More informationIntegration in polar coordinates
Pola Coodinates Integation in pola coodinates Pola coodinates ae a diffeent wa of descibing points in the plane. The pola coodinates (, θ) ae elated to the usual ectangula coodinates (, ) b b = cos θ,
More informationMechanics 1: Work, Power and Kinetic Energy
Mechanics 1: Wok, Powe and Kinetic Eneg We fist intoduce the ideas of wok and powe. The notion of wok can be viewed as the bidge between Newton s second law, and eneg (which we have et to define and discuss).
More informationTANGENTS IN POLAR COORDINATES
TANGENTS IN POLAR COORDINATES ROGER ALEXANDER DEPARTMENT OF MATHEMATICS. Polacoodinate equations fo lines A pola coodinate system in the plane is detemined by a Pole P and a halfline called the pola
More informationThe statement of the problem of factoring integer is as follows: Given an integer N, find prime numbers p i and integers e i such that.
CS 2942 Sho s Factoing Algoithm 0/5/04 Fall 2004 Lectue 9 Intoduction Now that we have talked about uantum Fouie Tansfoms and discussed some of thei popeties, let us see an application aea fo these ideas.
More informationChapter 3: Vectors and Coordinate Systems
Coodinate Systems Chapte 3: Vectos and Coodinate Systems Used to descibe the position of a point in space Coodinate system consists of a fied efeence point called the oigin specific aes with scales and
More information11.6 Directional Derivatives and the Gradient Vector
6 Diectional Deivatives and the Gadient Vecto So a we ve ound the ate o change o a unction o two o moe vaiables in the diection paallel to the ais (, we set constant, = b plane), and in the diection paallel
More informationLINES AND TANGENTS IN POLAR COORDINATES
LINES AND TANGENTS IN POLAR COORDINATES ROGER ALEXANDER DEPARTMENT OF MATHEMATICS 1. Polacoodinate equations fo lines A pola coodinate system in the plane is detemined by a point P, called the pole, and
More information9. Mathematics Practice Paper for Class XII (CBSE) Available Online Tutoring for students of classes 4 to 12 in Physics, Chemistry, Mathematics
Available Online Tutoing fo students of classes 4 to 1 in Physics, 9. Mathematics Class 1 Pactice Pape 1 3 1. Wite the pincipal value of cos.. Wite the ange of the pincipal banch of sec 1 defined on the
More information2.2. Trigonometric Ratios of Any Angle. Investigate Trigonometric Ratios for Angles Greater Than 90
. Tigonometic Ratios of An Angle Focus on... detemining the distance fom the oigin to a point (, ) on the teminal am of an angle detemining the value of sin, cos, o tan given an point (, ) on the teminal
More informationHour Exam No.1. p 1 v. p = e 0 + v^b. Note that the probe is moving in the direction of the unit vector ^b so the velocity vector is just ~v = v^b and
Hou Exam No. Please attempt all of the following poblems befoe the due date. All poblems count the same even though some ae moe complex than othes. Assume that c units ae used thoughout. Poblem A photon
More informationReview Module: Cross Product
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Depatment of hysics 801 Fall 2009 Review Module: Coss oduct We shall now intoduce ou second vecto opeation, called the coss poduct that takes any two vectos and geneates
More informationNotes on Electric Fields of Continuous Charge Distributions
Notes on Electic Fields of Continuous Chage Distibutions Fo discete pointlike electic chages, the net electic field is a vecto sum of the fields due to individual chages. Fo a continuous chage distibution
More informationFunctions of a Random Variable: Density. Math 425 Intro to Probability Lecture 30. Definition Nice Transformations. Problem
Intoduction One Function of Random Vaiables Functions of a Random Vaiable: Density Math 45 Into to Pobability Lectue 30 Let gx) = y be a onetoone function whose deiatie is nonzeo on some egion A of the
More informationEE448/528 Version 1.0 John Stensby. This matrix has m rows and n columns. Often, we use the notation {a ij } to denote a matrix.
EE448/528 Vesion.0 John Stensby Chapte 3: atices  Elementay Theoy A matix is a ectangula aay of scalas. A = a a2 an a2 a22 a2n am am2 amn (3) This matix has m ows and n columns. ften, we use the notation
More informationSummary: Vectors. This theorem is used to find any points (or position vectors) on a given line (direction vector). Two ways RT can be applied:
Summ: Vectos ) Rtio Theoem (RT) This theoem is used to find n points (o position vectos) on given line (diection vecto). Two ws RT cn e pplied: Cse : If the point lies BETWEEN two known position vectos
More informationNuno Vasconcelos UCSD
Radiomety Nuno Vasconcelos UCSD Image fomation two components: geomety and adiomety geomety: pinhole camea point x,y,z in 3D scene pojected into image pixel of coodinates x, y y accoding to the pespective
More informationLecture 4. Home Exercise: Welcome to Wisconsin
Lectue 4 ltoday: h. 3 (all) & h. 4 (stat) v Pefom vecto algeba (addition and subtaction) v Inteconvet between atesian and Pola coodinates v Wok with D motion Deconstuct motion into x & y o paallel & pependicula
More informationSection 5.2: Trigonometric Functions of Angles
Section 5.: Tigonometic Functions of Angles Objectives: Upon completion of this lesson, ou will be able to: find the values of the si tigonometic functions fo an angle with given conditions given an angle
More informationTrigonometry in the Cartesian Plane
Tigonomet in the Catesian Plane CHAT Algeba sec. 0. to 0.5 *Tigonomet comes fom the Geek wod meaning measuement of tiangles. It pimail dealt with angles and tiangles as it petained to navigation astonom
More informationReview Module: Dot Product
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Depatment of Physics 801 Fall 2009 Review Module: Dot Poduct We shall intoduce a vecto opeation, called the dot poduct o scala poduct that takes any two vectos and
More informationfixed point ( The fixed point is also called as origin) and P is any point then OP is the position vector of the point P with respect the point O.
Page 1 of 9 VECTORS 1 Scala Quantity: A scala quantity is that which has only magnitude Example: Volume, Aea, Tempeatue, wok done, time, density etc ae scala quantities as these quantities have no sense
More informationGauss's Law. EAcos (for E = constant, surface flat ) 1 of 11
1 of 11 Gauss's Law Gauss's Law is one of the 4 funmental laws of electicity and magnetism called Maxwell's quations. Gauss's law elates chages and electic fields in a subtle and poweful way, but befoe
More informationComputer Graphics.  Camera Transformations  Hendrik Lensch. Computer Graphics WS07/08 Camera Transformations
Compute Gaphics  Camea Tansfomations  Hendik Lensch Compute Gaphics WS7/8 Camea Tansfomations Oveview Last lectue: Tansfomations Today: Geneating 2D image fom 3D wold Coodinate Spaces Camea Specification
More informationPhysics 505 Homework No. 5 Solutions S51. 1. Angular momentum uncertainty relations. A system is in the lm eigenstate of L 2, L z.
Physics 55 Homewok No. 5 s S5. Angula momentum uncetainty elations. A system is in the lm eigenstate of L 2, L z. a Show that the expectation values of L ± = L x ± il y, L x, and L y all vanish. ψ lm
More informationToday. CS184: Computer Graphics. Translations. 3D Transformations. 0 1 t y t x. Ã = t y t z
Today CS184: Compute Gaphics Lectue #4: 3D Tansfomations and Rotations Pof. James O Bien Univesity of Califonia, Bekeley V2005F041.1 Tansfomations in 3D Rotations Matices Eule angles Eponential maps
More informationIn the lecture on double integrals over nonrectangular domains we used to demonstrate the basic idea
Double Integals in Pola Coodinates In the lectue on double integals ove nonectangula domains we used to demonstate the basic idea with gaphics and animations the following: Howeve this paticula example
More informationTHREE DIMENSIONAL GEOMETRY. The moving power of mathematical invention is not reasoning but imagination. A. DEMORGAN
THREE D IMENSIONAL G EOMETRY 463 The moving powe of mathematical invention is not easoning but imagination. A. DEMORGAN. Intoduction In Class XI, while studying Analytical Geomety in two dimensions, and
More informationLecture 16: Color and Intensity. and he made him a coat of many colours. Genesis 37:3
Lectue 16: Colo and Intensity and he made him a coat of many colous. Genesis 37:3 1. Intoduction To display a pictue using Compute Gaphics, we need to compute the colo and intensity of the light at each
More informationForces & Magnetic Dipoles. r r τ = μ B r
Foces & Magnetic Dipoles x θ F θ F. = AI τ = U = Fist electic moto invented by Faaday, 1821 Wie with cuent flow (in cup of Hg) otates aound a a magnet Faaday s moto Wie with cuent otates aound a Pemanent
More informationCS184: Computer Graphics. Today
CS184: Compute Gaphics Lectue #4: 3D Tansfomations and Rotations Pof. James O Bien Univesity of Califonia, Bekeley V2005041.2 Today Tansfomations in 3D Rotations Matices Eule angles Eponential maps
More informationTrigonometric (Polar) Form In the figure the complex number x + yi corresponds to a vector OP with direction angle θ and magnitude r.
1 of 5 8/6/2004 8.5 TRIGONOMETRIC (POLAR FORM OF 8.5 TRIGONOMETRIC (POLAR FORM OF COMPLEX NUMBERS; PRODUCTS AND QUOTIENTS The Complex Plane and Vecto Repesentation Tigonometic (Pola Fom Poducts of Complex
More informationThe Detection of Obstacles Using Features by the Horizon View Camera
The Detection of Obstacles Using Featues b the Hoizon View Camea Aami Iwata, Kunihito Kato, Kazuhiko Yamamoto Depatment of Infomation Science, Facult of Engineeing, Gifu Univesit aa@am.info.gifuu.ac.jp
More informationMechanics 1: Motion in a Central Force Field
Mechanics : Motion in a Cental Foce Field We now stud the popeties of a paticle of (constant) ass oving in a paticula tpe of foce field, a cental foce field. Cental foces ae ve ipotant in phsics and engineeing.
More informationCHAT PreCalculus Section 10.7. Polar Coordinates
CHAT PeCalculus Pola Coodinates Familia: Repesenting gaphs of equations as collections of points (, ) on the ectangula coodinate sstem, whee and epesent the diected distances fom the coodinate aes to
More information4.1  Trigonometric Functions of Acute Angles
4.1  Tigonometic Functions of cute ngles a is a halfline that begins at a point and etends indefinitel in some diection. Two as that shae a common endpoint (o vete) fom an angle. If we designate one
More informationSection 5.2: Trigonometric Functions of Angles
Section 5.: Tigonometic Functions of Angles Objectives Upon completion of this lesson, ou will be able to: Find the values of the si tigonometic functions fo an angle θ with given conditions. Given an
More information11.5 Graphs of Polar Equations
9 Applications of Tigonomet.5 Gaphs of Pola Equations In this section, we discuss how to gaph equations in pola coodinates on the ectangula coodinate plane. Since an given point in the plane has infinitel
More informationCHAPTER III APPLICATION OF SNELLDESCARTES LAWS TO THE STUDY OF PRISMS
18 CHPTER III PPLICTION OF SNELLDESCRTES LWS TO THE STUDY OF PRISMS pism is a tanspaent medium limited by plane efactive sufaces that ae not paallel. In this couse, we will only conside pisms made of
More informationRevision Guide for Chapter 11
Revision Guide fo Chapte 11 Contents Student s Checklist Revision Notes Momentum... 4 Newton's laws of motion... 4 Gavitational field... 5 Gavitational potential... 6 Motion in a cicle... 7 Summay Diagams
More informationTrigonometric Functions of Any Angle. cos. sin r. cot, r csc, y. y 0
0_00.qd 1 1/7/05 Chapte. 11:05 AM Page 1 Tigonomet Tigonometic Functions of An Angle What ou should lean Evaluate tigonometic functions of an angle. Use efeence angles to evaluate tigonometic functions.
More informationReviewing Trigonometry
Reviewing Tigonomet Intoduction and Definition Students often think the ae unpepaed fo Calculus if the ae not full comfotable with tigonomet. Howeve, tigonomet is not in an wa the mateial that pecedes
More informationStatic and Dynamic Balancing of a Piano Key
Static and Dynamic Balancing of a Piano Key Stephen Bikett 1 Copyight c 2003. All ights eseved. Two Simple Cases The basic pinciples of static and dynamic balancing can be illustated 2 by epesenting the
More informationSources of the Magnetic Field. Physics 231 Lecture 81
Souces of the Magnetic Field Physics 31 Lectue 81 Magnetic Field of a Point Chage Given a point chage, q, we know that it geneates an electic field egadless of whethe it is moving o not f the chage is
More informationPhysics: Electromagnetism Spring PROBLEM SET 6 Solutions
Physics: Electomagnetism Sping 7 Physics: Electomagnetism Sping 7 PROBEM SET 6 Solutions Electostatic Enegy Basics: Wolfson and Pasachoff h 6 Poblem 7 p 679 Thee ae si diffeent pais of equal chages and
More information! definition of moment and moment arm. ! conventions for defining moment direction. ! addition of moments, moments due to force
oment and Toque Ozkaya and Nodin, Ch. 3 (p. 3146) Outline! definition of moment and moment am! conventions fo defining moment diection! addition of moments, moments due to foce components! moments due
More informationWrite and Graph Equations of Circles
0.7 Wite and Gaph Equations of icles Befoe You wote equations of lines in the coodinate plane. Now You will wite equations of cicles in the coodinate plane. Wh? So ou can detemine zones of a commute sstem,
More informationThe Position Vector. Using the Cartesian coordinate system, the position vector can be explicitly written as:
8/23/2005 The Position Vecto.doc 1/7 The Position Vecto Conside a point whose location in space is specified with Catesian coodinates (e.g., P(x,y,)). Now conside the diected distance (a vecto quantity!)
More informationStress, Cauchy s equation and the NavierStokes equations
Chapte 3 Stess, Cauchy s equation and the NavieStokes equations 3. The concept of taction/stess Conside the volume of fluid shown in the left half of Fig. 3.. The volume of fluid is subjected to distibuted
More informationSHAPE, SPACE AND MEASURES
SHPE, SPCE ND MESURES Pupils should be taught to: Use coodinates in all fou quadants s outcomes, Yea 7 pupils should, fo example: Use, ead and wite, spelling coectly: ow, column, coodinates, oigin, xaxis,
More informationMagnetic Forces. Physics 231 Lecture 71
Magnetic Foces Physics 231 Lectue 71 Magnetic Foces Chaged paticles expeience an electic foce when in an electic field egadless of whethe they ae moving o not moving Thee is anothe foce that chaged paticles
More informationThe mixedtype reverse order laws for generalized inverses of the product of two matrices
Filomat 27:5 203, 937 947 DOI 0.2298/FIL305937X Published by Faculty of Sciences Mathematics, Univesity of Niš, Sebia vailable at: http://www.pmf.ni.ac.s/filomat The mixedtype evese ode laws fo genealized
More informationArchimedes and His Mechanical Method
chimedes and His Mechanical Method Histoical Contet: When: 87 .C. Whee: Syacuse, Sicily (Geece) Who: chimedes Mathematics focus: Investigation of the use of mechanical pinciples to establish a fundamental
More informationCommon Solutions of a Pair of Matrix Equations
Applied Mathematics ENotes, 2(22), 147154 c ISSN 167251 Available fee at mio sites of http://www.math.nthu.edu.tw/ amen/ Common Solutions of a Pai of Matix Equations Yongge Tian Received 21 Octobe
More information4a 4ab b 4 2 4 2 5 5 16 40 25. 5.6 10 6 (count number of places from first nonzero digit to
. Simplify: 0 4 ( 8) 0 64 ( 8) 0 ( 8) = (Ode of opeations fom left to ight: Paenthesis, Exponents, Multiplication, Division, Addition Subtaction). Simplify: (a 4) + (a ) (a+) = a 4 + a 0 a = a 7. Evaluate
More informationChapter 3 Savings, Present Value and Ricardian Equivalence
Chapte 3 Savings, Pesent Value and Ricadian Equivalence Chapte Oveview In the pevious chapte we studied the decision of households to supply hous to the labo maket. This decision was a static decision,
More informationBasics of Cutting Tool Geometry
D. Vikto P. Astakhov, Tool Geomet: Basics Basics of Cutting Tool Geomet Vikto P. Astakhov Fo man eas thee wee diffeent sstems used to define a geat vaiet of angles of faces and edges of cutting tools.
More information8.4 Torque. Torque. Rotational Dynamics. ProblemSolving
8.4 oque oque otational Dynamics PoblemSolving We began this couse with chaptes on kinematics, the desciption of motion without asking about its causes. We then found that foces cause motion, and used
More informationPhysics 235 Chapter 5. Chapter 5 Gravitation
Chapte 5 Gavitation In this Chapte we will eview the popeties of the gavitational foce. The gavitational foce has been discussed in geat detail in you intoductoy physics couses, and we will pimaily focus
More informationFluids Lecture 15 Notes
Fluids Lectue 15 Notes 1. Unifom flow, Souces, Sinks, Doublets Reading: Andeson 3.9 3.12 Unifom Flow Definition A unifom flow consists of a velocit field whee V = uî + vĵ is a constant. In 2D, this velocit
More informationVectors, Vector Calculus, and Coordinate Systems
! Revised Apil 29, 2014 8:59 AM! 1 Vectos, Vecto Calculus, and Coodinate Systems David Randall Physical laws and coodinate systems Fo the pesent discussion, we define a coodinate system as a system fo
More informationSection 53 Angles and Their Measure
5 5 TRIGONOMETRIC FUNCTIONS Section 5 Angles and Thei Measue Angles Degees and Radian Measue Fom Degees to Radians and Vice Vesa In this section, we intoduce the idea of angle and two measues of angles,
More informationCLASS XI CHAPTER 3. Theorem 1 (sine formula) In any triangle, sides are proportional to the sines of the opposite angles. That is, in a triangle ABC
CLASS XI Anneue I CHAPTER.6. Poofs and Simple Applications of sine and cosine fomulae Let ABC be a tiangle. By angle A we mean te angle between te sides AB and AC wic lies between 0 and 80. Te angles B
More informationEAS Groundwater Hydrology Lecture 13: Well Hydraulics 2 Dr. Pengfei Zhang
EAS 44600 Goundwate Hydology Lectue 3: Well Hydaulics D. Pengfei Zhang Detemining Aquife Paametes fom TimeDawdown Data In the past lectue we discussed how to calculate dawdown if we know the hydologic
More informationChapter 16 Gyroscopes and Angular Momentum
Chapte 16 Gyoscopes and Angula Momentum 16.1 Gyoscopes o fa, most of the examples and applications we have consideed concened the otation of igid bodies about a fixed axis, o a moving axis the diection
More informationModeling the viscous torque acting on a rotating object
Modeling the viscous toque acting on a otating object Manon E. Gugel Physics Depatment, The College of Wooste, Wooste, Ohio 6 (Apil 0, ) By dawing an analogy between linea and otational dynamics, an equation
More information1. How is the IS curve derived and what factors determine its slope? What happens to the slope of the IS curve if consumption is interest elastic?
Chapte 7 Review Questions 1. How is the IS cuve deived and what factos detemine its slope? What happens to the slope of the IS cuve if consumption is inteest elastic? The IS cuve epesents equilibium in
More informationHow to Obtain Desirable Transfer Functions in MIMO Systems Under Internal Stability Using Open and Closed Loop Control
How to Obtain Desiable ansfe Functions in MIMO Sstems Unde Intenal Stabilit Using Open and losed Loop ontol echnical Repot of the ISIS Goup at the Univesit of Note Dame ISIS03006 June, 03 Panos J. Antsaklis
More informationButterfly Network Analysis and The Beneˇ s Network
6.895 Theoy of Paallel Systems Lectue 17 Buttefly Netwok Analysis and The Beneˇ s Netwok Lectue: Chales Leiseson Lectue Summay 1. Netwok with N Nodes This section poves pat of the lowe bound on expected
More informationInfinitedimensional Bäcklund transformations between isotropic and anisotropic plasma equilibria.
Infinitedimensional äcklund tansfomations between isotopic and anisotopic plasma equilibia. Infinite symmeties of anisotopic plasma equilibia. Alexei F. Cheviakov Queen s Univesity at Kingston, 00. Reseach
More informationCarterPenrose diagrams and black holes
CatePenose diagams and black holes Ewa Felinska The basic intoduction to the method of building Penose diagams has been pesented, stating with obtaining a Penose diagam fom Minkowski space. An example
More informationPotential Flow Theory
.06 Hydodynamics Reading #4.06 Hydodynamics Pof. A.H. Techet Potential Flow Theoy When a flow is both fictionless and iotational, pleasant things happen. F.M. White, Fluid Mechanics 4th ed. We can teat
More informationSurface Area and Volume of Spheres
12.6 Suface Aea and Volume of Sphees Befoe You found suface aeas and volumes of polyheda. Now You will find suface aeas and volumes of sphees. Why? So you can find the volume of a tennis ball, as in Ex.
More informationHow to Think Like a Mathematician Solutions to Exercises
How to Think Like a Mathematician Solutions to Execises Septembe 17, 2009 The following ae solutions to execises in my book How to Think Like a Mathematician. Chapte 1 Execises 1.10 (i) 5 (ii) 3 (iii)
More informationSamples of conceptual and analytical/numerical questions from chap 21, C&J, 7E
CHAPTER 1 Magnetism CONCEPTUAL QUESTIONS Cutnell & Johnson 7E 3. ssm A chaged paticle, passing though a cetain egion of space, has a velocity whose magnitude and diection emain constant, (a) If it is known
More informationChapter 2 Vector Spaces  An Introduction
EE448/58 Class Notes Vesion 1.0 John Stensby Chapte Vecto Spaces  An Intoduction A vecto space ove a scala field F (in ou wok, we use both the eal numbes R o the complex numbes C as scalas) is a nonempty
More information