7 Probability. Copyright Cengage Learning. All rights reserved.


 Frederica Cain
 2 years ago
 Views:
Transcription
1 7 Probability Copyright Cengage Learning. All rights reserved.
2 7.2 Relative Frequency Copyright Cengage Learning. All rights reserved.
3 Suppose you have a coin that you think is not fair and you would like to determine the likelihood that heads will come up when it is tossed. You could estimate this likelihood by tossing the coin a large number of times and counting the number of times heads comes up. Suppose, for instance, that in 100 tosses of the coin, heads comes up 58 times. The fraction of times that heads comes up, =.58, is the relative frequency, or estimated probability of heads coming up when the coin is tossed. 3
4 In other words, saying that the relative frequency of heads coming up is.58 is the same as saying that heads came up 58% of the time in your series of experiments. Now let s think about this example in terms of sample spaces and events. First of all, there is an experiment that has been repeated N = 100 times: Toss the coin and observe the side facing up. The sample space for this experiment is S = {H, T}. Also, there is an event E in which we are interested: the event that heads comes up, which is E = {H}. 4
5 The number of times E has occurred, or the frequency of E, is fr(e) = 58. The relative frequency of the event E is then 5
6 Relative Frequency When an experiment is performed a number of times, the relative frequency or estimated probability of an event E is the fraction of times that the event E occurs. If the experiment is performed N times and the event E occurs fr(e) times, then the relative frequency is given by Fraction of times E occurs 6
7 The number fr(e) is called the frequency of E. N, the number of times that the experiment is performed, is called the number of trials or the sample size. If E consists of a single outcome s, then we refer to P(E) as the relative frequency or estimated probability of the outcome s, and we write P(s). 7
8 Visualizing Relative Frequency The collection of the estimated probabilities of all the outcomes is the relative frequency distribution or estimated probability distribution. 8
9 Quick Examples 1. Experiment: Roll a pair of dice and add the numbers that face up. Event: E: The sum is 5. If the experiment is repeated 100 times and E occurs on 10 of the rolls, then the relative frequency of E is 9
10 2. If 10 rolls of a single die resulted in the outcomes 2, 1, 4, 4, 5, 6, 1, 2, 2, 1, then the associated relative frequency distribution is shown in the following table: 10
11 Example 1 Sales of Hybrid Vehicles In a survey of 250 hybrid Vehicles sold in the United States, 125 were Toyota Prii, 30 were Honda Civics, 20 were Toyota Camrys, 15 were Ford Escapes, and the rest were other makes. What is the relative frequency that a hybrid vehicle sold in the United States is not a Toyota Camry? Solution: The experiment consists of choosing a hybrid vehicle sold in the United States and determining its make. 11
12 Example 1 Solution cont d The sample space suggested by the information given is S = {Toyota Prius, Honda Civic, Toyota Camry, Ford Escape, Other} and we are interested in the event E = {Toyota Prius, Honda Civic, Ford Escape, Other}. The sample size is N = 250 of which 20 were Toyota Camrys. Thus, the frequency of E is fr(e) = = 230 and the relative frequency of E is 12
13 Some Properties of Relative Frequency Distributions Let S = {s 1, s 2,..., s n } be a sample space and let P(s i ) be the relative frequency of the event {s i }. Then 1. 0 P(s i ) 1 2. P(s 1 ) + P(s 2 ) + + P(s n ) = 1 3. If E = {e 1, e 2,..., e r }, then P(E) = P(e 1 ) + P(e 2 ) + + P(e r ). 13
14 In words: 1. The relative frequency of each outcome is a number between 0 and 1 (inclusive). 2. The relative frequencies of all the outcomes add up to The relative frequency of an event E is the sum of the relative frequencies of the individual outcomes in E. 14
15 and Increasing Sample Size 15
16 and Increasing Sample Size A fair coin is one that is as likely to come up heads as it is to come up tails. In other words, we expect heads to come up 50% of the time if we toss such a coin many times. Put more precisely, we expect the relative frequency to approach.5 as the number of trials gets larger. Figure 4 shows how the relative frequency behaved for one sequence of coin tosses. Figure 4 16
17 and Increasing Sample Size For each N we have plotted what fraction of times the coin came up heads in the first N tosses. Notice that the relative frequency graph meanders as N increases, sometimes getting closer to.5, and sometimes drifting away again. However, the graph tends to meander within smaller and smaller distances of.5 as N increases. 17
18 and Increasing Sample Size In general, this is how relative frequency seems to behave; as N gets large, the relative frequency appears to approach some fixed value. Some refer to this value as the actual probability, whereas others point out that there are difficulties with this notion. 18
Section 6.2 Definition of Probability
Section 6.2 Definition of Probability Probability is a measure of the likelihood that an event occurs. For example, if there is a 20% chance of rain tomorrow, that means that the probability that it will
More informationEvents. Independence. Coin Tossing. Random Phenomena
Random Phenomena Events A random phenomenon is a situation in which we know what outcomes could happen, but we don t know which particular outcome did or will happen For any random phenomenon, each attempt,
More informationChapter. Probability Pearson Education, Inc. All rights reserved. 1 of 20
Chapter 3 Probability 2012 Pearson Education, Inc. All rights reserved. 1 of 20 Chapter Outline 3.1 Basic Concepts of Probability 3.2 Conditional Probability and the Multiplication Rule 3.3 The Addition
More informationAn event is any set of outcomes of a random experiment; that is, any subset of the sample space of the experiment. The probability of a given event
An event is any set of outcomes of a random experiment; that is, any subset of the sample space of the experiment. The probability of a given event is the sum of the probabilities of the outcomes in the
More informationProbability. Sample space: all the possible outcomes of a probability experiment, i.e., the population of outcomes
Probability Basic Concepts: Probability experiment: process that leads to welldefined results, called outcomes Outcome: result of a single trial of a probability experiment (a datum) Sample space: all
More informationMAT 1000. Mathematics in Today's World
MAT 1000 Mathematics in Today's World We talked about Cryptography Last Time We will talk about probability. Today There are four rules that govern probabilities. One good way to analyze simple probabilities
More informationQuestion: What is the probability that a fivecard poker hand contains a flush, that is, five cards of the same suit?
ECS20 Discrete Mathematics Quarter: Spring 2007 Instructor: John Steinberger Assistant: Sophie Engle (prepared by Sophie Engle) Homework 8 Hints Due Wednesday June 6 th 2007 Section 6.1 #16 What is the
More informationSample Space, Events, and PROBABILITY
Sample Space, Events, and PROBABILITY In this chapter, we will study the topic of probability which is used in many different areas including insurance, science, marketing, government and many other areas.
More informationIt is remarkable that a science, which began with the consideration of games of chance, should be elevated to the rank of the most important
PROBABILLITY 271 PROBABILITY CHAPTER 15 It is remarkable that a science, which began with the consideration of games of chance, should be elevated to the rank of the most important subject of human knowledge.
More informationPeople have thought about, and defined, probability in different ways. important to note the consequences of the definition:
PROBABILITY AND LIKELIHOOD, A BRIEF INTRODUCTION IN SUPPORT OF A COURSE ON MOLECULAR EVOLUTION (BIOL 3046) Probability The subject of PROBABILITY is a branch of mathematics dedicated to building models
More informationSection 65 Sample Spaces and Probability
492 6 SEQUENCES, SERIES, AND PROBABILITY 52. How many committees of 4 people are possible from a group of 9 people if (A) There are no restrictions? (B) Both Juan and Mary must be on the committee? (C)
More informationMATH 10: Elementary Statistics and Probability Chapter 3: Probability Topics
MATH 10: Elementary Statistics and Probability Chapter 3: Probability Topics Tony Pourmohamad Department of Mathematics De Anza College Spring 2015 Objectives By the end of this set of slides, you should
More informationA (random) experiment is an activity with observable results. The sample space S of an experiment is the set of all outcomes.
Chapter 7 Probability 7.1 Experiments, Sample Spaces, and Events A (random) experiment is an activity with observable results. The sample space S of an experiment is the set of all outcomes. Each outcome
More informationPROBABILITY. Thabisa Tikolo STATISTICS SOUTH AFRICA
PROBABILITY Thabisa Tikolo STATISTICS SOUTH AFRICA Probability is a topic that some educators tend to struggle with and thus avoid teaching it to learners. This is an indication that teachers are not yet
More informationComparing relative frequency and probability
Comparing relative frequency and probability The mathematics of probability is concerned with things that happen at random, or unpredictably. A common example is a (fair) raffle in which each ticket has
More informationStatistical Inference. Prof. Kate Calder. If the coin is fair (chance of heads = chance of tails) then
Probability Statistical Inference Question: How often would this method give the correct answer if I used it many times? Answer: Use laws of probability. 1 Example: Tossing a coin If the coin is fair (chance
More informationProbability. Vocabulary
MAT 142 College Mathematics Probability Module #PM Terri L. Miller & Elizabeth E. K. Jones revised January 5, 2011 Vocabulary In order to discuss probability we will need a fair bit of vocabulary. Probability
More informationIntroductory Probability. MATH 107: Finite Mathematics University of Louisville. March 5, 2014
Introductory Probability MATH 07: Finite Mathematics University of Louisville March 5, 204 What is probability? Counting and probability 2 / 3 Probability in our daily lives We see chances, odds, and probabilities
More information36 Odds, Expected Value, and Conditional Probability
36 Odds, Expected Value, and Conditional Probability What s the difference between probabilities and odds? To answer this question, let s consider a game that involves rolling a die. If one gets the face
More informationBasic Probability Theory I
A Probability puzzler!! Basic Probability Theory I Dr. Tom Ilvento FREC 408 Our Strategy with Probability Generally, we want to get to an inference from a sample to a population. In this case the population
More informationPlease circle A or B or I in the third column to indicate your chosen option in this table.
The choice of A means that the payoff to you will be 80 rupees if heads lands up from the coin toss and 130 rupees if tails lands up from the coin toss if this table is randomly chosen The choice of B
More information12.3 Geometric Sequences. Copyright Cengage Learning. All rights reserved.
12.3 Geometric Sequences Copyright Cengage Learning. All rights reserved. 1 Objectives Geometric Sequences Partial Sums of Geometric Sequences What Is an Infinite Series? Infinite Geometric Series 2 Geometric
More informationRELATIONS AND FUNCTIONS
008 RELATIONS AND FUNCTIONS Concept 9: Graphs of some functions Graphs of constant function: Let k be a fixed real number. Then a function f(x) given by f ( x) = k for all x R is called a constant function.
More informationChapter 15. Definitions: experiment: is the act of making an observation or taking a measurement.
MATH 11008: Probability Chapter 15 Definitions: experiment: is the act of making an observation or taking a measurement. outcome: one of the possible things that can occur as a result of an experiment.
More informationDiscrete probability and the laws of chance
Chapter 8 Discrete probability and the laws of chance 8.1 Introduction In this chapter we lay the groundwork for calculations and rules governing simple discrete probabilities. These steps will be essential
More informationMath/Stats 425 Introduction to Probability. 1. Uncertainty and the axioms of probability
Math/Stats 425 Introduction to Probability 1. Uncertainty and the axioms of probability Processes in the real world are random if outcomes cannot be predicted with certainty. Example: coin tossing, stock
More information+ Section 6.2 and 6.3
Section 6.2 and 6.3 Learning Objectives After this section, you should be able to DEFINE and APPLY basic rules of probability CONSTRUCT Venn diagrams and DETERMINE probabilities DETERMINE probabilities
More informationToss a coin twice. Let Y denote the number of heads.
! Let S be a discrete sample space with the set of elementary events denoted by E = {e i, i = 1, 2, 3 }. A random variable is a function Y(e i ) that assigns a real value to each elementary event, e i.
More informationTHE MULTINOMIAL DISTRIBUTION. Throwing Dice and the Multinomial Distribution
THE MULTINOMIAL DISTRIBUTION Discrete distribution  The Outcomes Are Discrete. A generalization of the binomial distribution from only 2 outcomes to k outcomes. Typical Multinomial Outcomes: red A area1
More informationSession 8 Probability
Key Terms for This Session Session 8 Probability Previously Introduced frequency New in This Session binomial experiment binomial probability model experimental probability mathematical probability outcome
More information6.3 Probabilities with Large Numbers
6.3 Probabilities with Large Numbers In general, we can t perfectly predict any single outcome when there are numerous things that could happen. But, when we repeatedly observe many observations, we expect
More informationAMS 5 CHANCE VARIABILITY
AMS 5 CHANCE VARIABILITY The Law of Averages When tossing a fair coin the chances of tails and heads are the same: 50% and 50%. So if the coin is tossed a large number of times, the number of heads and
More information7.S.8 Interpret data to provide the basis for predictions and to establish
7 th Grade Probability Unit 7.S.8 Interpret data to provide the basis for predictions and to establish experimental probabilities. 7.S.10 Predict the outcome of experiment 7.S.11 Design and conduct an
More information3.4. The Binomial Probability Distribution. Copyright Cengage Learning. All rights reserved.
3.4 The Binomial Probability Distribution Copyright Cengage Learning. All rights reserved. The Binomial Probability Distribution There are many experiments that conform either exactly or approximately
More informationProbability Review. ICPSR Applied Bayesian Modeling
Probability Review ICPSR Applied Bayesian Modeling Random Variables Flip a coin. Will it be heads or tails? The outcome of a single event is random, or unpredictable What if we flip a coin 10 times? How
More information4.1 4.2 Probability Distribution for Discrete Random Variables
4.1 4.2 Probability Distribution for Discrete Random Variables Key concepts: discrete random variable, probability distribution, expected value, variance, and standard deviation of a discrete random variable.
More informationThe overall size of these chance errors is measured by their RMS HALF THE NUMBER OF TOSSES NUMBER OF HEADS MINUS 0 400 800 1200 1600 NUMBER OF TOSSES
INTRODUCTION TO CHANCE VARIABILITY WHAT DOES THE LAW OF AVERAGES SAY? 4 coins were tossed 1600 times each, and the chance error number of heads half the number of tosses was plotted against the number
More informationM2L1. Random Events and Probability Concept
M2L1 Random Events and Probability Concept 1. Introduction In this lecture, discussion on various basic properties of random variables and definitions of different terms used in probability theory and
More informationMath/Stat 3601: Probability and Statistics, Washington State University
Math/Stat 3601: Probability and Statistics, Washington State University Haijun Li lih@math.wsu.edu Department of Mathematics Washington State University Week 2 Haijun Li Math/Stat 3601: Probability and
More informationProbability Using Dice
Using Dice One Page Overview By Robert B. Brown, The Ohio State University Topics: Levels:, Statistics Grades 5 8 Problem: What are the probabilities of rolling various sums with two dice? How can you
More informationProbability: The Study of Randomness Randomness and Probability Models. IPS Chapters 4 Sections 4.1 4.2
Probability: The Study of Randomness Randomness and Probability Models IPS Chapters 4 Sections 4.1 4.2 Chapter 4 Overview Key Concepts Random Experiment/Process Sample Space Events Probability Models Probability
More informationChapter 6. 1. What is the probability that a card chosen from an ordinary deck of 52 cards is an ace? Ans: 4/52.
Chapter 6 1. What is the probability that a card chosen from an ordinary deck of 52 cards is an ace? 4/52. 2. What is the probability that a randomly selected integer chosen from the first 100 positive
More informationAlgebra 2 C Chapter 12 Probability and Statistics
Algebra 2 C Chapter 12 Probability and Statistics Section 3 Probability fraction Probability is the ratio that measures the chances of the event occurring For example a coin toss only has 2 equally likely
More informationLESSON PLAN. Unit: Probability Lesson 6 Date: Summer 2008
LESSON PLAN Grade Level/Course: Grade 6 Mathematics Teacher(s): Ms. Green & Mr. Nielsen Unit: Probability Lesson 6 Date: Summer 2008 Topic(s): Playing Carnival Games Resources: Transparencies: Worksheets:
More information**Chance behavior is in the short run but has a regular and predictable pattern in the long run. This is the basis for the idea of probability.
AP Statistics Chapter 5 Notes 5.1 Randomness, Probability,and Simulation In tennis, a coin toss is used to decide which player will serve first. Many other sports use this method because it seems like
More information. Notice that this means P( A B )
Probability II onditional Probability You already know probabilities change when more information is known. For example the probability of getting type I diabetes for the general population is.06. The
More informationChapter 4 Lecture Notes
Chapter 4 Lecture Notes Random Variables October 27, 2015 1 Section 4.1 Random Variables A random variable is typically a realvalued function defined on the sample space of some experiment. For instance,
More informationElementary probability
Elementary probability Many of the principal applications of calculus are to questions of probability and statistics. We shall include here an introduction to elementary probability, and eventually some
More informationLast Snowman Standing Sum of 2 Dice. Last Snowman Standing Game 1
Sum of 2 Dice 2 3 4 5 6 7 8 9 10 11 12 Last Snowman Standing Game 1 tkawas@mathwire.com Difference of 2 Dice 0 1 2 3 4 5 Last Snowman Standing Game 2 tkawas@mathwire.com One Die Toss 1 2 3 4 5 6 Last Snowman
More informationThat s Not Fair! ASSESSMENT #HSMA20. Benchmark Grades: 912
That s Not Fair! ASSESSMENT # Benchmark Grades: 912 Summary: Students consider the difference between fair and unfair games, using probability to analyze games. The probability will be used to find ways
More informationMA 1125 Lecture 14  Expected Values. Friday, February 28, 2014. Objectives: Introduce expected values.
MA 5 Lecture 4  Expected Values Friday, February 2, 24. Objectives: Introduce expected values.. Means, Variances, and Standard Deviations of Probability Distributions Two classes ago, we computed the
More informationThe Casino Lab STATION 1: CRAPS
The Casino Lab Casinos rely on the laws of probability and expected values of random variables to guarantee them profits on a daily basis. Some individuals will walk away very wealthy, while others will
More informationFor 2 coins, it is 2 possible outcomes for the first coin AND 2 possible outcomes for the second coin
Problem Set 1. 1. If you have 10 coins, how many possible combinations of heads and tails are there for all 10 coins? Hint: how many combinations for one coin; two coins; three coins? Here there are 2
More informationExamples of infinite sample spaces. Math 425 Introduction to Probability Lecture 12. Example of coin tosses. Axiom 3 Strong form
Infinite Discrete Sample Spaces s of infinite sample spaces Math 425 Introduction to Probability Lecture 2 Kenneth Harris kaharri@umich.edu Department of Mathematics University of Michigan February 4,
More informationPROBABILITY 14.3. section. The Probability of an Event
4.3 Probability (43) 727 4.3 PROBABILITY In this section In the two preceding sections we were concerned with counting the number of different outcomes to an experiment. We now use those counting techniques
More informationJANUARY TERM 2012 FUN and GAMES WITH DISCRETE MATHEMATICS Module #9 (Geometric Series and Probability)
JANUARY TERM 2012 FUN and GAMES WITH DISCRETE MATHEMATICS Module #9 (Geometric Series and Probability) Author: Daniel Cooney Reviewer: Rachel Zax Last modified: January 4, 2012 Reading from Meyer, Mathematics
More informationCh. 13.3: More about Probability
Ch. 13.3: More about Probability Complementary Probabilities Given any event, E, of some sample space, U, of a random experiment, we can always talk about the complement, E, of that event: this is the
More informationST 371 (IV): Discrete Random Variables
ST 371 (IV): Discrete Random Variables 1 Random Variables A random variable (rv) is a function that is defined on the sample space of the experiment and that assigns a numerical variable to each possible
More informationUniversity of California, Los Angeles Department of Statistics. Random variables
University of California, Los Angeles Department of Statistics Statistics Instructor: Nicolas Christou Random variables Discrete random variables. Continuous random variables. Discrete random variables.
More informationSHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.
Math 1342 (Elementary Statistics) Test 2 Review SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Find the indicated probability. 1) If you flip a coin
More informationWeek in Review #3 (L.1L.2, )
Math 166 WeekinReview  S. Nite 9/26/2012 Page 1 of 6 Week in Review #3 (L.1L.2, 1.11.7) 1. onstruct a truth table for (p q) (p r) p Q R p q r p r ( p r) (p q) (p r) T T T T F F T T T T F T T T F F
More informationStatistics and Probability
Statistics and Probability TABLE OF CONTENTS 1 Posing Questions and Gathering Data. 2 2 Representing Data. 7 3 Interpreting and Evaluating Data 13 4 Exploring Probability..17 5 Games of Chance 20 6 Ideas
More information4. Joint Distributions
Virtual Laboratories > 2. Distributions > 1 2 3 4 5 6 7 8 4. Joint Distributions Basic Theory As usual, we start with a random experiment with probability measure P on an underlying sample space. Suppose
More informationIntroduction to Probability
Chapter 4 Introduction to Probability 4.1 Introduction Probability is the language we use to model uncertainty. We all intuitively understand that few things in life are certain. There is usually an element
More informationGrade 7 Mathematics. Unit 7. Data Analysis. Estimated Time: 18 Hours
Grade 7 Mathematics Data Analysis Estimated Time: 18 Hours [C] Communication [CN] Connections [ME] Mental Mathematics and Estimation [PS] Problem Solving [R] Reasoning [T] Technology [V] Visualization
More informationChapter 5. Section 5.1: Central Tendency. Mode: the number or numbers that occur most often. Median: the number at the midpoint of a ranked data.
Chapter 5 Section 5.1: Central Tendency Mode: the number or numbers that occur most often. Median: the number at the midpoint of a ranked data. Example 1: The test scores for a test were: 78, 81, 82, 76,
More information5.1.1 The Idea of Probability
5.1.1 The Idea of Probability Chance behavior is unpredictable in the short run but has a regular and predictable pattern in the long run. This remarkable fact is the basis for the idea of probability.
More informationConcepts of Probability
Concepts of Probability Trial question: we are given a die. How can we determine the probability that any given throw results in a six? Try doing many tosses: Plot cumulative proportion of sixes Also look
More informationLecture 6: Probability. If S is a sample space with all outcomes equally likely, define the probability of event E,
Lecture 6: Probability Example Sample Space set of all possible outcomes of a random process Flipping 2 coins Event a subset of the sample space Getting exactly 1 tail Enumerate Sets If S is a sample space
More informationRock, Paper, Scissors Tournament
UNIT 5: PROBABILITY Introduction to The Mathematics of Chance Rock, Paper, Scissors Tournament History As old as civilization. Egyptians used a small mammal bone as a 4 sided die (500 BC) Games of chance
More informationI. WHAT IS PROBABILITY?
C HAPTER 3 PROAILITY Random Experiments I. WHAT IS PROAILITY? The weatherman on 10 o clock news program states that there is a 20% chance that it will snow tomorrow, a 65% chance that it will rain and
More informationV. RANDOM VARIABLES, PROBABILITY DISTRIBUTIONS, EXPECTED VALUE
V. RANDOM VARIABLES, PROBABILITY DISTRIBUTIONS, EXPETED VALUE A game of chance featured at an amusement park is played as follows: You pay $ to play. A penny and a nickel are flipped. You win $ if either
More informationTeaching & Learning Plans. Plan 2: Probability and Relative Frequency. Junior Certificate Syllabus Leaving Certificate Syllabus
Teaching & Learning Plans Plan 2: Probability and Relative Frequency Junior Certificate Syllabus Leaving Certificate Syllabus The Teaching & Learning Plans are structured as follows: Aims outline what
More informationRandom variables P(X = 3) = P(X = 3) = 1 8, P(X = 1) = P(X = 1) = 3 8.
Random variables Remark on Notations 1. When X is a number chosen uniformly from a data set, What I call P(X = k) is called Freq[k, X] in the courseware. 2. When X is a random variable, what I call F ()
More informationPROBABILITY NOTIONS. Summary. 1. Random experiment
PROBABILITY NOTIONS Summary 1. Random experiment... 1 2. Sample space... 2 3. Event... 2 4. Probability calculation... 3 4.1. Fundamental sample space... 3 4.2. Calculation of probability... 3 4.3. Non
More informationMATHEMATICS FOR ENGINEERS STATISTICS TUTORIAL 4 PROBABILITY DISTRIBUTIONS
MATHEMATICS FOR ENGINEERS STATISTICS TUTORIAL 4 PROBABILITY DISTRIBUTIONS CONTENTS Sample Space Accumulative Probability Probability Distributions Binomial Distribution Normal Distribution Poisson Distribution
More informationMathematical goals. Starting points. Materials required. Time needed
Level S2 of challenge: B/C S2 Mathematical goals Starting points Materials required Time needed Evaluating probability statements To help learners to: discuss and clarify some common misconceptions about
More informationThe Idea of Probability
AP Statistics 5.1 Reading Guide Name Directions: Read the following pages and then answer the questions at the end. We ll have a short miniquiz over this material (for Mastery) when we return from Thanksgiving
More informationSample Questions for Mastery #5
Name: Class: Date: Sample Questions for Mastery #5 Multiple Choice Identify the choice that best completes the statement or answers the question.. For which of the following binomial experiments could
More informationDiscrete Mathematics and Probability Theory Fall 2009 Satish Rao,David Tse Note 11
CS 70 Discrete Mathematics and Probability Theory Fall 2009 Satish Rao,David Tse Note Conditional Probability A pharmaceutical company is marketing a new test for a certain medical condition. According
More informationSTAT 270 Probability Basics
STAT 270 Probability Basics Richard Lockhart Simon Fraser University Spring 2015 Surrey 1/28 Purposes of These Notes Jargon: experiment, sample space, outcome, event. Set theory ideas and notation: intersection,
More informationChapter 17: expected value and standard error for the sum of the draws from a box
Chapter 17: expected value and standard error for the sum of the draws from a box Context................................................................... 2 When we do this 10,000 times.....................................................
More informationProbability Lesson #2
Probability Lesson #2 Sample Space A sample space is the set of all possible outcomes of an experiment. There are a variety of ways of representing or illustrating sample spaces. Listing Outcomes List
More informationProbability and Statistics
Probability and Statistics 20142015 Chris Foley cfoley@lrhsd.org ext. 8465 Mike Spera mspera@lrhsd.org ext. 8340 Maureen McMichael mmcmichael@lrhsd.org ext. 8367 Unit #3 Probability and Probability Distributions
More informationA Simple Example. Sample Space and Event. Tree Diagram. Tree Diagram. Probability. Probability  1. Probability and Counting Rules
Probability and Counting Rules researcher claims that 10% of a large population have disease H. random sample of 100 people is taken from this population and examined. If 20 people in this random sample
More informationPROBABILITY SECOND EDITION
PROBABILITY SECOND EDITION Table of Contents How to Use This Series........................................... v Foreword..................................................... vi Basics 1. Probability All
More information7.1 Sample space, events, probability
7.1 Sample space, events, probability In this chapter, we will study the topic of probability which is used in many different areas including insurance, science, marketing, government and many other areas.
More informationSection 6.2 ~ Basics of Probability. Introduction to Probability and Statistics SPRING 2016
Section 6.2 ~ Basics of Probability Introduction to Probability and Statistics SPRING 2016 Objective After this section you will know how to find probabilities using theoretical and relative frequency
More informationP (A B) = P (AB)/P (B).
1 Lecture 8 Conditional Probability Define the conditional probability of A given B by P (A B) = P (AB) P (B. If we roll two dice in a row the probability that the sum is 9 is 1/9 as there are four combinations
More informationMath 3C Homework 3 Solutions
Math 3C Homework 3 s Ilhwan Jo and Akemi Kashiwada ilhwanjo@math.ucla.edu, akashiwada@ucla.edu Assignment: Section 2.3 Problems 2, 7, 8, 9,, 3, 5, 8, 2, 22, 29, 3, 32 2. You draw three cards from a standard
More informationUnit 19: Probability Models
Unit 19: Probability Models Summary of Video Probability is the language of uncertainty. Using statistics, we can better predict the outcomes of random phenomena over the long term from the very complex,
More informationWorked examples Basic Concepts of Probability Theory
Worked examples Basic Concepts of Probability Theory Example 1 A regular tetrahedron is a body that has four faces and, if is tossed, the probability that it lands on any face is 1/4. Suppose that one
More informationYou flip a fair coin four times, what is the probability that you obtain three heads.
Handout 4: Binomial Distribution Reading Assignment: Chapter 5 In the previous handout, we looked at continuous random variables and calculating probabilities and percentiles for those type of variables.
More information7.1 LINEAR AND NONLINEAR SYSTEMS OF EQUATIONS
7.1 LINEAR AND NONLINEAR SYSTEMS OF EQUATIONS Copyright Cengage Learning. All rights reserved. What You Should Learn Use the method of substitution to solve systems of linear equations in two variables.
More informationBetting systems: how not to lose your money gambling
Betting systems: how not to lose your money gambling G. Berkolaiko Department of Mathematics Texas A&M University 28 April 2007 / Mini Fair, Math Awareness Month 2007 Gambling and Games of Chance Simple
More informationChapter 5. Discrete Probability Distributions
Chapter 5. Discrete Probability Distributions Chapter Problem: Did Mendel s result from plant hybridization experiments contradicts his theory? 1. Mendel s theory says that when there are two inheritable
More information1 Combinations, Permutations, and Elementary Probability
1 Combinations, Permutations, and Elementary Probability Roughly speaking, Permutations are ways of grouping things where the order is important. Combinations are ways of grouping things where the order
More informationComparison of frequentist and Bayesian inference. Class 20, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom
Comparison of frequentist and Bayesian inference. Class 20, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom 1 Learning Goals 1. Be able to explain the difference between the pvalue and a posterior
More informationProbability, statistics and football Franka Miriam Bru ckler Paris, 2015.
Probability, statistics and football Franka Miriam Bru ckler Paris, 2015 Please read this before starting! Although each activity can be performed by one person only, it is suggested that you work in groups
More informationACMS 10140 Section 02 Elements of Statistics October 28, 2010. Midterm Examination II
ACMS 10140 Section 02 Elements of Statistics October 28, 2010 Midterm Examination II Name DO NOT remove this answer page. DO turn in the entire exam. Make sure that you have all ten (10) pages of the examination
More information