Introduction to Probability
|
|
|
- Horace Wilkins
- 9 years ago
- Views:
Transcription
1 3 Introduction to Probability Given a fair coin, what can we expect to be the frequency of tails in a sequence of 10 coin tosses? Tossing a coin is an example of a chance experiment, namely a process which results in one and only one outcome from a set of mutually exclusive outcomes, where the outcomes cannot be predicted with certainty. A chance experiment can be real or conceptual. Other examples of a chance experiment are: throwing a fair die 10 times and recording the number of times a prime number (namely 1, 2, 3 or 5) is obtained, or selecting 5 students at random and recording whether they are male or female, or randomly drawing a sample of voters from the U.S. population. 3.1 SAMPLE SPACES AND EVENTS The most basic outcomes of a chance experiment are called elementary outcomes or sample points. Any theory involves idealizations, and our rst idealization concerns the elementary outcomes of an experiment. For example, when a coin is tossed, it does not necessarily fall head (H) or tail (T), for it can stand on its edge or roll away. Still we agree that H and T are the only elementary outcomes. The sample space is the set of all elementary outcomes of a chance experiment. An outcome that can be decomposed into a set of elementary outcomes is called an event. The simplest kind of sample spaces are the ones that are nite, that is, consist only of a nite number of points. If the number of points is small, then these spaces are easy to visualize. Example 3.1 Consider the chance experiment of tossing 3 coins or, equivalently, tossing the same coin 3 times. The sample space of this experiment is easily constructed by noticing that the rst coin toss has two possible outcomes, H and T. Given the result of the rst coin toss, the second also has H and T as possible outcomes. Given the results of the rst two coin tosses, the third also has H and T as possible outcomes. The outcome tree of this experiment and its sample points are listed in Table 4. Taken together, these sample points comprise the sample space. The event \at least 2 heads" consists of the following sample points HHH; HHT; HTH; THH: 2
2 20 Table 4 Outcome tree and sample space of the chance experiment of tossing 3 coins. H T / H HHH H / n T HHT n / H HTH T n T HTT / H THH H / n T THT n / H TTH T n T TTT Many important sample spaces are not nite. Some of them contain countably many points, and some of them may even contain uncountably many points. Example 3.2 Consider the chance experiment of tossing a coint until a head turns up. The points of this sample space are: H; T; TH;TT; TTH; TTT;::: This sample space contains countably many points. 2 Example 3.3 Consider the chance experiment of picking a real number from the interval (0; 1). This sample space contains uncountably many points RELATIONS AMONG EVENTS Let S be a sample space, e an elementary outcome and E an event, that is, a set of elementary outcomes. Because the notions of elementary outcome and event are the same as those of point and point set in set theory, standard concepts and results from set theory also apply to probability theory. Thus, ; denotes the impossible event, that is, the event that contains no sample point. Given an event E, E c denotes the complement of E, that is, the event consisting of all points of S that are not contained in E. Clearly, S c = ; and ; c = S. Given two events A and B, we say that A is contained in B, written A µ B, if all points in A are also in B. In the language of probability, we say that \B occurs whenever A occurs". Clearly, for any event E, we have that ; µ E and E µ S. We
3 INTRODUCTION TO PROBABILITY 21 say that A and B are equal, written A = B, if A µ B and B µ A. We say that A is strictly contained in B, written A ½ B, if A µ B but A is not equal to B. Given two events A and B, the event A[B (called the union of A and B) corresponds to the occurrence of either A or B, that is, it consists of all sample points that are either in A or in B, or in both. Clearly, A [ B = B [ A; A µ (A [ B); B µ (A [ B): Given any event E, we also have E [ E c = S; E [ S = S; E [ ; = E: (3.1) Given two events A and B, the event A \ B (called the intersection of A and B) corresponds to the occurrence of both A and B, that is, it consists of all sample points that are in both A and B. When A \ B = ;, we say that the events A and B are mutually exclusive, that is, they cannot occur at once. Clearly, Further A \ B = B \ A; (A \ B) µ A; (A \ B) µ B: Given any event E, we also have (A \ B) µ (A [ B): E \ E c = ;; E \ S = E; E \ ; = ;: (3.2) In fact, the relationship between (3.1) and (3.2) is a special case of the following results, known as de Morgan's laws. Given two events A and B (A \ B) c = A c [ B c ; (A [ B) c = A c \ B c : De Morgan's laws show that complementation, union and intersection are not independent operations. Given two events A and B, the event E = A B (called the di erence of A and B) corresponds to all sample points in A that are not in B. Clearly, A B = A \ B c. Notice that A B and B A are di erent events, that (A B) \ (B A) = ; and that (A \ B) [ (A B) = A. Venn diagrams. 3.3 PROBABILITIES IN SIMPLE SAMPLE SPACES Probabilities are just numbers assigned to events. These numbers have the same nature as lengths, areas and volumes in geometry. How are probability numbers assigned? In the experiment of tossing a fair coin, where S = fh;tg, we do not hesitate to assign probability 1/2 to each of the two elementary outcomes H and T. From the theoretical point of view this is merely a convention, which can however be justi ed on the basis of actually tossing a fair coin a large number of times. In this case, the probability 1/2 assigned to the event \H occurred" can be interpreted as the limiting
4 22 relative frequency of heads in the experiment of tossing a fair coin n times as n! 1. The view of probabilities as the limit of relative frequencies is called the frequentist interpretation of probabilities. This is not the only interpretation, however. Another important one is the subjectivist interpretation, where probabilities are essentially viewed as representing degrees of belief about the likelihood of an event. A sample space consisting of a nite number of points, where each point is equally probable, that is, receives the same probability, is called simple. Example 3.4 The sample space corresponding to the chance experiment of tossing a fair coin 3 times is a simple sample space where each sample point receives the same probability 1/8. 2 Given a simple sample space S, the probability of an event E µ S is Pr(E) = number of sample points in E total number of sample points : Several important properties of probabilities follow immediately from this de nition: (i) 0 Pr(E) 1; (ii) Pr(S) = 1; (iii) Pr(;) = 0. These three properties hold for general sample spaces as well. Other properties are easy to understand using Venn diagrams. If A µ B, then If E = A [ B, then Clearly, Pr(A) Pr(B): Pr(E) = sum of the probabilities of all sample points in A [ B = Pr(A) + Pr(B) Pr(A \ B) Pr(A) + Pr(B): Pr(E) = Pr(A) + Pr(B) if and only if Pr(A \ B) = 0, that is, A and B are mutually exclusive events. For the complement E c of E, since E [ E c = S and E \ E c = ;, we have Pr(E) + Pr(E c ) = Pr(S) = 1 and so Pr(E c ) = 1 Pr(E): Example 3.5 Consider the simple sample space corresponding to experiment of tossing a fair coin 3 times. The event \at least 2 heads" corresponds to the set of elementary outcomes A = fhhh; HHT; HTH; THHg: Therefore, its probability is Pr(A) = 4=8 = 1=2:
5 INTRODUCTION TO PROBABILITY 23 The event \at least 1 tail" corresponds to the set of elementary outcomes B = fhht; HTH; HTT; THH; THT; TTH; TTTg: Because B is the complement of the event \no tails", its probability is The intersection ofa andb is the event Pr(B) = 7=8 = 1 Pr(HHH): A \ B = fhht; HTH; THHg; whose probability is equal to 3=8. The probability of the union of A and B is therefore equal to Pr(A) + Pr(B) Pr(A \ B) = = 1; which ought not be surprising since A [ B = S in this case COUNTING RULES Calculations of probabilities for simple sample spaces is facilitated by a systematic use of a few counting rules MULTIPLICATION RULE The experiment of tossing a fair coin twice has 4 possible outcomes: HH, HT, TH and TT. This is an example of a chance experiment with the following characteristics: 1. The experiment is performed in 2 parts. 2. The rst part has n possible outcomes, say x 1 ;:::;x n. Regardless of which of these outcomes occurred, the second part has m possible outcomes, say y 1 ;:::;y m. Each point of the sample space S is therefore a pair e = (x i ;y j ), where i = 1;:::;n and j = 1;:::;m, and S consists of the mn pairs (x 1 ;y 1 ) (x 1 ;y 2 ) (x 1 ;y m ) (x 2 ;y 1 ) (x 2 ;y 2 ) (x 2 ;y m )... (x n ;y 1 ) (x n ;y 2 ) (x n ;y m ): The generalization to the case of an experiment with more than 2 parts is straightforward. Consider an experiment that is performed in k parts (k 2), where the hth part of the experiment has n h possible outcomes (h = 1;:::;k) and each of the outcomes in any part of the experiment can occur regardless of which speci c outcome occurred in any of the other parts. Then each sample point in S will be a k-tuple e = (u 1 ;:::;u k ), where u h is one of the n h possible outcomes in the hth part of the experiment. The total number of sample points in S is therefore equal to n 1 n 2 n k :
6 24 Example 3.6 Suppose one can choose between 10 speaker types, 5 receivers and 3 CD players. The number of di erent stereo systems that can be put together this way is = The next two subsections provide important examples of application of the multiplication rule SAMPLING WITH REPLACEMENT Consider a chance experiment which consists of k repetitions of the same basic experiment or trial. If each trial has the same number n of possible outcomes, then the total number of sample points in S is equal to n k. Example 3.7 Consider tossing a coin 4 times. The total number of outcomes is 2 4 = Example 3.8 Consider a box containing 10 balls numbered 1; 2;:::; 10. Suppose that we repeat 5 times the basic experiment of selecting one ball at random, recording its number and then putting the ball back in the urn. Since the number of possible outcomes in each trial is equal to 10, the total number of possible outcomes of the experiment is equal to 10 5 = 100; 000. This experiment is an example of sampling with replacement from a nite population SAMPLING WITHOUT REPLACEMENT Sampling without replacement corresponds to successive random draws, without replacement, of a single population unit. In the example of drawing balls from a box (Example 3.8), after a ball is selected, it is left out of the box. Example 3.9 Consider a deck of 52 cards. If we select 3 cards in succession, then there are 52 possible outcomes at the rst selection, 51 at the second, and 50 at the third. This is an example of sampling without replacement from a nite population. The total number of possible outcomes is therefore = 132; If k elements have to be selected from a set of n elements, then the total number of possible outcomes is P n;k = n(n 1)(n 2) (n k + 1); called the number of permutations of n elements taken k at a time. If k = n, then the number of possible outcomes is the number of permutations of all n elements P n;n = n(n 1)(n 2) 2 1; called n factorial and denoted by n!. By convention 0! = 1. Thus P n;k = n(n 1)(n 2) (n k + 1)(n k) 2 1 (n k)(n k 1) 2 1 = n! (n k)! :
7 INTRODUCTION TO PROBABILITY 25 Example 3.10 Given a group of k people (2 k 365), what is the probability that at least 2 people in the group have the same birthday? To simplify the problem, assume that birthdays are unrelated (there are no twins) and that each of the 365 days of the year are equally likely to be the birthday of any person. The sample space S then consists of 365 k possible outcomes. The number of outcomes in S for which all k birthdays are di erent is P 365;k. Therefore, if E denotes the event \all k people have di erent birthdays", then Pr(E) = P 365;k 365 k : Because the event \at least 2 people have the same birthday" is just the complement of E, we get Pr(E c ) = 1 P 365;k 365 k : We denote this probability by p(k). The table below summarizes the value of p(k) for di erent values of k: k p(k) Notice that, in a class of 100 people, the event that at least 2 people have the same birthday is almost certain COMBINATIONS As a motivation, consider the following example. Example 3.11 Consider combining 4 elements a, b, c and d, taken 2 at a time. The total number of possible outcomes is equal to the permutation of 4 objects taken 2 at a time, namely P 4;2 = 4 3 = 12: If the order of the elements of each pair is irrelevant, the table below shows that 6 di erent combinations are obtained:
8 26 12 permutations 6 combinations a;b a;c a;d b;a b;c b;d c;a c;b c;d d;a d;b d;c fa;bg fa;cg fa;dg fb;cg fb;dg fc;dg 2 Let C n;k denote the number of di erent combinations of n objects taken k at a time. To determine C n;k notice that the list of P n;k permutations may be constructed as follows. First select a particular combination of k objects. Then notice that this particular combination can produce k! permutations. Hence from which we get P n;k = C n;k k!; C n;k = P n;k k! = n! (n k)!k! : The number C n;k is also called binomial coe±cient and denoted µ n C n;k = : k Clearly µ µ n n! n = k (n k)!k! = : n k Example 3.12 In Example 3.11, n = 4, k = 2 and so C 4;2 = 12=2 = 6. 2 Example 3.13 Given a hand of 5 cards, randomly drawn from a deck of 52, the probability of a \straight ush" is p = Pr(\straight ush") = no. of di erent straight ushes : no. of di erent hands The number of di erent hands is equal to µ 52 = 52! = 2; 598; 960: 5 5! 47!
9 INTRODUCTION TO PROBABILITY 27 Because there are 10 straight ushes for each suit, the total number of straight ushes is 10 4 = 40. Therefore, the desired probability is p = 40 2; 598; 960 = :000015: Not a high one! 2 When a set contains only elements of 2 distinct types, a binomial coe±cient may be used to represent the number of di erent arrangements of all the elements in the set. Example 3.14 Suppose that k red balls and n k green balls are to be arranged in a row. Since the red balls occupy k positions, the number of di erent arrangements of the n balls corresponds to the number C n;k of combinations of n objects taken k at a time. 2 Example 3.15 Given a hand of 5 cards, randomly drawn from a deck of 52, the probability of a \poker" is p = Pr(\poker") = no. of di erent pokers no. of di erent hands ; where the denominator is the same as in Example To compute the denominator, notice that 13 types of poker are possible: A, K, Q,..., 2, and that 5 cards can be divided in 2 groups, one of 4 and one of 1 cards, in C 5;4 = µ 5 4 = 5! 1! 4! = 5 possible ways. Therefore, the number of possible pokers in one hand of 5 cards is 13 5 = 65 and so 65 p = 2; 598; 960 = :000025; which is higher than the probability of a straight ush CONDITIONAL PROBABILITIES Suppose that we have a sample space S where probabilities have been assigned to all events. If we know that the event B ½ S occurred, then it seems intuitively obvious that this ought to modify our assignment of probabilities to any other event A ½ S, because the only sample points in A that are now possible are the ones that are also contained in B. This new probabilitiy assigned to A is called the conditional probability of the event A given that the event B has occurred, or simply the conditional probability of A given B, and denoted by Pr(AjB). Example 3.16 Consider again the experiment of tossing a fair coin 3 times. Let A = \at least one T" and B = \H in the rst trial". Clearly Pr(B) = 1=2; Pr(A) = 7=8; Pr(A \ B) = 3=8:
10 28 If we know that B occurred, then the relevant sample space becomes Therefore S 0 = fhhh; HHT; HTH; HTTg: Pr(AjB) = 3 4 = 3=8 1=2 Pr(A \ B) = : Pr(B) Notice that Pr(AjB) < Pr(A) in this case. 2 De nition 3.1 If A and B are any two events, then the conditional probability of A given B is Pr(A \ B) Pr(AjB) = Pr(B) if Pr(B) > 0, and Pr(AjB) = 0 otherwise. 2 The conditional probability of B givena is similarly de ned as Pr(B ja) = Pr(A \ B) Pr(A) provided that Pr(B) > 0. The frequentist interpretation of conditional probabilities is as follows. If a chance experiment is repeated a large number of times, then the proportion of trials on which the event B occurs is approximately equal to Pr(B), whereas the proportion of trials in which both A and B occur is approximately equal to Pr(A \ B). Therefore, among those trials in which B occurs, the proportion in which A also occurs is approximately equal to Pr(A \ B)= Pr(B). De nition 3.1 may be re-expressed as Pr(A \ B) = Pr(AjB) Pr(B): (3.3) This result, called the multiplication law, provides a convenient way of nding Pr(A \ B) whenever Pr(AjB) and Pr(B) are easy to nd. Example 3.17 Consider a hand of 2 cards randomly drawn from a deck of 52. Let A = \second card is a king" and B = \ rst card is an ace". Then Pr(B) = 4=52 and Pr(AjB) = 4=51. Hence Pr(A \ B) = Pr(\ace and then king") = Pr(AjB) Pr(B) = = :0060: 2 We now consider a useful application of the multiplication law (3.3). Notice that A = (A \ B) [ (A \ B c ); where A \ B and A \ B c are disjoint events because B and its complement B c are disjoint. Hence Pr(A) = Pr(A \ B) + Pr(A \ B c );
11 INTRODUCTION TO PROBABILITY 29 where, by the multiplication law, and Therefore Pr(A \ B) = Pr(A jb) Pr(B) Pr(A \ B c ) = Pr(AjB c ) Pr(B c ): Pr(A) = Pr(AjB) Pr(B) + Pr(AjB c ) Pr(B c ); (3.4) which is sometimes called the law of total probabilities. Example 3.18 Consider a hand of 2 cards randomly drawn from a deck of 52. Let A = \second card is a king" and B = \ rst card is a king". We have Pr(B) = 4=52, Pr(B c ) = 48=52 and Hence, by the law of total probabilities Pr(AjB) = 3=51; Pr(AjB c ) = 4=51: Pr(A) = = 4 52 : Thus Pr(A) and Pr(B) are the same STATISTICAL INDEPENDENCE Let A and B be two events with non-zero probability. If knowing that B occurred gives no information about whether or not A occurred, then the probability assigned to A should not be modi ed by the knowledge that B occurred, that is, Pr(AjB) = Pr(A). Hence, by the multiplication law, Pr(A \ B) = Pr(A) Pr(B): We take this as our formal de nition of statistical independence. De nition 3.2 Two events A and B are said to be statistically independent if Pr(A \ B) = Pr(A) Pr(B): Notice that this de nition of independence is symmetric in A and B, and also covers the case when Pr(A) = 0 or Pr(B) = 0. It is easy to show that if A and B are independent, then A and B c as well as A c and B c are independent. It is clear from De nition 3.2 thatmutually exclusive events cannot be independent. The concept of statistical independence is di erent from other concepts of independence (logical, mathematical, political, etc.). When there is no ambiguity, the term independence will be taken to mean statistical independence. 2
12 30 Example 3.19 The sample space associated with the experiment of tossing a fair coin twice is a simple sample space consisting of 2 2 = 4 points. De ne the events A = \H in the rst toss" and B = \T in the second toss". Because A \ B = HT we have Pr(A \ B) = 1 4 = = Pr(A) Pr(B): 2 This result seems fairly intuitive, because the occurrence of H in the rst coin toss has no relation to, and no in uence on the occurrence of T in the second coin toss, and viceversa. 2 It is natural to assume that events that are physically unrelated (such as successive coin tosses) are also statistically independent. However, physically related events may also satisfy the de nition of statistical independence. Example 3.20 Consider the chance experiment consisting of throwing a fair die. The sample space of this experiment is the simple sample space: Let A = \an even number is obtained" and B = \the number 1, 2, 3 or 4 is obtained". It is easy to verify that Pr(A) = 1=2 and Pr(B) = 2=3. Further Pr(A \ B) = Pr(\2 or 4") = 1=3 = Pr(A) Pr(B): Hence, A and B are independent even though their occurrence depends on the same roll of a die BAYES LAW Suppose that you want to determine whether a coin is fair (F) or unfair (U). You have no information on the coin, and so you are willing to believe that F and U are equally likely, that is, Pr(F) = Pr(U) = 1=2: If the coin is fair, then Pr(H jf) = 1=2: Further suppose that you know that, if the coin is unfair, then H is more likely than T, say Pr(H ju) = :9:
13 INTRODUCTION TO PROBABILITY 31 Assume that tossing the coin once gives you H. What is now the probability that the coins is unfair? This is called the posterior probability of F given H, and denoted by Pr(F jh). Intuitively, the occurrence of H (the most likely event if the coin is unfair) should modify your initial beliefs, leading you to view the event that the coin is fair as less likely than initially thought, whereas the occurrence of T should lead you to view the event that the coin is fair as more likely than initially thought. One way of computing the posterior probabilities Pr(F jh) and Pr(F jt) is to draw the outcome tree for this problem. F U / H Pr(H \ F) = :25 n T Pr(T \ F) = :25 / H Pr(H \ U) = :45 n T Pr(T \ U) = :05 It is then clear that the events U and F are mutually exclusive and that the event H is the union of the two disjoint events H \ F and H \ U. Hence Therefore Pr(H) = Pr(H \ F) + Pr(H \ U) = :25 + :45 = :70: Pr(F jh) = Pr(H \ H) Pr(H) = :25 :70 = :357; which is indeed less than the original assignement of probability to F, namely Pr(F) = 1=2. By a similar argument we have Pr(F jt) = Pr(T \ F) Pr(T) = :25 :30 = :833: We can also compute the posterior probability Pr(F jh) without the need of a tree diagram, by using the fact that by the multiplication law, and by the law of total probabilities. Hence, Pr(H \ F) = Pr(H jf) Pr(F) Pr(H) = Pr(H jf) Pr(F) + Pr(H ju) Pr(U) Pr(F jh) = Pr(H jf) Pr(F) Pr(H jf) Pr(F) + Pr(H ju) Pr(U) : (3.5)
14 32 This formula is known as Bayes law. For Pr(F jt), Bayes law gives Pr(F jt) = Pr(T jf) Pr(F) Pr(T jf) Pr(F) + Pr(T ju) Pr(U) ; where Pr(T jf) = 1 Pr(H jf) and Pr(T ju) = 1 Pr(H ju). Notice that we can regard Pr(F) as our prior information about whether the coin is fair. Bayes law then gives us a way of updating this information in the light of the new information contained in the fact that H was obtained.
Elements of probability theory
2 Elements of probability theory Probability theory provides mathematical models for random phenomena, that is, phenomena which under repeated observations yield di erent outcomes that cannot be predicted
Math/Stats 425 Introduction to Probability. 1. Uncertainty and the axioms of probability
Math/Stats 425 Introduction to Probability 1. Uncertainty and the axioms of probability Processes in the real world are random if outcomes cannot be predicted with certainty. Example: coin tossing, stock
Lecture Note 1 Set and Probability Theory. MIT 14.30 Spring 2006 Herman Bennett
Lecture Note 1 Set and Probability Theory MIT 14.30 Spring 2006 Herman Bennett 1 Set Theory 1.1 Definitions and Theorems 1. Experiment: any action or process whose outcome is subject to uncertainty. 2.
Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 10
CS 70 Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 10 Introduction to Discrete Probability Probability theory has its origins in gambling analyzing card games, dice,
Lesson 1. Basics of Probability. Principles of Mathematics 12: Explained! www.math12.com 314
Lesson 1 Basics of Probability www.math12.com 314 Sample Spaces: Probability Lesson 1 Part I: Basic Elements of Probability Consider the following situation: A six sided die is rolled The sample space
Chapter 4 - Practice Problems 1
Chapter 4 - Practice Problems SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Provide an appropriate response. ) Compare the relative frequency formula
Chapter 6. 1. What is the probability that a card chosen from an ordinary deck of 52 cards is an ace? Ans: 4/52.
Chapter 6 1. What is the probability that a card chosen from an ordinary deck of 52 cards is an ace? 4/52. 2. What is the probability that a randomly selected integer chosen from the first 100 positive
Basic Probability Concepts
page 1 Chapter 1 Basic Probability Concepts 1.1 Sample and Event Spaces 1.1.1 Sample Space A probabilistic (or statistical) experiment has the following characteristics: (a) the set of all possible outcomes
Probability: Terminology and Examples Class 2, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom
Probability: Terminology and Examples Class 2, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom 1 Learning Goals 1. Know the definitions of sample space, event and probability function. 2. Be able to
Session 8 Probability
Key Terms for This Session Session 8 Probability Previously Introduced frequency New in This Session binomial experiment binomial probability model experimental probability mathematical probability outcome
Random variables, probability distributions, binomial random variable
Week 4 lecture notes. WEEK 4 page 1 Random variables, probability distributions, binomial random variable Eample 1 : Consider the eperiment of flipping a fair coin three times. The number of tails that
For two disjoint subsets A and B of Ω, say that A and B are disjoint events. For disjoint events A and B we take an axiom P(A B) = P(A) + P(B)
Basic probability A probability space or event space is a set Ω together with a probability measure P on it. This means that to each subset A Ω we associate the probability P(A) = probability of A with
Probabilistic Strategies: Solutions
Probability Victor Xu Probabilistic Strategies: Solutions Western PA ARML Practice April 3, 2016 1 Problems 1. You roll two 6-sided dice. What s the probability of rolling at least one 6? There is a 1
PROBABILITY. The theory of probabilities is simply the Science of logic quantitatively treated. C.S. PEIRCE
PROBABILITY 53 Chapter 3 PROBABILITY The theory of probabilities is simply the Science of logic quantitatively treated. C.S. PEIRCE 3. Introduction In earlier Classes, we have studied the probability as
1 Combinations, Permutations, and Elementary Probability
1 Combinations, Permutations, and Elementary Probability Roughly speaking, Permutations are ways of grouping things where the order is important. Combinations are ways of grouping things where the order
V. RANDOM VARIABLES, PROBABILITY DISTRIBUTIONS, EXPECTED VALUE
V. RANDOM VARIABLES, PROBABILITY DISTRIBUTIONS, EXPETED VALUE A game of chance featured at an amusement park is played as follows: You pay $ to play. A penny and a nickel are flipped. You win $ if either
E3: PROBABILITY AND STATISTICS lecture notes
E3: PROBABILITY AND STATISTICS lecture notes 2 Contents 1 PROBABILITY THEORY 7 1.1 Experiments and random events............................ 7 1.2 Certain event. Impossible event............................
Lecture 1 Introduction Properties of Probability Methods of Enumeration Asrat Temesgen Stockholm University
Lecture 1 Introduction Properties of Probability Methods of Enumeration Asrat Temesgen Stockholm University 1 Chapter 1 Probability 1.1 Basic Concepts In the study of statistics, we consider experiments
The Binomial Distribution
The Binomial Distribution James H. Steiger November 10, 00 1 Topics for this Module 1. The Binomial Process. The Binomial Random Variable. The Binomial Distribution (a) Computing the Binomial pdf (b) Computing
Probability and Statistics Vocabulary List (Definitions for Middle School Teachers)
Probability and Statistics Vocabulary List (Definitions for Middle School Teachers) B Bar graph a diagram representing the frequency distribution for nominal or discrete data. It consists of a sequence
2. How many ways can the letters in PHOENIX be rearranged? 7! = 5,040 ways.
Math 142 September 27, 2011 1. How many ways can 9 people be arranged in order? 9! = 362,880 ways 2. How many ways can the letters in PHOENIX be rearranged? 7! = 5,040 ways. 3. The letters in MATH are
Section 6-5 Sample Spaces and Probability
492 6 SEQUENCES, SERIES, AND PROBABILITY 52. How many committees of 4 people are possible from a group of 9 people if (A) There are no restrictions? (B) Both Juan and Mary must be on the committee? (C)
6.3 Conditional Probability and Independence
222 CHAPTER 6. PROBABILITY 6.3 Conditional Probability and Independence Conditional Probability Two cubical dice each have a triangle painted on one side, a circle painted on two sides and a square painted
Statistics 100A Homework 2 Solutions
Statistics Homework Solutions Ryan Rosario Chapter 9. retail establishment accepts either the merican Express or the VIS credit card. total of percent of its customers carry an merican Express card, 6
Combinatorial Proofs
Combinatorial Proofs Two Counting Principles Some proofs concerning finite sets involve counting the number of elements of the sets, so we will look at the basics of counting. Addition Principle: If A
5. Probability Calculus
5. Probability Calculus So far we have concentrated on descriptive statistics (deskriptiivinen eli kuvaileva tilastotiede), that is methods for organizing and summarizing data. As was already indicated
Probability. Sample space: all the possible outcomes of a probability experiment, i.e., the population of outcomes
Probability Basic Concepts: Probability experiment: process that leads to welldefined results, called outcomes Outcome: result of a single trial of a probability experiment (a datum) Sample space: all
Bayesian Tutorial (Sheet Updated 20 March)
Bayesian Tutorial (Sheet Updated 20 March) Practice Questions (for discussing in Class) Week starting 21 March 2016 1. What is the probability that the total of two dice will be greater than 8, given that
Conditional Probability, Independence and Bayes Theorem Class 3, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom
Conditional Probability, Independence and Bayes Theorem Class 3, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom 1 Learning Goals 1. Know the definitions of conditional probability and independence
Section 6.2 Definition of Probability
Section 6.2 Definition of Probability Probability is a measure of the likelihood that an event occurs. For example, if there is a 20% chance of rain tomorrow, that means that the probability that it will
Probability --QUESTIONS-- Principles of Math 12 - Probability Practice Exam 1 www.math12.com
Probability --QUESTIONS-- Principles of Math - Probability Practice Exam www.math.com Principles of Math : Probability Practice Exam Use this sheet to record your answers:... 4... 4... 4.. 6. 4.. 6. 7..
AP Stats - Probability Review
AP Stats - Probability Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. I toss a penny and observe whether it lands heads up or tails up. Suppose
Chapter 4 - Practice Problems 2
Chapter - Practice Problems 2 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the indicated probability. 1) If you flip a coin three times, the
Chapter 4: Probability and Counting Rules
Chapter 4: Probability and Counting Rules Learning Objectives Upon successful completion of Chapter 4, you will be able to: Determine sample spaces and find the probability of an event using classical
Question of the Day. Key Concepts. Vocabulary. Mathematical Ideas. QuestionofDay
QuestionofDay Question of the Day What is the probability that in a family with two children, both are boys? What is the probability that in a family with two children, both are boys, if we already know
Chapter 4. Probability and Probability Distributions
Chapter 4. robability and robability Distributions Importance of Knowing robability To know whether a sample is not identical to the population from which it was selected, it is necessary to assess the
WHERE DOES THE 10% CONDITION COME FROM?
1 WHERE DOES THE 10% CONDITION COME FROM? The text has mentioned The 10% Condition (at least) twice so far: p. 407 Bernoulli trials must be independent. If that assumption is violated, it is still okay
Question: What is the probability that a five-card poker hand contains a flush, that is, five cards of the same suit?
ECS20 Discrete Mathematics Quarter: Spring 2007 Instructor: John Steinberger Assistant: Sophie Engle (prepared by Sophie Engle) Homework 8 Hints Due Wednesday June 6 th 2007 Section 6.1 #16 What is the
STATISTICS HIGHER SECONDARY - SECOND YEAR. Untouchability is a sin Untouchability is a crime Untouchability is inhuman
STATISTICS HIGHER SECONDARY - SECOND YEAR Untouchability is a sin Untouchability is a crime Untouchability is inhuman TAMILNADU TEXTBOOK CORPORATION College Road, Chennai- 600 006 i Government of Tamilnadu
STAT 319 Probability and Statistics For Engineers PROBABILITY. Engineering College, Hail University, Saudi Arabia
STAT 319 robability and Statistics For Engineers LECTURE 03 ROAILITY Engineering College, Hail University, Saudi Arabia Overview robability is the study of random events. The probability, or chance, that
Chapter 4 & 5 practice set. The actual exam is not multiple choice nor does it contain like questions.
Chapter 4 & 5 practice set. The actual exam is not multiple choice nor does it contain like questions. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
MATH 140 Lab 4: Probability and the Standard Normal Distribution
MATH 140 Lab 4: Probability and the Standard Normal Distribution Problem 1. Flipping a Coin Problem In this problem, we want to simualte the process of flipping a fair coin 1000 times. Note that the outcomes
Mathematical goals. Starting points. Materials required. Time needed
Level S2 of challenge: B/C S2 Mathematical goals Starting points Materials required Time needed Evaluating probability statements To help learners to: discuss and clarify some common misconceptions about
STAT 35A HW2 Solutions
STAT 35A HW2 Solutions http://www.stat.ucla.edu/~dinov/courses_students.dir/09/spring/stat35.dir 1. A computer consulting firm presently has bids out on three projects. Let A i = { awarded project i },
Probability and statistical hypothesis testing. Holger Diessel [email protected]
Probability and statistical hypothesis testing Holger Diessel [email protected] Probability Two reasons why probability is important for the analysis of linguistic data: Joint and conditional
36 Odds, Expected Value, and Conditional Probability
36 Odds, Expected Value, and Conditional Probability What s the difference between probabilities and odds? To answer this question, let s consider a game that involves rolling a die. If one gets the face
8.3 Probability Applications of Counting Principles
8. Probability Applications of Counting Principles In this section, we will see how we can apply the counting principles from the previous two sections in solving probability problems. Many of the probability
Math 3C Homework 3 Solutions
Math 3C Homework 3 s Ilhwan Jo and Akemi Kashiwada [email protected], [email protected] Assignment: Section 2.3 Problems 2, 7, 8, 9,, 3, 5, 8, 2, 22, 29, 3, 32 2. You draw three cards from a standard
ST 371 (IV): Discrete Random Variables
ST 371 (IV): Discrete Random Variables 1 Random Variables A random variable (rv) is a function that is defined on the sample space of the experiment and that assigns a numerical variable to each possible
Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 13. Random Variables: Distribution and Expectation
CS 70 Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 3 Random Variables: Distribution and Expectation Random Variables Question: The homeworks of 20 students are collected
People have thought about, and defined, probability in different ways. important to note the consequences of the definition:
PROBABILITY AND LIKELIHOOD, A BRIEF INTRODUCTION IN SUPPORT OF A COURSE ON MOLECULAR EVOLUTION (BIOL 3046) Probability The subject of PROBABILITY is a branch of mathematics dedicated to building models
PROBABILITY. Chapter. 0009T_c04_133-192.qxd 06/03/03 19:53 Page 133
0009T_c04_133-192.qxd 06/03/03 19:53 Page 133 Chapter 4 PROBABILITY Please stand up in front of the class and give your oral report on describing data using statistical methods. Does this request to speak
Sample Space and Probability
1 Sample Space and Probability Contents 1.1. Sets........................... p. 3 1.2. Probabilistic Models.................... p. 6 1.3. Conditional Probability................. p. 18 1.4. Total Probability
An Introduction to Basic Statistics and Probability
An Introduction to Basic Statistics and Probability Shenek Heyward NCSU An Introduction to Basic Statistics and Probability p. 1/4 Outline Basic probability concepts Conditional probability Discrete Random
Fundamentals of Probability
Fundamentals of Probability Introduction Probability is the likelihood that an event will occur under a set of given conditions. The probability of an event occurring has a value between 0 and 1. An impossible
Pattern matching probabilities and paradoxes A new variation on Penney s coin game
Osaka Keidai Ronshu, Vol. 63 No. 4 November 2012 Pattern matching probabilities and paradoxes A new variation on Penney s coin game Yutaka Nishiyama Abstract This paper gives an outline of an interesting
Unit 4 The Bernoulli and Binomial Distributions
PubHlth 540 4. Bernoulli and Binomial Page 1 of 19 Unit 4 The Bernoulli and Binomial Distributions Topic 1. Review What is a Discrete Probability Distribution... 2. Statistical Expectation.. 3. The Population
Definition and Calculus of Probability
In experiments with multivariate outcome variable, knowledge of the value of one variable may help predict another. For now, the word prediction will mean update the probabilities of events regarding the
Chapter 4 Lecture Notes
Chapter 4 Lecture Notes Random Variables October 27, 2015 1 Section 4.1 Random Variables A random variable is typically a real-valued function defined on the sample space of some experiment. For instance,
Chapter 13 & 14 - Probability PART
Chapter 13 & 14 - Probability PART IV : PROBABILITY Dr. Joseph Brennan Math 148, BU Dr. Joseph Brennan (Math 148, BU) Chapter 13 & 14 - Probability 1 / 91 Why Should We Learn Probability Theory? Dr. Joseph
EXAM. Exam #3. Math 1430, Spring 2002. April 21, 2001 ANSWERS
EXAM Exam #3 Math 1430, Spring 2002 April 21, 2001 ANSWERS i 60 pts. Problem 1. A city has two newspapers, the Gazette and the Journal. In a survey of 1, 200 residents, 500 read the Journal, 700 read the
4. Binomial Expansions
4. Binomial Expansions 4.. Pascal's Triangle The expansion of (a + x) 2 is (a + x) 2 = a 2 + 2ax + x 2 Hence, (a + x) 3 = (a + x)(a + x) 2 = (a + x)(a 2 + 2ax + x 2 ) = a 3 + ( + 2)a 2 x + (2 + )ax 2 +
4. Continuous Random Variables, the Pareto and Normal Distributions
4. Continuous Random Variables, the Pareto and Normal Distributions A continuous random variable X can take any value in a given range (e.g. height, weight, age). The distribution of a continuous random
Probability. a number between 0 and 1 that indicates how likely it is that a specific event or set of events will occur.
Probability Probability Simple experiment Sample space Sample point, or elementary event Event, or event class Mutually exclusive outcomes Independent events a number between 0 and 1 that indicates how
How To Find The Sample Space Of A Random Experiment In R (Programming)
Probability 4.1 Sample Spaces For a random experiment E, the set of all possible outcomes of E is called the sample space and is denoted by the letter S. For the coin-toss experiment, S would be the results
Statistics in Geophysics: Introduction and Probability Theory
Statistics in Geophysics: Introduction and Steffen Unkel Department of Statistics Ludwig-Maximilians-University Munich, Germany Winter Term 2013/14 1/32 What is Statistics? Introduction Statistics is the
(b) You draw two balls from an urn and track the colors. When you start, it contains three blue balls and one red ball.
Examples for Chapter 3 Probability Math 1040-1 Section 3.1 1. Draw a tree diagram for each of the following situations. State the size of the sample space. (a) You flip a coin three times. (b) You draw
Lecture 1: Systems of Linear Equations
MTH Elementary Matrix Algebra Professor Chao Huang Department of Mathematics and Statistics Wright State University Lecture 1 Systems of Linear Equations ² Systems of two linear equations with two variables
Basic Probability. Probability: The part of Mathematics devoted to quantify uncertainty
AMS 5 PROBABILITY Basic Probability Probability: The part of Mathematics devoted to quantify uncertainty Frequency Theory Bayesian Theory Game: Playing Backgammon. The chance of getting (6,6) is 1/36.
A Few Basics of Probability
A Few Basics of Probability Philosophy 57 Spring, 2004 1 Introduction This handout distinguishes between inductive and deductive logic, and then introduces probability, a concept essential to the study
INCIDENCE-BETWEENNESS GEOMETRY
INCIDENCE-BETWEENNESS GEOMETRY MATH 410, CSUSM. SPRING 2008. PROFESSOR AITKEN This document covers the geometry that can be developed with just the axioms related to incidence and betweenness. The full
Chapter 5 A Survey of Probability Concepts
Chapter 5 A Survey of Probability Concepts True/False 1. Based on a classical approach, the probability of an event is defined as the number of favorable outcomes divided by the total number of possible
Homework 3 Solution, due July 16
Homework 3 Solution, due July 16 Problems from old actuarial exams are marked by a star. Problem 1*. Upon arrival at a hospital emergency room, patients are categorized according to their condition as
Responsible Gambling Education Unit: Mathematics A & B
The Queensland Responsible Gambling Strategy Responsible Gambling Education Unit: Mathematics A & B Outline of the Unit This document is a guide for teachers to the Responsible Gambling Education Unit:
DETERMINE whether the conditions for a binomial setting are met. COMPUTE and INTERPRET probabilities involving binomial random variables
1 Section 7.B Learning Objectives After this section, you should be able to DETERMINE whether the conditions for a binomial setting are met COMPUTE and INTERPRET probabilities involving binomial random
What Do You Expect?: Homework Examples from ACE
What Do You Expect?: Homework Examples from ACE Investigation 1: A First Look at Chance, ACE #3, #4, #9, #31 Investigation 2: Experimental and Theoretical Probability, ACE #6, #12, #9, #37 Investigation
Exact Nonparametric Tests for Comparing Means - A Personal Summary
Exact Nonparametric Tests for Comparing Means - A Personal Summary Karl H. Schlag European University Institute 1 December 14, 2006 1 Economics Department, European University Institute. Via della Piazzuola
Lecture Notes for Introductory Probability
Lecture Notes for Introductory Probability Janko Gravner Mathematics Department University of California Davis, CA 9566 [email protected] June 9, These notes were started in January 9 with help
REPEATED TRIALS. The probability of winning those k chosen times and losing the other times is then p k q n k.
REPEATED TRIALS Suppose you toss a fair coin one time. Let E be the event that the coin lands heads. We know from basic counting that p(e) = 1 since n(e) = 1 and 2 n(s) = 2. Now suppose we play a game
So let us begin our quest to find the holy grail of real analysis.
1 Section 5.2 The Complete Ordered Field: Purpose of Section We present an axiomatic description of the real numbers as a complete ordered field. The axioms which describe the arithmetic of the real numbers
MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS
MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS Systems of Equations and Matrices Representation of a linear system The general system of m equations in n unknowns can be written a x + a 2 x 2 + + a n x n b a
Complement. If A is an event, then the complement of A, written A c, means all the possible outcomes that are not in A.
Complement If A is an event, then the complement of A, written A c, means all the possible outcomes that are not in A. For example, if A is the event UNC wins at least 5 football games, then A c is the
Math 55: Discrete Mathematics
Math 55: Discrete Mathematics UC Berkeley, Fall 2011 Homework # 7, due Wedneday, March 14 Happy Pi Day! (If any errors are spotted, please email them to morrison at math dot berkeley dot edu..5.10 A croissant
Representation of functions as power series
Representation of functions as power series Dr. Philippe B. Laval Kennesaw State University November 9, 008 Abstract This document is a summary of the theory and techniques used to represent functions
Probability Using Dice
Using Dice One Page Overview By Robert B. Brown, The Ohio State University Topics: Levels:, Statistics Grades 5 8 Problem: What are the probabilities of rolling various sums with two dice? How can you
IAM 530 ELEMENTS OF PROBABILITY AND STATISTICS INTRODUCTION
IAM 530 ELEMENTS OF PROBABILITY AND STATISTICS INTRODUCTION 1 WHAT IS STATISTICS? Statistics is a science of collecting data, organizing and describing it and drawing conclusions from it. That is, statistics
Introductory Probability. MATH 107: Finite Mathematics University of Louisville. March 5, 2014
Introductory Probability MATH 07: Finite Mathematics University of Louisville March 5, 204 What is probability? Counting and probability 2 / 3 Probability in our daily lives We see chances, odds, and probabilities
Chapter 3. Probability
Chapter 3 Probability Every Day, each us makes decisions based on uncertainty. Should you buy an extended warranty for your new DVD player? It depends on the likelihood that it will fail during the warranty.
Comparison of frequentist and Bayesian inference. Class 20, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom
Comparison of frequentist and Bayesian inference. Class 20, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom 1 Learning Goals 1. Be able to explain the difference between the p-value and a posterior
Probability definitions
Probability definitions 1. Probability of an event = chance that the event will occur. 2. Experiment = any action or process that generates observations. In some contexts, we speak of a data-generating
Point and Interval Estimates
Point and Interval Estimates Suppose we want to estimate a parameter, such as p or µ, based on a finite sample of data. There are two main methods: 1. Point estimate: Summarize the sample by a single number
36 CHAPTER 1. LIMITS AND CONTINUITY. Figure 1.17: At which points is f not continuous?
36 CHAPTER 1. LIMITS AND CONTINUITY 1.3 Continuity Before Calculus became clearly de ned, continuity meant that one could draw the graph of a function without having to lift the pen and pencil. While this
Basic Probability Theory II
RECAP Basic Probability heory II Dr. om Ilvento FREC 408 We said the approach to establishing probabilities for events is to Define the experiment List the sample points Assign probabilities to the sample
Probabilities. Probability of a event. From Random Variables to Events. From Random Variables to Events. Probability Theory I
Victor Adamchi Danny Sleator Great Theoretical Ideas In Computer Science Probability Theory I CS 5-25 Spring 200 Lecture Feb. 6, 200 Carnegie Mellon University We will consider chance experiments with
Discrete Mathematics
Discrete Mathematics Chih-Wei Yi Dept. of Computer Science National Chiao Tung University March 16, 2009 2.1 Sets 2.1 Sets 2.1 Sets Basic Notations for Sets For sets, we ll use variables S, T, U,. We can
The Binomial Probability Distribution
The Binomial Probability Distribution MATH 130, Elements of Statistics I J. Robert Buchanan Department of Mathematics Fall 2015 Objectives After this lesson we will be able to: determine whether a probability
3.2 Conditional Probability and Independent Events
Ismor Fischer, 5/29/2012 3.2-1 3.2 Conditional Probability and Independent Events Using population-based health studies to estimate probabilities relating potential risk factors to a particular disease,
Solution to Homework 2
Solution to Homework 2 Olena Bormashenko September 23, 2011 Section 1.4: 1(a)(b)(i)(k), 4, 5, 14; Section 1.5: 1(a)(b)(c)(d)(e)(n), 2(a)(c), 13, 16, 17, 18, 27 Section 1.4 1. Compute the following, if
c 2008 Je rey A. Miron We have described the constraints that a consumer faces, i.e., discussed the budget constraint.
Lecture 2b: Utility c 2008 Je rey A. Miron Outline: 1. Introduction 2. Utility: A De nition 3. Monotonic Transformations 4. Cardinal Utility 5. Constructing a Utility Function 6. Examples of Utility Functions
Review for Test 2. Chapters 4, 5 and 6
Review for Test 2 Chapters 4, 5 and 6 1. You roll a fair six-sided die. Find the probability of each event: a. Event A: rolling a 3 1/6 b. Event B: rolling a 7 0 c. Event C: rolling a number less than
