Definition and Calculus of Probability


 Jemimah Ellis
 1 years ago
 Views:
Transcription
1
2
3 In experiments with multivariate outcome variable, knowledge of the value of one variable may help predict another. For now, the word prediction will mean update the probabilities of events regarding the other variable. The updated probabilities are called conditional probabilities. For example, 1. Knowing a man s height helps update the probability that he weighs over 170lb. 2. Knowing which assembly line a product came from, helps update the probability that it has a particular defect. 3. Knowing a person s education level helps update the probability of that person being in a certain income category.
4 Given partial information about the outcome of the experiment, results in a reduction of either the sample space or the number of eligible units. For example: Example If the outcome of rolling a die is known to be even, what is the probability it is a 2? If the selected card from a deck is known to be a figure card, what is the probability it is a king? Given event A = {household subscribes to paper 1}, what is the probability of B = {household subscribes to paper 2}? P(A B ) P(A B) A B U P(A B) U U
5 Definition The conditional probability of the event A given the information that event B has occurred is denoted by P(A B) and equals P(A B) = P(A B), provided P(B) > 0 P(B) Note that P(B B) = 1, which highlights the fact that when we are given the information that B occurred, B becomes the new sample space. Proposition The set function P( B) satisfies the three axioms of probability.
6 Example In the card game of bridge, the 52 cards are dealt out equally to 4 players called East, West, North and South. Given that North and South have a total of 8 spades among them, what is the probability that East has 3 of the remaining 5 spades? Use the reduced sample space defined by the given information. Solution: In the reduced sample space experiment there are 26 cards containing 5 spades and will be divided randomly between East and West. Thus, the probability that East ends up with 3 of the remaining 5 spaces is ( 5 21 ) 3)( 10 ( 26 ) 13
7 Do each of the following examples in two ways: a) by considering the reduced sample space, and b) by applying the formula for the conditional probability. Example 1. Roll a die twice. Given that the first roll results in 3 find the probability the sum is Roll a die twice. Given that one of the roll results in 3 find the probability the sum is An urn contains r red and b blue balls. n balls (n r + b) are selected at random and without replacement. Given that k of the n balls are blue, what is the probability that the first ball chosen is blue?
8 The Multiplication Rule The definition of P(A B) yields the formula: P(A B) = P(A B)P(B) or P(A B) = P(B A)P(A) The rule extends to more than two events. For example, P(A B C) = P(A)P(B A)P(C A B)
9 The Multiplication Rule: EXAMPLES 1. 40% of bean seeds come from supplier A and 60% come from supplier B. Seeds from supplier A have 50% germination rate while those from supplier B have a 75% rate. What is the probability that a randomly selected seed came from supplier A and will germinate? ANSWER: P(A G) = P(G A)P(A) = = Three players are dealt a card in succession. What is the probability that the 1st gets an ace, the 2nd gets a king, and the 3rd gets a queen? ANSWER: P(A B C) = P(A)P(B A)P(C A B) = =
10 Example An urn contains 8 red, each having weight r, and 4 white balls, each having weight w. Two are selected without replacement. What is the probability both are red if at each draw: 1. each ball is equally likely, and 2. the probability of each ball equals its weight divided by the sum of weights of all balls currently in the urn.
11 Example (The Mens Hats Problem) In the Men s Hats Problem, find the probability that exactly k of the N men get their own hat. Solution: Let F i = {man i gets his own hat}, E = {men 1,..., k get their own hats} = F 1 F k, and G = {men k , N do not get their own hats}. Then, P(E G) = P(E)P(G E) and P(E) = P(F 1 )P(F 2 F 1 )P(F 3 F 1 F 2 ) P(F k F 1 F k 1 ) = N N 1 N 2 1 N k + 1 = (N k)! N! For P(G E) see page 23. Thus, the final answer is: ( N ) (N k)! N k k N! i=0 ( 1)i /i!
12 of two events The formula for the probability of A B yields P(A B) = P(A) + P(B) P(A B). A simpler formula for P(A B) is possible if A and B are independent. Independent events arise (quite often but not always) in connection with independent experiments or independent repetitions of the same experiment. Thus there is no mechanism through which the outcome of one experiment will influence the outcome of the other. For example, two rolls of a die. For independent events, P(A B) = P(A)P(B). This also serves as the definition of independent events.
13 Example Toss a coin twice. To find the probability of two heads (Hs), we can argue that, since the two tosses are independent, P(H in toss 1 H in toss 2) = = 1 4 Alternatively, we can say that since P(H in toss 1 H in toss 2) = 1 4 = P(H in toss 1)P(H in toss 1), the events H in toss 1 and H in toss 2 are independent
14 Example 1. Select a card at random from a deck of 52 cards. Let E = {the card is an ace}, and F = {the card is a spade}. Are E and F independent? 2. Roll a die twice. Let E = {the sum of the two outcomes is 6}, and F = {the first roll results in 4}. Are E and F independent? 3. Same as above except that E = {the sum of two outcomes is 7}.
15 Proposition If E and F are independent, so are E and F c. Proof: P(E F c ) = P(E) P(E F ) = P(E)(1 P(F )) = P(E)P(F c ).
16 of Multiple Events Definition The events A 1,..., A n are mutually independent if P(A i1 A i2... A ik ) = P(A i1 )P(A i2 )... P(A ik ) for any subcollection A i1,..., A ik of k events chosen from A 1,..., A n Example Consider rolling a die and define the events A = {1, 2, 3}, B = {3, 4, 5}, C = {1, 2, 3, 4}. Verify that P(A B C) = P(A)P(B)P(C), but that A, B, C are not mutually independent. Solution: First, A B C = {3}, so P(A B C) = 1 6 = 1 2 Next, A B = {3}, so P(A B) =
17 Example Roll a die twice. Let E = {the sum of the two outcomes is 7}, F = {the first roll results in 4}, and G = {the second roll results in 3}. Are E, F and G independent? ANSWER: E, F and G pairwise independent but So they are not independent. P(E F G) = 1.
18 Example 1. A system of n components connected in series fails if one component fails. If component i fails with a probability p i, independently of the others, what is the probability that the system fails? 2. What if the n components of the system are connected in parallel?
19 Example Two dice are rolled and the sum of the two outcomes is recorded. What is the probability that 5 happens before 7? Solution: If E n = {no 5 or 7 appear on the first n 1 rolls and a 5 appears on the nth}, then P( i=1e n ) = = P(E n ) i=1 i=1 ( )n = 2 5
20 Example There are n types of coupons, and each new one is independently of type i with probability p i. If each of k shoppers collects a coupon let A i = {at least one type i coupon has been collected}. Find P(A i A j ). Solution: Use independence and P(A i A j ) = P(A i ) + P(A j ) P(A i A j )
21 Let the events A 1, A 2..., A k be disjoint and make up the entire sample space, and let B denote an event whose probability we want to calculate, as in the figure B A A A A If we know P(B A j ) and P(A j ) for all j = 1, 2,..., k, the Law of Total Probability gives [see (3.4), p.73 and (3.1), p.65 in Ross] P(B) = P(A 1 )P(B A 1 ) + + P(A k )P(B A k )
22 : EXAMPLES 1. 40% of bean seeds come from supplier A and 60% come from supplier B. Seeds from supplier A have 50% germination rate while those from supplier B have a 75% rate. What is the probability that a randomly selected seed will germinate? ANSWER: P(G) = P(A)P(G A) + P(B)P(G B) = = Three players are dealt a card in succession. What is the probability that the 2nd gets a king? ANSWER: 4 52 Why?
23 Example Two dice are rolled and the sum of the two outcomes is recorded. What is the probability that 5 happens before 7? Solution: Let B be the desired event, A 1 = {first roll results in 5}, A 2 = {first roll results in 7}, A 3 = {first roll results in neither 5 not 7}. Then P(B) = P(B A 1 )P(A 1 ) + P(B A 2 )P(A 2 ) + P(B A 3 )P(A 3 ) = P(A 1 ) P(B)P(A 3 ).
24 Example (The Monte Hall Problem) In the game Let s Make a Deal, the host asks a participant to choose one of the doors A, B or C. Behind one of the doors is a big prize. The participant selects door A. The host then opens door B showing that the big prize is not behind it. The host asks the participant to either 1. stick with his/her original choice, or 2. select the other of the remaining two closed doors. Find the probability that the participant will win the big prize for each of the strategies a) and b).
25 Solution of the Monte Hall Problem Let A i = {prize is behind door i}, i = 1, 2, 3, and set B 1 = {player wins when choosing door 1 and does not change}, B 2 = {player wins when choosing door 1 and then changes}. Then, P(B 1 ) = P(B 2 ) = 3 P(B 1 A i )P(A i ) = = 1 3 i=1 3 P(B 2 A i )P(A i ) = = 2 3. i=1
26 Consider events B and A 1,..., A k as in the Law of Total Probability. Now, however, we ask a different question: Given that B has occurred, what is the probability that a particular A j has occurred? The answer is provided by the Bayes theorem: P(A j B) = P(A j B) P(B) = P(A j )P(B A j ) k j=1 P(A i)p(b A i )
27 : EXAMPLES 1. 40% of bean seeds come from supplier A and 60% come from supplier B. Seeds from supplier A have 50% germination rate while those from supplier B have a 75% rate. Given that a randomly selected seed germinated, what is the probability that it came from supplier A? ANSWER: P(A G) = P(A)P(G A) P(A)P(G A) + P(B)P(G B) = Given that the 2nd player got an ace, what is the probability that the 1st got an ace? ANSWER: 3 51 (Why?)
28 EXAMPLE: Law of Total Prob. and Seventy percent of the light aircraft that disappear while in flight in a certain country are subsequently discovered. Of the aircraft that are discovered, 60% have an emergency locator, whereas 10% of the aircraft not discovered have such a locator. Suppose a light aircraft has disappeared. 1. What is the probability that it has an emergency locator and it will not be discovered? Answer: = What is the probability that it has an emergency locator? Answer: = If it has an emergency locator, what is the probability that it will not be discovered? Answer: 0.03/0.45
Lesson 3 Chapter 2: Introduction to Probability
Lesson 3 Chapter 2: Introduction to Probability Department of Statistics The Pennsylvania State University 1 2 The Probability Mass Function and Probability Sampling Counting Techniques 3 4 The Law of
More informationLecture 2: Probability
Lecture 2: Probability Assist. Prof. Dr. Emel YAVUZ DUMAN MCB1007 Introduction to Probability and Statistics İstanbul Kültür University Outline 1 Introduction 2 Sample Spaces 3 Event 4 The Probability
More informationChapter 15. Definitions: experiment: is the act of making an observation or taking a measurement.
MATH 11008: Probability Chapter 15 Definitions: experiment: is the act of making an observation or taking a measurement. outcome: one of the possible things that can occur as a result of an experiment.
More informationChingHan Hsu, BMES, National Tsing Hua University c 2014 by ChingHan Hsu, Ph.D., BMIR Lab
Lecture 2 Probability BMIR Lecture Series in Probability and Statistics ChingHan Hsu, BMES, National Tsing Hua University c 2014 by ChingHan Hsu, Ph.D., BMIR Lab 2.1 1 Sample Spaces and Events Random
More informationA (random) experiment is an activity with observable results. The sample space S of an experiment is the set of all outcomes.
Chapter 7 Probability 7.1 Experiments, Sample Spaces, and Events A (random) experiment is an activity with observable results. The sample space S of an experiment is the set of all outcomes. Each outcome
More informationExample: If we roll a dice and flip a coin, how many outcomes are possible?
12.5 Tree Diagrams Sample space Sample point Counting principle Example: If we roll a dice and flip a coin, how many outcomes are possible? TREE DIAGRAM EXAMPLE: Use a tree diagram to show all the possible
More informationRemember to leave your answers as unreduced fractions.
Probability Worksheet 2 NAME: Remember to leave your answers as unreduced fractions. We will work with the example of picking poker cards out of a deck. A poker deck contains four suits: diamonds, hearts,
More informationSection 6.2 Definition of Probability
Section 6.2 Definition of Probability Probability is a measure of the likelihood that an event occurs. For example, if there is a 20% chance of rain tomorrow, that means that the probability that it will
More informationWorked examples Basic Concepts of Probability Theory
Worked examples Basic Concepts of Probability Theory Example 1 A regular tetrahedron is a body that has four faces and, if is tossed, the probability that it lands on any face is 1/4. Suppose that one
More informationProbability OPRE 6301
Probability OPRE 6301 Random Experiment... Recall that our eventual goal in this course is to go from the random sample to the population. The theory that allows for this transition is the theory of probability.
More informationLecture Note 1 Set and Probability Theory. MIT 14.30 Spring 2006 Herman Bennett
Lecture Note 1 Set and Probability Theory MIT 14.30 Spring 2006 Herman Bennett 1 Set Theory 1.1 Definitions and Theorems 1. Experiment: any action or process whose outcome is subject to uncertainty. 2.
More informationSTAT 270 Probability Basics
STAT 270 Probability Basics Richard Lockhart Simon Fraser University Spring 2015 Surrey 1/28 Purposes of These Notes Jargon: experiment, sample space, outcome, event. Set theory ideas and notation: intersection,
More informationSection Tree Diagrams. Copyright 2013, 2010, 2007, Pearson, Education, Inc.
Section 12.5 Tree Diagrams What You Will Learn Counting Principle Tree Diagrams 12.52 Counting Principle If a first experiment can be performed in M distinct ways and a second experiment can be performed
More informationContemporary Mathematics MAT 130. Probability. a) What is the probability of obtaining a number less than 4?
Contemporary Mathematics MAT 30 Solve the following problems:. A fair die is tossed. What is the probability of obtaining a number less than 4? What is the probability of obtaining a number less than
More informationStatistics 100A Homework 2 Solutions
Statistics Homework Solutions Ryan Rosario Chapter 9. retail establishment accepts either the merican Express or the VIS credit card. total of percent of its customers carry an merican Express card, 6
More information. Notice that this means P( A B )
Probability II onditional Probability You already know probabilities change when more information is known. For example the probability of getting type I diabetes for the general population is.06. The
More informationMath/Stats 425 Introduction to Probability. 1. Uncertainty and the axioms of probability
Math/Stats 425 Introduction to Probability 1. Uncertainty and the axioms of probability Processes in the real world are random if outcomes cannot be predicted with certainty. Example: coin tossing, stock
More information33 Probability: Some Basic Terms
33 Probability: Some Basic Terms In this and the coming sections we discuss the fundamental concepts of probability at a level at which no previous exposure to the topic is assumed. Probability has been
More informationBasic Probability. Probability: The part of Mathematics devoted to quantify uncertainty
AMS 5 PROBABILITY Basic Probability Probability: The part of Mathematics devoted to quantify uncertainty Frequency Theory Bayesian Theory Game: Playing Backgammon. The chance of getting (6,6) is 1/36.
More informationTopic 6: Conditional Probability and Independence
Topic 6: September 1520, 2011 One of the most important concepts in the theory of probability is based on the question: How do we modify the probability of an event in light of the fact that something
More informationPROBABILITY 14.3. section. The Probability of an Event
4.3 Probability (43) 727 4.3 PROBABILITY In this section In the two preceding sections we were concerned with counting the number of different outcomes to an experiment. We now use those counting techniques
More informationLesson 1. Basics of Probability. Principles of Mathematics 12: Explained! www.math12.com 314
Lesson 1 Basics of Probability www.math12.com 314 Sample Spaces: Probability Lesson 1 Part I: Basic Elements of Probability Consider the following situation: A six sided die is rolled The sample space
More informationJan 17 Homework Solutions Math 151, Winter 2012. Chapter 2 Problems (pages 5054)
Jan 17 Homework Solutions Math 11, Winter 01 Chapter Problems (pages 0 Problem In an experiment, a die is rolled continually until a 6 appears, at which point the experiment stops. What is the sample
More information24 Random Questions (to help with Exam 1)
4 Random Questions (to help with Exam ). State the binomial theorem: See p.. The probability that rain is followed by rain is 0.8, a sunny day is followed by rain is 0.6. Find the probability that one
More informationReview of Probability
Review of Probability Table of Contents Part I: Basic Equations and Notions Sample space Event Mutually exclusive Probability Conditional probability Independence Addition rule Multiplicative rule Using
More informationMassachusetts Institute of Technology
n (i) m m (ii) n m ( (iii) n n n n (iv) m m Massachusetts Institute of Technology 6.0/6.: Probabilistic Systems Analysis (Quiz Solutions Spring 009) Question Multiple Choice Questions: CLEARLY circle the
More informationMath 3C Homework 3 Solutions
Math 3C Homework 3 s Ilhwan Jo and Akemi Kashiwada ilhwanjo@math.ucla.edu, akashiwada@ucla.edu Assignment: Section 2.3 Problems 2, 7, 8, 9,, 3, 5, 8, 2, 22, 29, 3, 32 2. You draw three cards from a standard
More informationProbabilities. Probability of a event. From Random Variables to Events. From Random Variables to Events. Probability Theory I
Victor Adamchi Danny Sleator Great Theoretical Ideas In Computer Science Probability Theory I CS 525 Spring 200 Lecture Feb. 6, 200 Carnegie Mellon University We will consider chance experiments with
More informationA Few Basics of Probability
A Few Basics of Probability Philosophy 57 Spring, 2004 1 Introduction This handout distinguishes between inductive and deductive logic, and then introduces probability, a concept essential to the study
More informationPROBABILITY. The theory of probabilities is simply the Science of logic quantitatively treated. C.S. PEIRCE
PROBABILITY 53 Chapter 3 PROBABILITY The theory of probabilities is simply the Science of logic quantitatively treated. C.S. PEIRCE 3. Introduction In earlier Classes, we have studied the probability as
More information4.3. Addition and Multiplication Laws of Probability. Introduction. Prerequisites. Learning Outcomes. Learning Style
Addition and Multiplication Laws of Probability 4.3 Introduction When we require the probability of two events occurring simultaneously or the probability of one or the other or both of two events occurring
More informationPROBABILITY NOTIONS. Summary. 1. Random experiment
PROBABILITY NOTIONS Summary 1. Random experiment... 1 2. Sample space... 2 3. Event... 2 4. Probability calculation... 3 4.1. Fundamental sample space... 3 4.2. Calculation of probability... 3 4.3. Non
More informationLecture 1 Introduction Properties of Probability Methods of Enumeration Asrat Temesgen Stockholm University
Lecture 1 Introduction Properties of Probability Methods of Enumeration Asrat Temesgen Stockholm University 1 Chapter 1 Probability 1.1 Basic Concepts In the study of statistics, we consider experiments
More informationThe Calculus of Probability
The Calculus of Probability Let A and B be events in a sample space S. Partition rule: P(A) = P(A B) + P(A B ) Example: Roll a pair of fair dice P(Total of 10) = P(Total of 10 and double) + P(Total of
More informationChapter 3: The basic concepts of probability
Chapter 3: The basic concepts of probability Experiment: a measurement process that produces quantifiable results (e.g. throwing two dice, dealing cards, at poker, measuring heights of people, recording
More informationAn event is any set of outcomes of a random experiment; that is, any subset of the sample space of the experiment. The probability of a given event
An event is any set of outcomes of a random experiment; that is, any subset of the sample space of the experiment. The probability of a given event is the sum of the probabilities of the outcomes in the
More informationThe Casino Lab STATION 1: CRAPS
The Casino Lab Casinos rely on the laws of probability and expected values of random variables to guarantee them profits on a daily basis. Some individuals will walk away very wealthy, while others will
More informationChapter 6. 1. What is the probability that a card chosen from an ordinary deck of 52 cards is an ace? Ans: 4/52.
Chapter 6 1. What is the probability that a card chosen from an ordinary deck of 52 cards is an ace? 4/52. 2. What is the probability that a randomly selected integer chosen from the first 100 positive
More informationProbability definitions
Probability definitions 1. Probability of an event = chance that the event will occur. 2. Experiment = any action or process that generates observations. In some contexts, we speak of a datagenerating
More informationSTAB47S:2003 Midterm Name: Student Number: Tutorial Time: Tutor:
STAB47S:200 Midterm Name: Student Number: Tutorial Time: Tutor: Time: 2hours Aids: The exam is open book Students may use any notes, books and calculators in writing this exam Instructions: Show your reasoning
More informationIEOR 4106: Introduction to Operations Research: Stochastic Models. SOLUTIONS to Homework Assignment 1
IEOR 4106: Introduction to Operations Research: Stochastic Models SOLUTIONS to Homework Assignment 1 Probability Review: Read Chapters 1 and 2 in the textbook, Introduction to Probability Models, by Sheldon
More informationDecision Making Under Uncertainty. Professor Peter Cramton Economics 300
Decision Making Under Uncertainty Professor Peter Cramton Economics 300 Uncertainty Consumers and firms are usually uncertain about the payoffs from their choices Example 1: A farmer chooses to cultivate
More informationSection 65 Sample Spaces and Probability
492 6 SEQUENCES, SERIES, AND PROBABILITY 52. How many committees of 4 people are possible from a group of 9 people if (A) There are no restrictions? (B) Both Juan and Mary must be on the committee? (C)
More informationExam 3 Review/WIR 9 These problems will be started in class on April 7 and continued on April 8 at the WIR.
Exam 3 Review/WIR 9 These problems will be started in class on April 7 and continued on April 8 at the WIR. 1. Urn A contains 6 white marbles and 4 red marbles. Urn B contains 3 red marbles and two white
More informationWeek in Review #3 (L.1L.2, )
Math 166 WeekinReview  S. Nite 9/26/2012 Page 1 of 6 Week in Review #3 (L.1L.2, 1.11.7) 1. onstruct a truth table for (p q) (p r) p Q R p q r p r ( p r) (p q) (p r) T T T T F F T T T T F T T T F F
More informationPROBABILITY. Chapter Overview
Chapter 6 PROBABILITY 6. Overview Probability is defined as a quantitative measure of uncertainty a numerical value that conveys the strength of our belief in the occurrence of an event. The probability
More informationProbability Review. ICPSR Applied Bayesian Modeling
Probability Review ICPSR Applied Bayesian Modeling Random Variables Flip a coin. Will it be heads or tails? The outcome of a single event is random, or unpredictable What if we flip a coin 10 times? How
More informationI. WHAT IS PROBABILITY?
C HAPTER 3 PROBABILITY Random Experiments I. WHAT IS PROBABILITY? The weatherman on 0 o clock news program states that there is a 20% chance that it will snow tomorrow, a 65% chance that it will rain and
More informationProbability. a number between 0 and 1 that indicates how likely it is that a specific event or set of events will occur.
Probability Probability Simple experiment Sample space Sample point, or elementary event Event, or event class Mutually exclusive outcomes Independent events a number between 0 and 1 that indicates how
More informationBasic Probability Theory II
RECAP Basic Probability heory II Dr. om Ilvento FREC 408 We said the approach to establishing probabilities for events is to Define the experiment List the sample points Assign probabilities to the sample
More informationINTRODUCTION TO PROBABILITY AND STATISTICS
INTRODUCTION TO PROBABILITY AND STATISTICS Conditional probability and independent events.. A fair die is tossed twice. Find the probability of getting a 4, 5, or 6 on the first toss and a,,, or 4 on the
More informationDiscrete Mathematics and Probability Theory Fall 2009 Satish Rao,David Tse Note 11
CS 70 Discrete Mathematics and Probability Theory Fall 2009 Satish Rao,David Tse Note Conditional Probability A pharmaceutical company is marketing a new test for a certain medical condition. According
More informationP (A) = 0.60, P (B) = 0.55, P (A B c ) = 0.30
Probability Math 42 Test October, 20 Dr. Pendergrass On my honor, I have neither given nor received any aid on this work, nor am I aware of any breach of the Honor Code that I shall not immediately report.
More information**Chance behavior is in the short run but has a regular and predictable pattern in the long run. This is the basis for the idea of probability.
AP Statistics Chapter 5 Notes 5.1 Randomness, Probability,and Simulation In tennis, a coin toss is used to decide which player will serve first. Many other sports use this method because it seems like
More informationSection 2.1. Tree Diagrams
Section 2.1 Tree Diagrams Example 2.1 Problem For the resistors of Example 1.16, we used A to denote the event that a randomly chosen resistor is within 50 Ω of the nominal value. This could mean acceptable.
More informationDistributions. and Probability. Find the sample space of an experiment. Find the probability of an event. Sample Space of an Experiment
C Probability and Probability Distributions APPENDIX C.1 Probability A1 C.1 Probability Find the sample space of an experiment. Find the probability of an event. Sample Space of an Experiment When assigning
More informationMATH 10: Elementary Statistics and Probability Chapter 3: Probability Topics
MATH 10: Elementary Statistics and Probability Chapter 3: Probability Topics Tony Pourmohamad Department of Mathematics De Anza College Spring 2015 Objectives By the end of this set of slides, you should
More informationWhat is the probability of throwing a fair die and receiving a six? Introduction to Probability. Basic Concepts
Basic Concepts Introduction to Probability A probability experiment is any experiment whose outcomes relies purely on chance (e.g. throwing a die). It has several possible outcomes, collectively called
More informationProbability: The Study of Randomness Randomness and Probability Models. IPS Chapters 4 Sections 4.1 4.2
Probability: The Study of Randomness Randomness and Probability Models IPS Chapters 4 Sections 4.1 4.2 Chapter 4 Overview Key Concepts Random Experiment/Process Sample Space Events Probability Models Probability
More informationMath 55: Discrete Mathematics
Math 55: Discrete Mathematics UC Berkeley, Fall 2011 Homework # 7, due Wedneday, March 14 Happy Pi Day! (If any errors are spotted, please email them to morrison at math dot berkeley dot edu..5.10 A croissant
More informationProbability & Probability Distributions
Probability & Probability Distributions Carolyn J. Anderson EdPsych 580 Fall 2005 Probability & Probability Distributions p. 1/61 Probability & Probability Distributions Elementary Probability Theory Definitions
More informationAP Stats  Probability Review
AP Stats  Probability Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. I toss a penny and observe whether it lands heads up or tails up. Suppose
More informationMath 141. Lecture 2: More Probability! Albyn Jones 1. jones@reed.edu www.people.reed.edu/ jones/courses/141. 1 Library 304. Albyn Jones Math 141
Math 141 Lecture 2: More Probability! Albyn Jones 1 1 Library 304 jones@reed.edu www.people.reed.edu/ jones/courses/141 Outline Law of total probability Bayes Theorem the Multiplication Rule, again Recall
More informationProbability. Vocabulary
MAT 142 College Mathematics Probability Module #PM Terri L. Miller & Elizabeth E. K. Jones revised January 5, 2011 Vocabulary In order to discuss probability we will need a fair bit of vocabulary. Probability
More informationLaws of probability. Information sheet. Mutually exclusive events
Laws of probability In this activity you will use the laws of probability to solve problems involving mutually exclusive and independent events. You will also use probability tree diagrams to help you
More informationElementary Statistics. Probability Rules with Venn & Tree Diagram
Probability Rules with Venn & Tree Diagram What are some basic Probability Rules? There are three basic Probability Rules: Complement Rule Addition Rule Multiplication Rule What is the Complement Rule?
More informationChapter 4: Probabilities and Proportions
Stats 11 (Fall 2004) Lecture Note Introduction to Statistical Methods for Business and Economics Instructor: Hongquan Xu Chapter 4: Probabilities and Proportions Section 4.1 Introduction In the real world,
More informationFind the indicated probability. 1) If a single fair die is rolled, find the probability of a 4 given that the number rolled is odd.
Math 0 Practice Test 3 Fall 2009 Covers 7.5, 8.8.3 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the indicated probability. ) If a single
More information7.1 Sample space, events, probability
7.1 Sample space, events, probability In this chapter, we will study the topic of probability which is used in many different areas including insurance, science, marketing, government and many other areas.
More informationChapter 4 & 5 practice set. The actual exam is not multiple choice nor does it contain like questions.
Chapter 4 & 5 practice set. The actual exam is not multiple choice nor does it contain like questions. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
More informationProbability and Counting
Probability and Counting Basic Counting Principles Permutations and Combinations Sample Spaces, Events, Probability Union, Intersection, Complements; Odds Conditional Probability, Independence Bayes Formula
More informationThe study of probability has increased in popularity over the years because of its wide range of practical applications.
6.7. Probability. The study of probability has increased in popularity over the years because of its wide range of practical applications. In probability, each repetition of an experiment is called a trial,
More informationFor 2 coins, it is 2 possible outcomes for the first coin AND 2 possible outcomes for the second coin
Problem Set 1. 1. If you have 10 coins, how many possible combinations of heads and tails are there for all 10 coins? Hint: how many combinations for one coin; two coins; three coins? Here there are 2
More informationLesson 48 Conditional Probability
(A) Opening Example #1: A survey of 500 adults asked about college expenses. The survey asked questions about whether or not the person had a child in college and about the cost of attending college. Results
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Ch.  Problems to look at Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Provide an appropriate response. 1) A coin is tossed. Find the probability
More informationMCA SEMESTER  II PROBABILITY & STATISTICS
MCA SEMESTER  II PROBABILITY & STATISTICS mca5 230 PROBABILITY 1 INTRODUCTION TO PROBABILITY Managers need to cope with uncertainty in many decision making situations. For example, you as a manager may
More informationA probability experiment is a chance process that leads to welldefined outcomes. 3) What is the difference between an outcome and an event?
Ch 4.2 pg.191~(110 all), 12 (a, c, e, g), 13, 14, (a, b, c, d, e, h, i, j), 17, 21, 25, 31, 32. 1) What is a probability experiment? A probability experiment is a chance process that leads to welldefined
More informationhttps://assessment.casa.uh.edu/assessment/printtest.htm PRINTABLE VERSION Quiz 10
1 of 8 4/9/2013 8:17 AM PRINTABLE VERSION Quiz 10 Question 1 Let A and B be events in a sample space S such that P(A) = 0.34, P(B) = 0.39 and P(A B) = 0.19. Find P(A B). a) 0.4872 b) 0.5588 c) 0.0256 d)
More information6. Jointly Distributed Random Variables
6. Jointly Distributed Random Variables We are often interested in the relationship between two or more random variables. Example: A randomly chosen person may be a smoker and/or may get cancer. Definition.
More information+ Section 6.2 and 6.3
Section 6.2 and 6.3 Learning Objectives After this section, you should be able to DEFINE and APPLY basic rules of probability CONSTRUCT Venn diagrams and DETERMINE probabilities DETERMINE probabilities
More informationChapter 13 & 14  Probability PART
Chapter 13 & 14  Probability PART IV : PROBABILITY Dr. Joseph Brennan Math 148, BU Dr. Joseph Brennan (Math 148, BU) Chapter 13 & 14  Probability 1 / 91 Why Should We Learn Probability Theory? Dr. Joseph
More informationHoover High School Math League. Counting and Probability
Hoover High School Math League Counting and Probability Problems. At a sandwich shop there are 2 kinds of bread, 5 kinds of cold cuts, 3 kinds of cheese, and 2 kinds of dressing. How many different sandwiches
More informationQuestion of the Day. Key Concepts. Vocabulary. Mathematical Ideas. QuestionofDay
QuestionofDay Question of the Day What is the probability that in a family with two children, both are boys? What is the probability that in a family with two children, both are boys, if we already know
More informationP (A B) = P (AB)/P (B).
1 Lecture 8 Conditional Probability Define the conditional probability of A given B by P (A B) = P (AB) P (B. If we roll two dice in a row the probability that the sum is 9 is 1/9 as there are four combinations
More information4.4 Conditional Probability
4.4 Conditional Probability It is often necessary to know the probability of an event under restricted conditions. Recall the results of a survey of 100 Grade 12 mathematics students in a local high school.
More informationJan 31 Homework Solutions Math 151, Winter 2012. Chapter 3 Problems (pages 102110)
Jan 31 Homework Solutions Math 151, Winter 01 Chapter 3 Problems (pages 10110) Problem 61 Genes relating to albinism are denoted by A and a. Only those people who receive the a gene from both parents
More informationDiscrete Mathematics & Mathematical Reasoning Chapter 7 (section 7.3): Conditional Probability & Bayes Theorem
Discrete Mathematics & Mathematical Reasoning Chapter 7 (section 7.3): Conditional Probability & Bayes Theorem Kousha Etessami U. of Edinburgh, UK Kousha Etessami (U. of Edinburgh, UK) Discrete Mathematics
More informationA Simple Example. Sample Space and Event. Tree Diagram. Tree Diagram. Probability. Probability  1. Probability and Counting Rules
Probability and Counting Rules researcher claims that 10% of a large population have disease H. random sample of 100 people is taken from this population and examined. If 20 people in this random sample
More informationC.4 Tree Diagrams and Bayes Theorem
A26 APPENDIX C Probability and Probability Distributions C.4 Tree Diagrams and Bayes Theorem Find probabilities using tree diagrams. Find probabilities using Bayes Theorem. Tree Diagrams A type of diagram
More informationECE302 Spring 2006 HW1 Solutions January 16, 2006 1
ECE302 Spring 2006 HW1 Solutions January 16, 2006 1 Solutions to HW1 Note: These solutions were generated by R. D. Yates and D. J. Goodman, the authors of our textbook. I have added comments in italics
More informationGrade 7/8 Math Circles Fall 2012 Probability
1 University of Waterloo Faculty of Mathematics Centre for Education in Mathematics and Computing Grade 7/8 Math Circles Fall 2012 Probability Probability is one of the most prominent uses of mathematics
More informationHomework 3 Solution, due July 16
Homework 3 Solution, due July 16 Problems from old actuarial exams are marked by a star. Problem 1*. Upon arrival at a hospital emergency room, patients are categorized according to their condition as
More informationI. WHAT IS PROBABILITY?
C HAPTER 3 PROAILITY Random Experiments I. WHAT IS PROAILITY? The weatherman on 10 o clock news program states that there is a 20% chance that it will snow tomorrow, a 65% chance that it will rain and
More informationProbability  Part I. Definition : A random experiment is an experiment or a process for which the outcome cannot be predicted with certainty.
Probability  Part I Definition : A random experiment is an experiment or a process for which the outcome cannot be predicted with certainty. Definition : The sample space (denoted S) of a random experiment
More informationProbability Theory, Part 4: Estimating Probabilities from Finite Universes
8 Resampling: The New Statistics CHAPTER 8 Probability Theory, Part 4: Estimating Probabilities from Finite Universes Introduction Some Building Block Programs Problems in Finite Universes Summary Introduction
More informationBayesian Tutorial (Sheet Updated 20 March)
Bayesian Tutorial (Sheet Updated 20 March) Practice Questions (for discussing in Class) Week starting 21 March 2016 1. What is the probability that the total of two dice will be greater than 8, given that
More information(b) You draw two balls from an urn and track the colors. When you start, it contains three blue balls and one red ball.
Examples for Chapter 3 Probability Math 10401 Section 3.1 1. Draw a tree diagram for each of the following situations. State the size of the sample space. (a) You flip a coin three times. (b) You draw
More informationCHAPTER 3: PROBABILITY TOPICS
CHAPTER 3: PROBABILITY TOPICS Exercise 1. In a particular college class, there are male and female students. Some students have long hair and some students have short hair. Write the symbols for the probabilities
More informationCombinatorial Proofs
Combinatorial Proofs Two Counting Principles Some proofs concerning finite sets involve counting the number of elements of the sets, so we will look at the basics of counting. Addition Principle: If A
More informationSTAT 319 Probability and Statistics For Engineers PROBABILITY. Engineering College, Hail University, Saudi Arabia
STAT 319 robability and Statistics For Engineers LECTURE 03 ROAILITY Engineering College, Hail University, Saudi Arabia Overview robability is the study of random events. The probability, or chance, that
More information