ST 371 (IV): Discrete Random Variables


 Samantha Morton
 1 years ago
 Views:
Transcription
1 ST 371 (IV): Discrete Random Variables 1 Random Variables A random variable (rv) is a function that is defined on the sample space of the experiment and that assigns a numerical variable to each possible outcome of the experiment. We denote random variables by uppercase letters, often X, Y or Z. Examples for random variables (rv). Toss a coin. The sample space S = {H, T }. Define an rv X such that X({H}) = 1 and X({T }) = 0. X is called a Bernoulli random variable. Toss a coin until a head is observed. The sample space S = {H, T H, T T H, }. Define X = number of tosses needed until a head is observed. Then Roll a pair of dice. Define X({T H}) = 2, X({T T T T H}) = 5. X= sum of the numbers on the dice Y =the difference between the two numbers on the dice Z=the maximum of the two numbers on the dice Consider outcome ω = (2, 3). Then X(ω) = 5, Y (ω) = 1, Z(ω) = 3. Define Y = the height above sea level at the selected location in US. The largest possible value of Y is 14,494 and the smallest value of Y is 282. The sample space is S = {y : 282 y 14, 494}. 1
2 Discrete and continuous random variables. A random variable that can take on a finite or at most countably infinite number of values is said to be discrete (countably infinite means that the members in a set can be listed in an infinite sequence in which there is a first element, second element and so on). Examples include: the gender of a randomly selected student in class the total number of coin tosses required for observing two heads the number of students who are absent on the first day of class or the number of people arriving for treatment at an emergency room. A random variable that can take on values in an interval of real numbers is said to be continuous. Examples include: the depth at randomly chosen locations of a lake the amount of gas needed to drive to work on a given day the survival time of a cancer patient We will focus on discrete random variables in Chapter 3 and consider continuous random variables in Chapter 4. 2 Probability Mass Function Associated with each discrete random variable X is a probability mass function (pmf) that gives the probability that X equals x: p(x) = P ({X = x}) = P ({all s S : X(s) = x}). 2
3 Example 1 Consider whether the next customer buying a laptop at a university bookstore buys a Mac or a PC model. Let { 1 if a customer purchases a Mac X = 0 if a customer purchases a PC If 20% of all customers during that week select a Mac, what is the pmf of the rv X? Example 2 Suppose two fair dice are tossed. Let X be the random variable that is the sum of the two upturned faces. X is a discrete random variable since it has finitely many possible values (the 11 integers 2, 3,..., 12). The probability mass function of X is x p(x) It is often instructive to present the probability mass function in a graphical format plotting p(x i ) on the yaxis against x i on the xaxis. 3
4 Probability Mass Function X Remarks: So far, we have been defining probability functions in terms of the elementary outcomes making up an experiment s sample space. Thus, if two fair dice were tossed, a probability was assigned to each of the 36 possible pairs of upturned faces. We have seen that in certain situations some attribute of an outcome may hold more interest for the experimenter than the outcome itself. A craps player, for example, may be concerned only that he throws a 7, not whether the 7 was the result of a 5 and a 2, a 4 and a 3 or a 6 and a 1. That, being the case, it makes sense to replace the 36member sample space S = {(i, j) : i = 1,, 6; j = 1,, 6} with the more relevant (and simpler) 11member sample space of all possible twodice sums, S = {x = i + j : i + j = 2, 3,, 12}. This redefinition of the sample space not only changes the number of outcomes in the space (from 36 to 11) but also changes the probability structure. In the original sample space, all 36 outcomes are equally likely. In the revised sample space, the 11 outcomes are not equally likely. 4
5 Example 3 Three balls are to be randomly selected without replacement from an urn containing balls numbered 1 through 20. Let X denote the largest number selected. X is a random variable taking on values 3, 4,..., 20. Since we select the balls randomly, each of the C 3,20 combinations of the balls is equally likely to be chosen. The probability mass function of X is P ({X = i}) = C 2,i 1 C 3,20, i = 3,, 20. This equation follows because the number of selections that result in the event {X = i} is just the number of selections that result in the ball numbered i and two of the balls numbered 1 through i 1 being chosen. Probability Mass Function X Suppose the random variable X can take on values {x 1, x 2, }. Since the probability mass function is a probability function on the redefined sample space that considers values of X, we have that P (X = x i ) = 1. i=1 5
6 This follows from 1 = P (S) = P ( {X = x i }) = i=1 P (X = x i ). i=1 Example 4 Independent trials, consisting of the flipping of a coin having probability p of coming up heads, are continually performed until a head occurs. Let X be the random variable that denotes the number of times the coin is flipped. The probability mass function for X is P {X = 1} = P {H} = p P {X = 2} = P {(T, H)} = (1 p)p P {X = 3} = P {(T, T, H)} = (1 p) 2 p P {X = n 1} = P {(T, T,..., T, H)} = (1 p) } {{ } n 2 p n 2 P {X = n} = P {(T, T,..., T, T )} = (1 p) } {{ } n 1 p n 1 3 Cumulative Distribution Function The cumulative distribution function (CDF) of a random variable X is the function F (x) = P (X x) = p(y). y:y x 6
7 Example 5 The pmf of a random variable X is given by x p(x) c What is c? What is the cdf of X? Calculate P (2 X 4). 7
8 All probability questions about X can be answered in terms of the cdf F. Specifically for discrete random variables, P (a < X b) = F (b) F (a) P (a X b) = F (b) F (a 1) for all a < b. This can be seen by writing the event {X b} as the union of the mutually exclusive events {X a} and {a < X b}. That is, {X b} = {X a} {a < X b}. Therefore, we have P {X b} = P {X a} + P {a < X b} and the result follows. Example 6 Consider selecting at random a student who is among the 15,000 registered for the current semester at NCSU. Let X=the number of courses for which the selected student is registered, and suppose that X has the following pmf: x p(x) What is the probability of a student chooses three or more courses? 8
9 4 Expected Value Probability mass functions provide a global overview of a random variable s behavior. Detail that explicit, though, is not always necessary  or even helpful. Often times, we want to focus the information contained in the pmf by summarizing certain of its features with single numbers. The first feature of a pmf that we will examine is central tendency, a term referring to the average value of a random variable. The most frequently used measure for describing central tendency is the expected value. Generally, for a discrete random variable, the expected value of a random variable X is a weighted average of the possible values X can take on, each value being weighted by the probability that X assumes it: E(X) = xp(x) x:p(x)>0 A simple fact: E(X + Y ) = E(X) + E(Y ). Example 7 Consider the experiment of rolling a die. Let X be the number on the face. Compute E(X). Consider rolling a pair of dice. Compute E(Y ). Let Y be the sum of the numbers. 9
10 Example 8 Consider Example 6. What is the average number of courses per student at NCSU? 5 Expectation of Function of a Random Variable Suppose we are given a discrete random variable X along with its pmf and that we want to compute the expected value of some function of X, say g(x). One approach is to directly determine the pmf of g(x). Example 9 Let X denote a random variable that takes on the values 1, 0, 1 with respective probabilities Compute E(X 2 ). P (X = 1) =.2, P (X = 0) =.5, P (X = 1) =.3 10
11 Although the procedure we used in the previous example will always enable us to compute the expected value of g(x) from knowledge of the pmf of X, there is another way of thinking about E[g(X)]. Noting that g(x) will equal g(x) whenever X is equal to x, it seems reasonable that should just be a weighted average of the values g(x) with g(x) being weighted by the probability that X is equal to x. Proposition 1 If X is a discrete random variable that takes on one of the values x i, i 1 with respective probabilities p(x i ), then for any real valued function g, E[g(X)] = i g(x i)p(x i ). Applying the proposition to Example 3, E(X 2 ) = ( 1) 2 (.2) (.5) (.3) =.5. Proof of Proposition 1. g(x i )p(x i ) = g(x i )p(x i ) i j i:g(x i )=y j = y j p(x i ) j i:g(x i )=y j = y j P {g(x) = y j } j = E[g(X)] Corollary 1 (The Rule of expected value.) If a and b are constants, then E(aX + b) = ae(x) + b. Proof of Corollary: E(aX + b) = x (ax + b) p(x) = a x x p(x) + b x p(x) = ae(x) + b. 11
12 Special cases of Corollary 1: E(aX) = ae(x). E(X + b) = E(X) + b. Example 10 A computer store has purchased three computers of a certain type at $500 apiece. It will sell them for $1000 apiece. The manufacturer has agreed to repurchase any computers still unsold after a certain period at $200 apiece. Let X denote the number of computers sold, and suppose that P (X = 0) = 0.1, P (X = 1) = 0.2, P (X = 2) = 0.3 and P (X = 3) = 0.4. Let h(x) denote the profit associated with selling X units. What is the expected profit? 12
13 6 Variance Another useful summary of a random variable s pmf besides its central tendency is its spread. This is a very important concept in real life. For example, in the quality control of the lifetimes of a hard disk, we not only want the lifetime of a hard disk is long, but also want the lifetimes not to be too variable. Another example is in finance where investors not only want the investments with good returns (i.e., have a high expected value) but also want the investment not to be too risky (i.e., have a low spread). A commonly used measure of spread is the variance of a random variable, which is the expected squared deviation of the random variable from its expected value. Specifically, let X have pmf p(x) and expected value µ, then the variance of X, denoted by V (X), or just σ 2 X, is V (X) = E[(X µ) 2 ] = D (x µ) 2 p(x). The second equality holds by applying Proposition 1. Explanations and intuitions for variance: (X µ) 2 is the squared deviation of X from its mean The variance is the weighted average of squared deviations, where the weights are probabilities from the distribution. If most values of x is close to µ, then σ 2 would be relatively small. If most values of x is far away from µ, then σ 2 would be relatively large. Definition: the standard deviation (SD) of X is σ X = V (X) = σx 2. 13
14 Consider the following situations: The following three random variables have expected value 0 but very different spreads: X = 0 with probability 1 Y = 1 with probability of 0.5, 1 with probability 0.5. Z = 100 with probability 0.5, 100 with probability 0.5. Compare V (X), V (Y ) and V (Z). Suppose that the rate of return on stock A takes on the values of 30%, 10% and 10% with respective probabilities 0.25, 0.50 and 0.25 and on stock B the values of 50%, 10% and 30% with the same probabilities 0.25, 0.50 and Each stock then has the expected rate of return of 10%. Obviously stock A has less spread in its rate of return. Compare V (A) and V (B). 14
15 An alternative formula for variance. V (X) = E(X 2 ) [E(X)] 2. Proof. Let E(X) = µ. Then V (X) = E[(X µ) 2 ] = (x µ) 2 p(x) x = x (x 2 2µx + µ 2 )p(x) = x x 2 p(x) 2µ x xp(x) + µ 2 x p(x) = E(X 2 ) 2µ 2 + µ 2 = E(X 2 ) µ 2 = E(X 2 ) [E(X)] 2. The variance of a linear function. Let a, b be two constants, then V (ax + b) = a 2 V (X). Proof. Note that from Corollary 1, we have Let E(X) = µ. Then E(aX + b) = ae(x) + b. V (ax + b) = E[{(aX + b) E(aX + b)} 2 ] = E[(aX + b aµ b)] 2 = E[a 2 (X µ) 2 ] = a 2 [E(X µ) 2 ] = a 2 V (X) 15
16 Example 11 Let X denote the number of computers sold, and suppose that the pmf of X is P (X = 0) = 0.1, P (X = 1) = 0.2, P (X = 2) = 0.3, P (X = 3) = 0.4. The profit is a function of the number of computers sold: h(x) = 800X 900. What are the variance and SD of the profit h(x)? 16
Chapter 4 Lecture Notes
Chapter 4 Lecture Notes Random Variables October 27, 2015 1 Section 4.1 Random Variables A random variable is typically a realvalued function defined on the sample space of some experiment. For instance,
More informationRandom variables P(X = 3) = P(X = 3) = 1 8, P(X = 1) = P(X = 1) = 3 8.
Random variables Remark on Notations 1. When X is a number chosen uniformly from a data set, What I call P(X = k) is called Freq[k, X] in the courseware. 2. When X is a random variable, what I call F ()
More informationThe sample space for a pair of die rolls is the set. The sample space for a random number between 0 and 1 is the interval [0, 1].
Probability Theory Probability Spaces and Events Consider a random experiment with several possible outcomes. For example, we might roll a pair of dice, flip a coin three times, or choose a random real
More information3 Multiple Discrete Random Variables
3 Multiple Discrete Random Variables 3.1 Joint densities Suppose we have a probability space (Ω, F,P) and now we have two discrete random variables X and Y on it. They have probability mass functions f
More informationUniversity of California, Los Angeles Department of Statistics. Random variables
University of California, Los Angeles Department of Statistics Statistics Instructor: Nicolas Christou Random variables Discrete random variables. Continuous random variables. Discrete random variables.
More informationChapter 5. Random variables
Random variables random variable numerical variable whose value is the outcome of some probabilistic experiment; we use uppercase letters, like X, to denote such a variable and lowercase letters, like
More information5. Continuous Random Variables
5. Continuous Random Variables Continuous random variables can take any value in an interval. They are used to model physical characteristics such as time, length, position, etc. Examples (i) Let X be
More information4.1 4.2 Probability Distribution for Discrete Random Variables
4.1 4.2 Probability Distribution for Discrete Random Variables Key concepts: discrete random variable, probability distribution, expected value, variance, and standard deviation of a discrete random variable.
More informationChapters 5. Multivariate Probability Distributions
Chapters 5. Multivariate Probability Distributions Random vectors are collection of random variables defined on the same sample space. Whenever a collection of random variables are mentioned, they are
More informationChapter 3: DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS
Chapter 3: DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS Part 4: Geometric Distribution Negative Binomial Distribution Hypergeometric Distribution Sections 37, 38 The remaining discrete random
More informationSummary of Formulas and Concepts. Descriptive Statistics (Ch. 14)
Summary of Formulas and Concepts Descriptive Statistics (Ch. 14) Definitions Population: The complete set of numerical information on a particular quantity in which an investigator is interested. We assume
More informationRandom variables, probability distributions, binomial random variable
Week 4 lecture notes. WEEK 4 page 1 Random variables, probability distributions, binomial random variable Eample 1 : Consider the eperiment of flipping a fair coin three times. The number of tails that
More informationExample. A casino offers the following bets (the fairest bets in the casino!) 1 You get $0 (i.e., you can walk away)
: Three bets Math 45 Introduction to Probability Lecture 5 Kenneth Harris aharri@umich.edu Department of Mathematics University of Michigan February, 009. A casino offers the following bets (the fairest
More information6. Jointly Distributed Random Variables
6. Jointly Distributed Random Variables We are often interested in the relationship between two or more random variables. Example: A randomly chosen person may be a smoker and/or may get cancer. Definition.
More informationChapter 3: DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS. Part 3: Discrete Uniform Distribution Binomial Distribution
Chapter 3: DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS Part 3: Discrete Uniform Distribution Binomial Distribution Sections 35, 36 Special discrete random variable distributions we will cover
More informationDefinition: Suppose that two random variables, either continuous or discrete, X and Y have joint density
HW MATH 461/561 Lecture Notes 15 1 Definition: Suppose that two random variables, either continuous or discrete, X and Y have joint density and marginal densities f(x, y), (x, y) Λ X,Y f X (x), x Λ X,
More informationProbability distributions
Probability distributions (Notes are heavily adapted from Harnett, Ch. 3; Hayes, sections 2.142.19; see also Hayes, Appendix B.) I. Random variables (in general) A. So far we have focused on single events,
More informationFeb 7 Homework Solutions Math 151, Winter 2012. Chapter 4 Problems (pages 172179)
Feb 7 Homework Solutions Math 151, Winter 2012 Chapter Problems (pages 172179) Problem 3 Three dice are rolled. By assuming that each of the 6 3 216 possible outcomes is equally likely, find the probabilities
More informationMT426 Notebook 3 Fall 2012 prepared by Professor Jenny Baglivo. 3 MT426 Notebook 3 3. 3.1 Definitions... 3. 3.2 Joint Discrete Distributions...
MT426 Notebook 3 Fall 2012 prepared by Professor Jenny Baglivo c Copyright 20042012 by Jenny A. Baglivo. All Rights Reserved. Contents 3 MT426 Notebook 3 3 3.1 Definitions............................................
More informationRandom Variables, Expectation, Distributions
Random Variables, Expectation, Distributions CS 5960/6960: Nonparametric Methods Tom Fletcher January 21, 2009 Review Random Variables Definition A random variable is a function defined on a probability
More informationRandom Variables. Chapter 2. Random Variables 1
Random Variables Chapter 2 Random Variables 1 Roulette and Random Variables A Roulette wheel has 38 pockets. 18 of them are red and 18 are black; these are numbered from 1 to 36. The two remaining pockets
More informationWHERE DOES THE 10% CONDITION COME FROM?
1 WHERE DOES THE 10% CONDITION COME FROM? The text has mentioned The 10% Condition (at least) twice so far: p. 407 Bernoulli trials must be independent. If that assumption is violated, it is still okay
More informationFor a partition B 1,..., B n, where B i B j = for i. A = (A B 1 ) (A B 2 ),..., (A B n ) and thus. P (A) = P (A B i ) = P (A B i )P (B i )
Probability Review 15.075 Cynthia Rudin A probability space, defined by Kolmogorov (19031987) consists of: A set of outcomes S, e.g., for the roll of a die, S = {1, 2, 3, 4, 5, 6}, 1 1 2 1 6 for the roll
More informationST 371 (VIII): Theory of Joint Distributions
ST 371 (VIII): Theory of Joint Distributions So far we have focused on probability distributions for single random variables. However, we are often interested in probability statements concerning two or
More informationMath/Stats 425 Introduction to Probability. 1. Uncertainty and the axioms of probability
Math/Stats 425 Introduction to Probability 1. Uncertainty and the axioms of probability Processes in the real world are random if outcomes cannot be predicted with certainty. Example: coin tossing, stock
More informationContents. TTM4155: Teletraffic Theory (Teletrafikkteori) Probability Theory Basics. Yuming Jiang. Basic Concepts Random Variables
TTM4155: Teletraffic Theory (Teletrafikkteori) Probability Theory Basics Yuming Jiang 1 Some figures taken from the web. Contents Basic Concepts Random Variables Discrete Random Variables Continuous Random
More informationAn Introduction to Basic Statistics and Probability
An Introduction to Basic Statistics and Probability Shenek Heyward NCSU An Introduction to Basic Statistics and Probability p. 1/4 Outline Basic probability concepts Conditional probability Discrete Random
More informationExample. Two fair dice are tossed and the two outcomes recorded. As is familiar, we have
Lectures 910 jacques@ucsd.edu 5.1 Random Variables Let (Ω, F, P ) be a probability space. The Borel sets in R are the sets in the smallest σ field on R that contains all countable unions and complements
More information3.4. The Binomial Probability Distribution. Copyright Cengage Learning. All rights reserved.
3.4 The Binomial Probability Distribution Copyright Cengage Learning. All rights reserved. The Binomial Probability Distribution There are many experiments that conform either exactly or approximately
More informationProbability for Estimation (review)
Probability for Estimation (review) In general, we want to develop an estimator for systems of the form: x = f x, u + η(t); y = h x + ω(t); ggggg y, ffff x We will primarily focus on discrete time linear
More informationExpectations. Expectations. (See also Hays, Appendix B; Harnett, ch. 3).
Expectations Expectations. (See also Hays, Appendix B; Harnett, ch. 3). A. The expected value of a random variable is the arithmetic mean of that variable, i.e. E() = µ. As Hays notes, the idea of the
More informationToss a coin twice. Let Y denote the number of heads.
! Let S be a discrete sample space with the set of elementary events denoted by E = {e i, i = 1, 2, 3 }. A random variable is a function Y(e i ) that assigns a real value to each elementary event, e i.
More informationYou flip a fair coin four times, what is the probability that you obtain three heads.
Handout 4: Binomial Distribution Reading Assignment: Chapter 5 In the previous handout, we looked at continuous random variables and calculating probabilities and percentiles for those type of variables.
More informationMULTIVARIATE PROBABILITY DISTRIBUTIONS
MULTIVARIATE PROBABILITY DISTRIBUTIONS. PRELIMINARIES.. Example. Consider an experiment that consists of tossing a die and a coin at the same time. We can consider a number of random variables defined
More informationJoint Exam 1/P Sample Exam 1
Joint Exam 1/P Sample Exam 1 Take this practice exam under strict exam conditions: Set a timer for 3 hours; Do not stop the timer for restroom breaks; Do not look at your notes. If you believe a question
More informationContinuous Random Variables and Probability Distributions. Stat 4570/5570 Material from Devore s book (Ed 8) Chapter 4  and Cengage
4 Continuous Random Variables and Probability Distributions Stat 4570/5570 Material from Devore s book (Ed 8) Chapter 4  and Cengage Continuous r.v. A random variable X is continuous if possible values
More informationE3: PROBABILITY AND STATISTICS lecture notes
E3: PROBABILITY AND STATISTICS lecture notes 2 Contents 1 PROBABILITY THEORY 7 1.1 Experiments and random events............................ 7 1.2 Certain event. Impossible event............................
More informationExamples of infinite sample spaces. Math 425 Introduction to Probability Lecture 12. Example of coin tosses. Axiom 3 Strong form
Infinite Discrete Sample Spaces s of infinite sample spaces Math 425 Introduction to Probability Lecture 2 Kenneth Harris kaharri@umich.edu Department of Mathematics University of Michigan February 4,
More informationStatistics 100A Homework 4 Solutions
Problem 1 For a discrete random variable X, Statistics 100A Homework 4 Solutions Ryan Rosario Note that all of the problems below as you to prove the statement. We are proving the properties of epectation
More informationMassachusetts Institute of Technology
n (i) m m (ii) n m ( (iii) n n n n (iv) m m Massachusetts Institute of Technology 6.0/6.: Probabilistic Systems Analysis (Quiz Solutions Spring 009) Question Multiple Choice Questions: CLEARLY circle the
More informationTopic 4: Multivariate random variables. Multiple random variables
Topic 4: Multivariate random variables Joint, marginal, and conditional pmf Joint, marginal, and conditional pdf and cdf Independence Expectation, covariance, correlation Conditional expectation Two jointly
More informationProbability and Statistics
CHAPTER 2: RANDOM VARIABLES AND ASSOCIATED FUNCTIONS 2b  0 Probability and Statistics Kristel Van Steen, PhD 2 Montefiore Institute  Systems and Modeling GIGA  Bioinformatics ULg kristel.vansteen@ulg.ac.be
More informationStats on the TI 83 and TI 84 Calculator
Stats on the TI 83 and TI 84 Calculator Entering the sample values STAT button Left bracket { Right bracket } Store (STO) List L1 Comma Enter Example: Sample data are {5, 10, 15, 20} 1. Press 2 ND and
More informationQuestion: What is the probability that a fivecard poker hand contains a flush, that is, five cards of the same suit?
ECS20 Discrete Mathematics Quarter: Spring 2007 Instructor: John Steinberger Assistant: Sophie Engle (prepared by Sophie Engle) Homework 8 Hints Due Wednesday June 6 th 2007 Section 6.1 #16 What is the
More informationExpectation Discrete RV  weighted average Continuous RV  use integral to take the weighted average
PHP 2510 Expectation, variance, covariance, correlation Expectation Discrete RV  weighted average Continuous RV  use integral to take the weighted average Variance Variance is the average of (X µ) 2
More informationProbabilities and Random Variables
Probabilities and Random Variables This is an elementary overview of the basic concepts of probability theory. 1 The Probability Space The purpose of probability theory is to model random experiments so
More informationProbability & Probability Distributions
Probability & Probability Distributions Carolyn J. Anderson EdPsych 580 Fall 2005 Probability & Probability Distributions p. 1/61 Probability & Probability Distributions Elementary Probability Theory Definitions
More informationProbability Theory. Florian Herzog. A random variable is neither random nor variable. GianCarlo Rota, M.I.T..
Probability Theory A random variable is neither random nor variable. GianCarlo Rota, M.I.T.. Florian Herzog 2013 Probability space Probability space A probability space W is a unique triple W = {Ω, F,
More informationMATHEMATICS FOR ENGINEERS STATISTICS TUTORIAL 4 PROBABILITY DISTRIBUTIONS
MATHEMATICS FOR ENGINEERS STATISTICS TUTORIAL 4 PROBABILITY DISTRIBUTIONS CONTENTS Sample Space Accumulative Probability Probability Distributions Binomial Distribution Normal Distribution Poisson Distribution
More informationRANDOM VARIABLES MATH CIRCLE (ADVANCED) 3/3/2013. 3 k) ( 52 3 )
RANDOM VARIABLES MATH CIRCLE (ADVANCED) //0 0) a) Suppose you flip a fair coin times. i) What is the probability you get 0 heads? ii) head? iii) heads? iv) heads? For = 0,,,, P ( Heads) = ( ) b) Suppose
More informationLecture 6: Discrete & Continuous Probability and Random Variables
Lecture 6: Discrete & Continuous Probability and Random Variables D. Alex Hughes Math Camp September 17, 2015 D. Alex Hughes (Math Camp) Lecture 6: Discrete & Continuous Probability and Random September
More informationExercises with solutions (1)
Exercises with solutions (). Investigate the relationship between independence and correlation. (a) Two random variables X and Y are said to be correlated if and only if their covariance C XY is not equal
More informationDiscrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 13. Random Variables: Distribution and Expectation
CS 70 Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 3 Random Variables: Distribution and Expectation Random Variables Question: The homeworks of 20 students are collected
More informationContinuous Random Variables
Continuous Random Variables COMP 245 STATISTICS Dr N A Heard Contents 1 Continuous Random Variables 2 11 Introduction 2 12 Probability Density Functions 3 13 Transformations 5 2 Mean, Variance and Quantiles
More information4. Joint Distributions
Virtual Laboratories > 2. Distributions > 1 2 3 4 5 6 7 8 4. Joint Distributions Basic Theory As usual, we start with a random experiment with probability measure P on an underlying sample space. Suppose
More informationLecture 16: Expected value, variance, independence and Chebyshev inequality
Lecture 16: Expected value, variance, independence and Chebyshev inequality Expected value, variance, and Chebyshev inequality. If X is a random variable recall that the expected value of X, E[X] is the
More informationDefinition of Random Variable A random variable is a function from a sample space S into the real numbers.
.4 Random Variable Motivation example In an opinion poll, we might decide to ask 50 people whether they agree or disagree with a certain issue. If we record a for agree and 0 for disagree, the sample space
More informationJoint Probability Distributions and Random Samples (Devore Chapter Five)
Joint Probability Distributions and Random Samples (Devore Chapter Five) 101634501 Probability and Statistics for Engineers Winter 20102011 Contents 1 Joint Probability Distributions 1 1.1 Two Discrete
More informationTopic 8: The Expected Value
Topic 8: September 27 and 29, 2 Among the simplest summary of quantitative data is the sample mean. Given a random variable, the corresponding concept is given a variety of names, the distributional mean,
More information4. Joint Distributions of Two Random Variables
4. Joint Distributions of Two Random Variables 4.1 Joint Distributions of Two Discrete Random Variables Suppose the discrete random variables X and Y have supports S X and S Y, respectively. The joint
More informationMASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES
MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES Contents 1. Random variables and measurable functions 2. Cumulative distribution functions 3. Discrete
More information0 x = 0.30 x = 1.10 x = 3.05 x = 4.15 x = 6 0.4 x = 12. f(x) =
. A mailorder computer business has si telephone lines. Let X denote the number of lines in use at a specified time. Suppose the pmf of X is as given in the accompanying table. 0 2 3 4 5 6 p(.0.5.20.25.20.06.04
More informationNotes 11 Autumn 2005
MAS 08 Probabilit I Notes Autumn 005 Two discrete random variables If X and Y are discrete random variables defined on the same sample space, then events such as X = and Y = are well defined. The joint
More informationACMS 10140 Section 02 Elements of Statistics October 28, 2010. Midterm Examination II
ACMS 10140 Section 02 Elements of Statistics October 28, 2010 Midterm Examination II Name DO NOT remove this answer page. DO turn in the entire exam. Make sure that you have all ten (10) pages of the examination
More informationTopic 8 The Expected Value
Topic 8 The Expected Value Functions of Random Variables 1 / 12 Outline Names for Eg(X ) Variance and Standard Deviation Independence Covariance and Correlation 2 / 12 Names for Eg(X ) If g(x) = x, then
More informationStatistics 100A Homework 3 Solutions
Chapter Statistics 00A Homework Solutions Ryan Rosario. Two balls are chosen randomly from an urn containing 8 white, black, and orange balls. Suppose that we win $ for each black ball selected and we
More informationDiscrete probability and the laws of chance
Chapter 8 Discrete probability and the laws of chance 8.1 Introduction In this chapter we lay the groundwork for calculations and rules governing simple discrete probabilities. These steps will be essential
More informationPROBABILITY NOTIONS. Summary. 1. Random experiment
PROBABILITY NOTIONS Summary 1. Random experiment... 1 2. Sample space... 2 3. Event... 2 4. Probability calculation... 3 4.1. Fundamental sample space... 3 4.2. Calculation of probability... 3 4.3. Non
More informationConditional expectation
A Conditional expectation A.1 Review of conditional densities, expectations We start with the continuous case. This is sections 6.6 and 6.8 in the book. Let X, Y be continuous random variables. We defined
More informationJoint Probability Distributions and Random Samples. Week 5, 2011 Stat 4570/5570 Material from Devore s book (Ed 8), and Cengage
5 Joint Probability Distributions and Random Samples Week 5, 2011 Stat 4570/5570 Material from Devore s book (Ed 8), and Cengage Two Discrete Random Variables The probability mass function (pmf) of a single
More informationCharacteristics of Binomial Distributions
Lesson2 Characteristics of Binomial Distributions In the last lesson, you constructed several binomial distributions, observed their shapes, and estimated their means and standard deviations. In Investigation
More informationRandom Variable: A function that assigns numerical values to all the outcomes in the sample space.
STAT 509 Section 3.2: Discrete Random Variables Random Variable: A function that assigns numerical values to all the outcomes in the sample space. Notation: Capital letters (like Y) denote a random variable.
More informationP (x) 0. Discrete random variables Expected value. The expected value, mean or average of a random variable x is: xp (x) = v i P (v i )
Discrete random variables Probability mass function Given a discrete random variable X taking values in X = {v 1,..., v m }, its probability mass function P : X [0, 1] is defined as: P (v i ) = Pr[X =
More informationWorked examples Basic Concepts of Probability Theory
Worked examples Basic Concepts of Probability Theory Example 1 A regular tetrahedron is a body that has four faces and, if is tossed, the probability that it lands on any face is 1/4. Suppose that one
More informationDiscrete and Continuous Random Variables. Summer 2003
Discrete and Continuous Random Variables Summer 003 Random Variables A random variable is a rule that assigns a numerical value to each possible outcome of a probabilistic experiment. We denote a random
More informationSTAT 315: HOW TO CHOOSE A DISTRIBUTION FOR A RANDOM VARIABLE
STAT 315: HOW TO CHOOSE A DISTRIBUTION FOR A RANDOM VARIABLE TROY BUTLER 1. Random variables and distributions We are often presented with descriptions of problems involving some level of uncertainty about
More informationProbability & Statistics Primer Gregory J. Hakim University of Washington 2 January 2009 v2.0
Probability & Statistics Primer Gregory J. Hakim University of Washington 2 January 2009 v2.0 This primer provides an overview of basic concepts and definitions in probability and statistics. We shall
More informationSection 5 Part 2. Probability Distributions for Discrete Random Variables
Section 5 Part 2 Probability Distributions for Discrete Random Variables Review and Overview So far we ve covered the following probability and probability distribution topics Probability rules Probability
More informationJan 17 Homework Solutions Math 151, Winter 2012. Chapter 2 Problems (pages 5054)
Jan 17 Homework Solutions Math 11, Winter 01 Chapter Problems (pages 0 Problem In an experiment, a die is rolled continually until a 6 appears, at which point the experiment stops. What is the sample
More informationExploratory Data Analysis
Exploratory Data Analysis Johannes Schauer johannes.schauer@tugraz.at Institute of Statistics Graz University of Technology Steyrergasse 17/IV, 8010 Graz www.statistics.tugraz.at February 12, 2008 Introduction
More informationThe basics of probability theory. Distribution of variables, some important distributions
The basics of probability theory. Distribution of variables, some important distributions 1 Random experiment The outcome is not determined uniquely by the considered conditions. For example, tossing a
More informationFinite and discrete probability distributions
8 Finite and discrete probability distributions To understand the algorithmic aspects of number theory and algebra, and applications such as cryptography, a firm grasp of the basics of probability theory
More informationSection 5.1 Continuous Random Variables: Introduction
Section 5. Continuous Random Variables: Introduction Not all random variables are discrete. For example:. Waiting times for anything (train, arrival of customer, production of mrna molecule from gene,
More informationMath 150 Sample Exam #2
Problem 1. (16 points) TRUE or FALSE. a. 3 die are rolled, there are 1 possible outcomes. b. If two events are complementary, then they are mutually exclusive events. c. If A and B are two independent
More information3. Continuous Random Variables
3. Continuous Random Variables A continuous random variable is one which can take any value in an interval (or union of intervals) The values that can be taken by such a variable cannot be listed. Such
More information10.2 Series and Convergence
10.2 Series and Convergence Write sums using sigma notation Find the partial sums of series and determine convergence or divergence of infinite series Find the N th partial sums of geometric series and
More informationLecture 8. Confidence intervals and the central limit theorem
Lecture 8. Confidence intervals and the central limit theorem Mathematical Statistics and Discrete Mathematics November 25th, 2015 1 / 15 Central limit theorem Let X 1, X 2,... X n be a random sample of
More informationLahore University of Management Sciences
Lahore University of Management Sciences CMPE 501: Applied Probability (Fall 2010) Homework 3: Solution 1. A candy factory has an endless supply of red, orange, yellow, green, blue and violet jelly beans.
More informationIntroduction to the Practice of Statistics Fifth Edition Moore, McCabe Section 4.4 Homework
Introduction to the Practice of Statistics Fifth Edition Moore, McCabe Section 4.4 Homework 4.65 You buy a hot stock for $1000. The stock either gains 30% or loses 25% each day, each with probability.
More informationA (random) experiment is an activity with observable results. The sample space S of an experiment is the set of all outcomes.
Chapter 7 Probability 7.1 Experiments, Sample Spaces, and Events A (random) experiment is an activity with observable results. The sample space S of an experiment is the set of all outcomes. Each outcome
More informationThe Big 50 Revision Guidelines for S1
The Big 50 Revision Guidelines for S1 If you can understand all of these you ll do very well 1. Know what is meant by a statistical model and the Modelling cycle of continuous refinement 2. Understand
More informationSums of Independent Random Variables
Chapter 7 Sums of Independent Random Variables 7.1 Sums of Discrete Random Variables In this chapter we turn to the important question of determining the distribution of a sum of independent random variables
More informationLecture 1 Probability review
Lecture : Probability review of 9 Course: M32K Intro to Stochastic Processes Term: Fall 20 Instructor: Gordan Zitkovic Lecture Probability review RANDOM VARIABLES A large chunk of probability is about
More informationJointly Distributed Random Variables
Jointly Distributed Random Variables COMP 245 STATISTICS Dr N A Heard Contents 1 Jointly Distributed Random Variables 1 1.1 Definition......................................... 1 1.2 Joint cdfs..........................................
More informationEE 302 Division 1. Homework 5 Solutions.
EE 32 Division. Homework 5 Solutions. Problem. A fair foursided die (with faces labeled,, 2, 3) is thrown once to determine how many times a fair coin is to be flipped: if N is the number that results
More informationMath 431 An Introduction to Probability. Final Exam Solutions
Math 43 An Introduction to Probability Final Eam Solutions. A continuous random variable X has cdf a for 0, F () = for 0 <
More informationHomework 4  KEY. Jeff Brenion. June 16, 2004. Note: Many problems can be solved in more than one way; we present only a single solution here.
Homework 4  KEY Jeff Brenion June 16, 2004 Note: Many problems can be solved in more than one way; we present only a single solution here. 1 Problem 21 Since there can be anywhere from 0 to 4 aces, the
More informationAnNajah National University Faculty of Engineering Industrial Engineering Department. Course : Quantitative Methods (65211)
AnNajah National University Faculty of Engineering Industrial Engineering Department Course : Quantitative Methods (65211) Instructor: Eng. Tamer Haddad 2 nd Semester 2009/2010 Chapter 5 Example: Joint
More informationProbability: Terminology and Examples Class 2, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom
Probability: Terminology and Examples Class 2, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom 1 Learning Goals 1. Know the definitions of sample space, event and probability function. 2. Be able to
More informationManual for SOA Exam MLC.
Chapter 5. Life annuities. Extract from: Arcones Manual for the SOA Exam MLC. Spring 2010 Edition. available at http://www.actexmadriver.com/ 1/114 Whole life annuity A whole life annuity is a series of
More information