Probability Distribution for Discrete Random Variables


 Eustace James
 2 years ago
 Views:
Transcription
1 Probability Distribution for Discrete Random Variables Key concepts: discrete random variable, probability distribution, expected value, variance, and standard deviation of a discrete random variable. A random variable is a function that to each outcome (sample point) of an experiment assigns a numerical value associated with this outcome. In other words, a random variable is numerical description of outcomes of a random experiment. Radom variables are classified as Continuous set of possible values is an interval Discrete set of possible values is countable (= one can list all possible values of a random variable) Examples 1. A coin is tossed and we assign x = 1 if it turns heads and x = 0 if it turns tails (discrete, possible values are 0,1) 2. A die is rolled and we assign x = number of dots shown on the face of the die (discrete, possible values 1, 2, 3, 4, 5, 6) 3. Two dice are rolled and we define x = sum of dots on the two dice (discrete, possible values 2, 3, 4,, 12) 4. A light bulb is randomly selected and let t = lifetime of a randomly chosen light bulb (continuous, set of possible values ion an interval (0, )) 5. A student is selected and x = his/her GPA is recorded (continuous, set of possible values ion an interval [0,4])
2 The probability distribution of a discrete random variable is a graph, table, or formula that specifies the probability associated with each possible value that the random variable can assume. Notation: For a discrete random variable x, p(x) will stand for the probability that the observed value of the random variable is a number x, for example p(2) = P(x = 2) = probability that x =2 Requirements for the probability distribution of a discrete random variable 1. p(x) 0 for all values of x 2. p(x) = 1, where the summation is over all possible values of x. Example. (Example 4.4, p. 188) Two fair coins are tossed and the number of heads x is observed. The sample space : S = {HH, HT, TH, TT} Assigned values x: Possible values of x are 0, 1, 2. Distribution: p(0)=1/4, p(1) = 1/2, p(2) = 1/4 Distribution is often given in the form of a table or a graph: x p(x) 1/4 1/2 1/4
3 The mean, or expected value, of a discrete random variable x is defined as µ = E (x) = x p(x) Interpretation: µ is a measure of a center of the distribution of x µ is the average value of x observed in a very large (more precisely as n ) number of repetitions of the experiment For this reason is often referred as the population mean. The variance of a discrete random variable x is defined as σ 2 = E[ (xµ) 2 ] = (xµ) 2 p(x) The standard deviation of a discrete random variable x is equal to the square root of the variance, i.e. σ = σ 2 Interpretation: σ 2 and σ are measures of variability of x σ 2 is the average of the squared distance of x from µ in a very large number of observations of the experiment (n ) For this reason is often referred as the population variance.
4 Example 1. Two fair coins are tossed and the number of heads x is observed. The probability distribution of x is in the table. Compute the expected value µ = E (x), variance σ 2, and the standard deviation σ of x µ = 0 (1/4)+ 1 (1/2) + 2 (1/4) =1 σ 2 = (01) 2 (1/4)+ (11) 2 (1/2) + (21) 2 (1/4) =1/2 x p(x) 1/4 1/2 1/4 σ = 0.5 = TI83: Enter the values of x in L 1 and corresponding values of p(x) in L 2, then use CALC 1Var Stats L 1, L 2 ENTER
5 Example 2. An insurance policy costs $100 and will pay policyholder $10,000 if they suffer a major injury or $3,000 if they suffer a minor injury. The company estimates that each year 1 in every 2,000 policyholders may have a major injury, and 1 in 500 may have a minor injury a. Create a model for x = profit of the company on one policy b. What is the company expected profit on one policy? What is its standard deviation? c. If the company sells 900 these policies, what is the company expected profit? SOLUTION a. x 1009,9002,900 p(x) b. Recall that µ = x p(x) and σ 2 = (xµ) 2 p(x) x p(x) x p(x) (x ) (x  ) 2 (x  ) 2 p(x) , ,989 99,780,121 49, , ,989 8,934,212 17, Total , µ = E(X) = 89, σ 2 = 67879, σ = = [do it using TI83] c. Expected profit on 900 policies = = $80,100
6 Exercise 1. Consider the given discrete probability distribution. Find the probability that x equals Exercise 2. (Ex. 4.8, p. 193) Consider the probability distribution for the random variable x shown below: a. What is the probability that x is less than 2 b. What is the probability that 1< x 4 c. Find µ, σ 2, and σ by hand, and then use TI83 d. Graph p(x). e. Locate µ and the interval µ ± 2σ on your graph. What is the probability that x will fall in this interval. Compare this result with estimates obtained using Chebyshev s and Empirical Rules. Exercise 2 [based on 4.28, p. 197] The USDA reports that one in every 100 slaughtered chickens has fecal contamination. Consider a random sample of three slaughtered chickens. Let x equal the number of chickens in the sample that have fecal contamination. a. Find the probability distribution p(x) of x b. Find the probability P(x 1) c. What is the probability that at least one of the three have fecal contamination d. Find the mean and the standard deviation of x
University of California, Los Angeles Department of Statistics. Random variables
University of California, Los Angeles Department of Statistics Statistics Instructor: Nicolas Christou Random variables Discrete random variables. Continuous random variables. Discrete random variables.
More informationRandom variables P(X = 3) = P(X = 3) = 1 8, P(X = 1) = P(X = 1) = 3 8.
Random variables Remark on Notations 1. When X is a number chosen uniformly from a data set, What I call P(X = k) is called Freq[k, X] in the courseware. 2. When X is a random variable, what I call F ()
More informationProbability and Statistical Methods. Chapter 4 Mathematical Expectation
Math 3 Chapter 4 Mathematical Epectation Mean of a Random Variable Definition. Let be a random variable with probability distribution f( ). The mean or epected value of is, f( ) µ = µ = E =, if is a discrete
More informationYou flip a fair coin four times, what is the probability that you obtain three heads.
Handout 4: Binomial Distribution Reading Assignment: Chapter 5 In the previous handout, we looked at continuous random variables and calculating probabilities and percentiles for those type of variables.
More informationST 371 (IV): Discrete Random Variables
ST 371 (IV): Discrete Random Variables 1 Random Variables A random variable (rv) is a function that is defined on the sample space of the experiment and that assigns a numerical variable to each possible
More informationChapter 4 Lecture Notes
Chapter 4 Lecture Notes Random Variables October 27, 2015 1 Section 4.1 Random Variables A random variable is typically a realvalued function defined on the sample space of some experiment. For instance,
More informationQuestion: What is the probability that a fivecard poker hand contains a flush, that is, five cards of the same suit?
ECS20 Discrete Mathematics Quarter: Spring 2007 Instructor: John Steinberger Assistant: Sophie Engle (prepared by Sophie Engle) Homework 8 Hints Due Wednesday June 6 th 2007 Section 6.1 #16 What is the
More informationChapter 5. Random variables
Random variables random variable numerical variable whose value is the outcome of some probabilistic experiment; we use uppercase letters, like X, to denote such a variable and lowercase letters, like
More informationMIDTERM EXAMINATION Spring 2009 STA301 Statistics and Probability (Session  2)
MIDTERM EXAMINATION Spring 2009 STA301 Statistics and Probability (Session  2) Question No: 1 Median can be found only when: Data is Discrete Data is Attributed Data is continuous Data is continuous
More informationBinomial random variables
Binomial and Poisson Random Variables Solutions STATUB.0103 Statistics for Business Control and Regression Models Binomial random variables 1. A certain coin has a 5% of landing heads, and a 75% chance
More informationThe sample space for a pair of die rolls is the set. The sample space for a random number between 0 and 1 is the interval [0, 1].
Probability Theory Probability Spaces and Events Consider a random experiment with several possible outcomes. For example, we might roll a pair of dice, flip a coin three times, or choose a random real
More informationRandom Variable: A function that assigns numerical values to all the outcomes in the sample space.
STAT 509 Section 3.2: Discrete Random Variables Random Variable: A function that assigns numerical values to all the outcomes in the sample space. Notation: Capital letters (like Y) denote a random variable.
More informationExpectations. Expectations. (See also Hays, Appendix B; Harnett, ch. 3).
Expectations Expectations. (See also Hays, Appendix B; Harnett, ch. 3). A. The expected value of a random variable is the arithmetic mean of that variable, i.e. E() = µ. As Hays notes, the idea of the
More informationMATH 3070 Introduction to Probability and Statistics Lecture notes Probability
Objectives: MATH 3070 Introduction to Probability and Statistics Lecture notes Probability 1. Learn the basic concepts of probability 2. Learn the basic vocabulary for probability 3. Identify the sample
More informationJoint Exam 1/P Sample Exam 1
Joint Exam 1/P Sample Exam 1 Take this practice exam under strict exam conditions: Set a timer for 3 hours; Do not stop the timer for restroom breaks; Do not look at your notes. If you believe a question
More informationStats on the TI 83 and TI 84 Calculator
Stats on the TI 83 and TI 84 Calculator Entering the sample values STAT button Left bracket { Right bracket } Store (STO) List L1 Comma Enter Example: Sample data are {5, 10, 15, 20} 1. Press 2 ND and
More informationMATH 10: Elementary Statistics and Probability Chapter 4: Discrete Random Variables
MATH 10: Elementary Statistics and Probability Chapter 4: Discrete Random Variables Tony Pourmohamad Department of Mathematics De Anza College Spring 2015 Objectives By the end of this set of slides, you
More informationAn Introduction to Basic Statistics and Probability
An Introduction to Basic Statistics and Probability Shenek Heyward NCSU An Introduction to Basic Statistics and Probability p. 1/4 Outline Basic probability concepts Conditional probability Discrete Random
More informationSolution. Solution. (a) Sum of probabilities = 1 (Verify) (b) (see graph) Chapter 4 (Sections 4.34.4) Homework Solutions. Section 4.
Math 115 N. Psomas Chapter 4 (Sections 4.34.4) Homework s Section 4.3 4.53 Discrete or continuous. In each of the following situations decide if the random variable is discrete or continuous and give
More informationThe Central Limit Theorem Part 1
The Central Limit Theorem Part. Introduction: Let s pose the following question. Imagine you were to flip 400 coins. To each coin flip assign if the outcome is heads and 0 if the outcome is tails. Question:
More information3.2 Measures of Spread
3.2 Measures of Spread In some data sets the observations are close together, while in others they are more spread out. In addition to measures of the center, it's often important to measure the spread
More informationThe Binomial Probability Distribution
The Binomial Probability Distribution MATH 130, Elements of Statistics I J. Robert Buchanan Department of Mathematics Fall 2015 Objectives After this lesson we will be able to: determine whether a probability
More informationAMS 5 CHANCE VARIABILITY
AMS 5 CHANCE VARIABILITY The Law of Averages When tossing a fair coin the chances of tails and heads are the same: 50% and 50%. So if the coin is tossed a large number of times, the number of heads and
More informationProbability distributions
Probability distributions (Notes are heavily adapted from Harnett, Ch. 3; Hayes, sections 2.142.19; see also Hayes, Appendix B.) I. Random variables (in general) A. So far we have focused on single events,
More informationSample Questions for Mastery #5
Name: Class: Date: Sample Questions for Mastery #5 Multiple Choice Identify the choice that best completes the statement or answers the question.. For which of the following binomial experiments could
More information1. A survey of a group s viewing habits over the last year revealed the following
1. A survey of a group s viewing habits over the last year revealed the following information: (i) 8% watched gymnastics (ii) 9% watched baseball (iii) 19% watched soccer (iv) 14% watched gymnastics and
More informationMATH 10: Elementary Statistics and Probability Chapter 5: Continuous Random Variables
MATH 10: Elementary Statistics and Probability Chapter 5: Continuous Random Variables Tony Pourmohamad Department of Mathematics De Anza College Spring 2015 Objectives By the end of this set of slides,
More informationNormal distribution. ) 2 /2σ. 2π σ
Normal distribution The normal distribution is the most widely known and used of all distributions. Because the normal distribution approximates many natural phenomena so well, it has developed into a
More informationP (x) 0. Discrete random variables Expected value. The expected value, mean or average of a random variable x is: xp (x) = v i P (v i )
Discrete random variables Probability mass function Given a discrete random variable X taking values in X = {v 1,..., v m }, its probability mass function P : X [0, 1] is defined as: P (v i ) = Pr[X =
More informationNormal Distribution as an Approximation to the Binomial Distribution
Chapter 1 Student Lecture Notes 11 Normal Distribution as an Approximation to the Binomial Distribution : Goals ONE TWO THREE 2 Review Binomial Probability Distribution applies to a discrete random variable
More informationRandom Variables and Probability
CHAPTER 9 Random Variables and Probability IN THIS CHAPTER Summary: We ve completed the basics of data analysis and we now begin the transition to inference. In order to do inference, we need to use the
More information4. Continuous Random Variables, the Pareto and Normal Distributions
4. Continuous Random Variables, the Pareto and Normal Distributions A continuous random variable X can take any value in a given range (e.g. height, weight, age). The distribution of a continuous random
More informationVariance and Standard Deviation. Variance = ( X X mean ) 2. Symbols. Created 2007 By Michael Worthington Elizabeth City State University
Variance and Standard Deviation Created 2 By Michael Worthington Elizabeth City State University Variance = ( mean ) 2 The mean ( average) is between the largest and the least observations Subtracting
More informationLecture 8. Confidence intervals and the central limit theorem
Lecture 8. Confidence intervals and the central limit theorem Mathematical Statistics and Discrete Mathematics November 25th, 2015 1 / 15 Central limit theorem Let X 1, X 2,... X n be a random sample of
More informationMA 1125 Lecture 14  Expected Values. Friday, February 28, 2014. Objectives: Introduce expected values.
MA 5 Lecture 4  Expected Values Friday, February 2, 24. Objectives: Introduce expected values.. Means, Variances, and Standard Deviations of Probability Distributions Two classes ago, we computed the
More informationDecision Making Under Uncertainty. Professor Peter Cramton Economics 300
Decision Making Under Uncertainty Professor Peter Cramton Economics 300 Uncertainty Consumers and firms are usually uncertain about the payoffs from their choices Example 1: A farmer chooses to cultivate
More informationChapter 10: Introducing Probability
Chapter 10: Introducing Probability Randomness and Probability So far, in the first half of the course, we have learned how to examine and obtain data. Now we turn to another very important aspect of Statistics
More informationChapter 3: DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS. Part 3: Discrete Uniform Distribution Binomial Distribution
Chapter 3: DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS Part 3: Discrete Uniform Distribution Binomial Distribution Sections 35, 36 Special discrete random variable distributions we will cover
More informationChapter 4. iclicker Question 4.4 Prelecture. Part 2. Binomial Distribution. J.C. Wang. iclicker Question 4.4 Prelecture
Chapter 4 Part 2. Binomial Distribution J.C. Wang iclicker Question 4.4 Prelecture iclicker Question 4.4 Prelecture Outline Computing Binomial Probabilities Properties of a Binomial Distribution Computing
More information4. Joint Distributions
Virtual Laboratories > 2. Distributions > 1 2 3 4 5 6 7 8 4. Joint Distributions Basic Theory As usual, we start with a random experiment with probability measure P on an underlying sample space. Suppose
More informationChapter 6 Random Variables
Chapter 6 Random Variables Day 1: 6.1 Discrete Random Variables Read 340344 What is a random variable? Give some examples. A numerical variable that describes the outcomes of a chance process. Examples:
More informationMath 431 An Introduction to Probability. Final Exam Solutions
Math 43 An Introduction to Probability Final Eam Solutions. A continuous random variable X has cdf a for 0, F () = for 0 <
More informationAn event is any set of outcomes of a random experiment; that is, any subset of the sample space of the experiment. The probability of a given event
An event is any set of outcomes of a random experiment; that is, any subset of the sample space of the experiment. The probability of a given event is the sum of the probabilities of the outcomes in the
More informationRandom variables, probability distributions, binomial random variable
Week 4 lecture notes. WEEK 4 page 1 Random variables, probability distributions, binomial random variable Eample 1 : Consider the eperiment of flipping a fair coin three times. The number of tails that
More informationSummary of Formulas and Concepts. Descriptive Statistics (Ch. 14)
Summary of Formulas and Concepts Descriptive Statistics (Ch. 14) Definitions Population: The complete set of numerical information on a particular quantity in which an investigator is interested. We assume
More informationSTT315 Chapter 4 Random Variables & Probability Distributions KM. Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables
Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables Discrete vs. continuous random variables Examples of continuous distributions o Uniform o Exponential o Normal Recall: A random
More informationChapter 3: Discrete Random Variable and Probability Distribution. January 28, 2014
STAT511 Spring 2014 Lecture Notes 1 Chapter 3: Discrete Random Variable and Probability Distribution January 28, 2014 3 Discrete Random Variables Chapter Overview Random Variable (r.v. Definition Discrete
More informationProbability II (MATH 2647)
Probability II (MATH 2647) Lecturer Dr. O. Hryniv email Ostap.Hryniv@durham.ac.uk office CM309 http://maths.dur.ac.uk/stats/courses/probmc2h/probability2h.html or via DUO This term we shall consider: Review
More informationCh5: Discrete Probability Distributions Section 51: Probability Distribution
Recall: Ch5: Discrete Probability Distributions Section 51: Probability Distribution A variable is a characteristic or attribute that can assume different values. o Various letters of the alphabet (e.g.
More informationStat 20: Intro to Probability and Statistics
Stat 20: Intro to Probability and Statistics Lecture 16: More Box Models Tessa L. ChildersDay UC Berkeley 22 July 2014 By the end of this lecture... You will be able to: Determine what we expect the sum
More informationProbability: The Study of Randomness Randomness and Probability Models. IPS Chapters 4 Sections 4.1 4.2
Probability: The Study of Randomness Randomness and Probability Models IPS Chapters 4 Sections 4.1 4.2 Chapter 4 Overview Key Concepts Random Experiment/Process Sample Space Events Probability Models Probability
More informationChapter 5. Discrete Probability Distributions
Chapter 5. Discrete Probability Distributions Chapter Problem: Did Mendel s result from plant hybridization experiments contradicts his theory? 1. Mendel s theory says that when there are two inheritable
More informationPROBABILITY NOTIONS. Summary. 1. Random experiment
PROBABILITY NOTIONS Summary 1. Random experiment... 1 2. Sample space... 2 3. Event... 2 4. Probability calculation... 3 4.1. Fundamental sample space... 3 4.2. Calculation of probability... 3 4.3. Non
More informationChapter 6. 1. What is the probability that a card chosen from an ordinary deck of 52 cards is an ace? Ans: 4/52.
Chapter 6 1. What is the probability that a card chosen from an ordinary deck of 52 cards is an ace? 4/52. 2. What is the probability that a randomly selected integer chosen from the first 100 positive
More informationProbability for Estimation (review)
Probability for Estimation (review) In general, we want to develop an estimator for systems of the form: x = f x, u + η(t); y = h x + ω(t); ggggg y, ffff x We will primarily focus on discrete time linear
More informationNotes on Continuous Random Variables
Notes on Continuous Random Variables Continuous random variables are random quantities that are measured on a continuous scale. They can usually take on any value over some interval, which distinguishes
More informationMath 151. Rumbos Spring 2014 1. Solutions to Assignment #22
Math 151. Rumbos Spring 2014 1 Solutions to Assignment #22 1. An experiment consists of rolling a die 81 times and computing the average of the numbers on the top face of the die. Estimate the probability
More informationProbability Theory. Florian Herzog. A random variable is neither random nor variable. GianCarlo Rota, M.I.T..
Probability Theory A random variable is neither random nor variable. GianCarlo Rota, M.I.T.. Florian Herzog 2013 Probability space Probability space A probability space W is a unique triple W = {Ω, F,
More informationProbability Distributions
CHAPTER 6 Probability Distributions Calculator Note 6A: Computing Expected Value, Variance, and Standard Deviation from a Probability Distribution Table Using Lists to Compute Expected Value, Variance,
More informationChapter 2: Exploring Data with Graphs and Numerical Summaries. Graphical Measures Graphs are used to describe the shape of a data set.
Page 1 of 16 Chapter 2: Exploring Data with Graphs and Numerical Summaries Graphical Measures Graphs are used to describe the shape of a data set. Section 1: Types of Variables In general, variable can
More informationIntroduction to the Practice of Statistics Sixth Edition Moore, McCabe
Introduction to the Practice of Statistics Sixth Edition Moore, McCabe Section 5.1 Homework Answers 5.9 What is wrong? Explain what is wrong in each of the following scenarios. (a) If you toss a fair coin
More information( ) = P Z > = P( Z > 1) = 1 Φ(1) = 1 0.8413 = 0.1587 P X > 17
4.6 I company that manufactures and bottles of apple juice uses a machine that automatically fills 6 ounce bottles. There is some variation, however, in the amounts of liquid dispensed into the bottles
More information13.2 Measures of Central Tendency
13.2 Measures of Central Tendency Measures of Central Tendency For a given set of numbers, it may be desirable to have a single number to serve as a kind of representative value around which all the numbers
More informationChingHan Hsu, BMES, National Tsing Hua University c 2014 by ChingHan Hsu, Ph.D., BMIR Lab
Lecture 2 Probability BMIR Lecture Series in Probability and Statistics ChingHan Hsu, BMES, National Tsing Hua University c 2014 by ChingHan Hsu, Ph.D., BMIR Lab 2.1 1 Sample Spaces and Events Random
More informationDETERMINE whether the conditions for a binomial setting are met. COMPUTE and INTERPRET probabilities involving binomial random variables
1 Section 7.B Learning Objectives After this section, you should be able to DETERMINE whether the conditions for a binomial setting are met COMPUTE and INTERPRET probabilities involving binomial random
More informationChapter 4. Probability Distributions
Chapter 4 Probability Distributions Lesson 41/42 Random Variable Probability Distributions This chapter will deal the construction of probability distribution. By combining the methods of descriptive
More informationBasic Probability Theory I
A Probability puzzler!! Basic Probability Theory I Dr. Tom Ilvento FREC 408 Our Strategy with Probability Generally, we want to get to an inference from a sample to a population. In this case the population
More informationChapter 3: DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS
Chapter 3: DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS Part 4: Geometric Distribution Negative Binomial Distribution Hypergeometric Distribution Sections 37, 38 The remaining discrete random
More informationBinomial Probability Distribution
Binomial Probability Distribution In a binomial setting, we can compute probabilities of certain outcomes. This used to be done with tables, but with graphing calculator technology, these problems are
More informationMAT 155. Key Concept. September 27, 2010. 155S5.5_3 Poisson Probability Distributions. Chapter 5 Probability Distributions
MAT 155 Dr. Claude Moore Cape Fear Community College Chapter 5 Probability Distributions 5 1 Review and Preview 5 2 Random Variables 5 3 Binomial Probability Distributions 5 4 Mean, Variance and Standard
More informationProbability and Statistics Vocabulary List (Definitions for Middle School Teachers)
Probability and Statistics Vocabulary List (Definitions for Middle School Teachers) B Bar graph a diagram representing the frequency distribution for nominal or discrete data. It consists of a sequence
More informationProbabilities and Random Variables
Probabilities and Random Variables This is an elementary overview of the basic concepts of probability theory. 1 The Probability Space The purpose of probability theory is to model random experiments so
More informationMATH 140 Lab 4: Probability and the Standard Normal Distribution
MATH 140 Lab 4: Probability and the Standard Normal Distribution Problem 1. Flipping a Coin Problem In this problem, we want to simualte the process of flipping a fair coin 1000 times. Note that the outcomes
More information5. Conditional Expected Value
Virtual Laboratories > 3. Expected Value > 1 2 3 4 5 6 5. Conditional Expected Value As usual, our starting point is a random experiment with probability measure P on a sample space Ω. Suppose that X is
More information3 Multiple Discrete Random Variables
3 Multiple Discrete Random Variables 3.1 Joint densities Suppose we have a probability space (Ω, F,P) and now we have two discrete random variables X and Y on it. They have probability mass functions f
More informationSection 5 Part 2. Probability Distributions for Discrete Random Variables
Section 5 Part 2 Probability Distributions for Discrete Random Variables Review and Overview So far we ve covered the following probability and probability distribution topics Probability rules Probability
More informationMBA 611 STATISTICS AND QUANTITATIVE METHODS
MBA 611 STATISTICS AND QUANTITATIVE METHODS Part I. Review of Basic Statistics (Chapters 111) A. Introduction (Chapter 1) Uncertainty: Decisions are often based on incomplete information from uncertain
More informationTechnology StepbyStep Using StatCrunch
Technology StepbyStep Using StatCrunch Section 1.3 Simple Random Sampling 1. Select Data, highlight Simulate Data, then highlight Discrete Uniform. 2. Fill in the following window with the appropriate
More informationSection 53 Binomial Probability Distributions
Section 53 Binomial Probability Distributions Key Concept This section presents a basic definition of a binomial distribution along with notation, and methods for finding probability values. Binomial
More informationExpectation Discrete RV  weighted average Continuous RV  use integral to take the weighted average
PHP 2510 Expectation, variance, covariance, correlation Expectation Discrete RV  weighted average Continuous RV  use integral to take the weighted average Variance Variance is the average of (X µ) 2
More informationWHERE DOES THE 10% CONDITION COME FROM?
1 WHERE DOES THE 10% CONDITION COME FROM? The text has mentioned The 10% Condition (at least) twice so far: p. 407 Bernoulli trials must be independent. If that assumption is violated, it is still okay
More informationTopic 8 The Expected Value
Topic 8 The Expected Value Functions of Random Variables 1 / 12 Outline Names for Eg(X ) Variance and Standard Deviation Independence Covariance and Correlation 2 / 12 Names for Eg(X ) If g(x) = x, then
More informationThe normal approximation to the binomial
The normal approximation to the binomial The binomial probability function is not useful for calculating probabilities when the number of trials n is large, as it involves multiplying a potentially very
More informationToss a coin twice. Let Y denote the number of heads.
! Let S be a discrete sample space with the set of elementary events denoted by E = {e i, i = 1, 2, 3 }. A random variable is a function Y(e i ) that assigns a real value to each elementary event, e i.
More information2 Binomial, Poisson, Normal Distribution
2 Binomial, Poisson, Normal Distribution Binomial Distribution ): We are interested in the number of times an event A occurs in n independent trials. In each trial the event A has the same probability
More informationProbability. Experiment  any happening for which the result is uncertain. Outcome the possible result of the experiment
Probability Definitions: Experiment  any happening for which the result is uncertain Outcome the possible result of the experiment Sample space the set of all possible outcomes of the experiment Event
More informationLecture 3: Continuous distributions, expected value & mean, variance, the normal distribution
Lecture 3: Continuous distributions, expected value & mean, variance, the normal distribution 8 October 2007 In this lecture we ll learn the following: 1. how continuous probability distributions differ
More informationProbability. Vocabulary
MAT 142 College Mathematics Probability Module #PM Terri L. Miller & Elizabeth E. K. Jones revised January 5, 2011 Vocabulary In order to discuss probability we will need a fair bit of vocabulary. Probability
More informationRandom Variables. Chapter 2. Random Variables 1
Random Variables Chapter 2 Random Variables 1 Roulette and Random Variables A Roulette wheel has 38 pockets. 18 of them are red and 18 are black; these are numbered from 1 to 36. The two remaining pockets
More informationV. RANDOM VARIABLES, PROBABILITY DISTRIBUTIONS, EXPECTED VALUE
V. RANDOM VARIABLES, PROBABILITY DISTRIBUTIONS, EXPETED VALUE A game of chance featured at an amusement park is played as follows: You pay $ to play. A penny and a nickel are flipped. You win $ if either
More informationEvents. Independence. Coin Tossing. Random Phenomena
Random Phenomena Events A random phenomenon is a situation in which we know what outcomes could happen, but we don t know which particular outcome did or will happen For any random phenomenon, each attempt,
More informationLecture 6: Discrete & Continuous Probability and Random Variables
Lecture 6: Discrete & Continuous Probability and Random Variables D. Alex Hughes Math Camp September 17, 2015 D. Alex Hughes (Math Camp) Lecture 6: Discrete & Continuous Probability and Random September
More informationFor a partition B 1,..., B n, where B i B j = for i. A = (A B 1 ) (A B 2 ),..., (A B n ) and thus. P (A) = P (A B i ) = P (A B i )P (B i )
Probability Review 15.075 Cynthia Rudin A probability space, defined by Kolmogorov (19031987) consists of: A set of outcomes S, e.g., for the roll of a die, S = {1, 2, 3, 4, 5, 6}, 1 1 2 1 6 for the roll
More informationACMS 10140 Section 02 Elements of Statistics October 28, 2010. Midterm Examination II
ACMS 10140 Section 02 Elements of Statistics October 28, 2010 Midterm Examination II Name DO NOT remove this answer page. DO turn in the entire exam. Make sure that you have all ten (10) pages of the examination
More information5. Continuous Random Variables
5. Continuous Random Variables Continuous random variables can take any value in an interval. They are used to model physical characteristics such as time, length, position, etc. Examples (i) Let X be
More informationProbability. Experiment is a process that results in an observation that cannot be determined
Probability Experiment is a process that results in an observation that cannot be determined with certainty in advance of the experiment. Each observation is called an outcome or a sample point which may
More informationBinomial random variables (Review)
Poisson / Empirical Rule Approximations / Hypergeometric Solutions STATUB.3 Statistics for Business Control and Regression Models Binomial random variables (Review. Suppose that you are rolling a die
More informationFeb 7 Homework Solutions Math 151, Winter 2012. Chapter 4 Problems (pages 172179)
Feb 7 Homework Solutions Math 151, Winter 2012 Chapter Problems (pages 172179) Problem 3 Three dice are rolled. By assuming that each of the 6 3 216 possible outcomes is equally likely, find the probabilities
More informationMAT 1000. Mathematics in Today's World
MAT 1000 Mathematics in Today's World We talked about Cryptography Last Time We will talk about probability. Today There are four rules that govern probabilities. One good way to analyze simple probabilities
More informationCalculating PValues. Parkland College. Isela Guerra Parkland College. Recommended Citation
Parkland College A with Honors Projects Honors Program 2014 Calculating PValues Isela Guerra Parkland College Recommended Citation Guerra, Isela, "Calculating PValues" (2014). A with Honors Projects.
More information