Basic Probability. Probability: The part of Mathematics devoted to quantify uncertainty

Size: px
Start display at page:

Download "Basic Probability. Probability: The part of Mathematics devoted to quantify uncertainty"

Transcription

1 AMS 5 PROBABILITY

2 Basic Probability Probability: The part of Mathematics devoted to quantify uncertainty Frequency Theory Bayesian Theory Game: Playing Backgammon. The chance of getting (6,6) is 1/36. If we rolled the dice many times independently and under the same conditions, the (6,6) would turn up about 1/36 of the time. Frequency Theory

3 Basic Probability Therefore according to the Frequency Theory everyone should get the same answer when calculating chances and thus probability is Objective.

4 Basic Probability This interpretation is fine when you think about events that can be repeated. If in October 2003 you had been asked to calculate the chance that the Marlins won the World Series, it would have been very hard to think of that problem in terms of frequencies. Here is a Subjective (Bayesian) interpretation:

5 Properties Given the frequentist interpretation we observe that: This is because frequencies can not be negative and can not be above 100%. On the other hand, if you think about the subjective interpretation, you see that, unless you are willing to loose money for sure, you will never bet more than one unit. On the other hand, nobody will accept a negative bet from you, unless that person is willing to loose money for sure. So the subjective definition also implies that chance is between 0 and 1.

6 Properties From the frequentist perspective this is justified since, if A is an event, then every time A happens the opposite does not happen and vice-versa. So the proportion of times that the opposite of A happens is 1 minus the proportion of times A happens. From the subjective perspective, if you are willing to bet p on A happening to get a prize of 1, then you must be willing to bet 1-p on the opposite of A. That is, if you are willing to bet 30 cents on Florida, you must be willing to bet 70 cents on NY (this is not about your favorite team, this is about your rational quantification of each team's chances).

7 Example A box contains red marbles and blue marbles. One marble is drawn at random from the box. If it is red you win $1, if it is blue you win nothing. If you can choose between the following two boxes, which one you would prefer? 1. The box contains 3 red marbles and 2 blue ones. 2. The box contains 30 red marbles and 20 blue ones In both cases the answer is 3/5. This is because what counts is the ratio (number of red marbles)/(total number of marbles) which is the same for both boxes. This is a general rule when all possible outcomes are equally likely.

8 Events An event is a collection of possible outcomes in a specific situation. Duke wins the NCAA tournament. A dice is rolled and the outcome is greater than 4. In a sample of 20 students from this class the oldest student is less than 22 years of age. The temperature tomorrow is higher than 60 degrees. If all possible outcomes are equally likely then

9 Events You have an experiment you are thinking of performing, e.g. tossing a coin. The collection of all possible ways the experiment could come out is a set called the sample space, e.g. Ω = {heads, tails}. There is some particular event, i.e. some particular way the experiment could turn out, whose probability interests you, e.g. H={head}. Then the probability of getting head is: number of ways favorable to the event (H) 1 = total number of ways the experiment could come out 2

10 Probability vs. Statistics Inductive vs. deductive reasoning. Induction: : the process of reasoning from the part (sample) to the whole (population). Deduction: : the process of reasoning from the whole (population) to the part (sample). If you know the population fully and you choose a sampling method like random sampling, you can use probability to accurate predict what kind of sample you will get (Deduction( Deduction). If all you have is a sample and you try to infer from it back to the population that s statistics (Induction( Induction).

11 Probability vs. Statistics Probability (Deduction) POPULATION SAMPLE Statistics (Induction) Example (Probability): According to the latest census the 52.2% of the population of Boston are female. If we randomly select 100 Bostonians what is the probability of having less than 50 women? Example (Statistics): A random sample of 1000 Bostonians is chosen, and 550 of them are female. Estimate the percentage of the females in the whole population.

12 Conditional Probabilities Very often it happens that the occurrence of a certain event affects the chances of another even happening. How do we deal with that? We use conditional probabilities. Consider a deck of cards with 4 suits: clubs, diamonds, hearts and spades. Each suit has 13 cards: 2 through 10, jack, queen, king and ace. In total there are 52 cards. A deck of cards is shuffled and the top two cards are put over a table, face down. What are the chances that the second card is the queen of hearts? What are the chances that the second card is the queen of hearts given that the first card was the seven of clubs?

13 Conditional Probabilities To answer the first question think that shuffling the cards is like putting them in a random order. There are 52 possible positions for the queen of hearts and they are all equally likely. In particular the second position is one of those. So the chances are 1/52. To answer the second question we observe that we have only 51 positions left, since the seven of clubs is occupying one of them. So there is a chance of 1/51 that the second card will be the queen of hearts. The answer to the second question is a conditional probability. There is a condition on the event seven of clubs happening before we think of the event queen of hearts. In contrast the first question puts no condition on the first card.

14 Multiplication Rule Consider the following problem: a box has three tickets colored red, white and blue. We draw two tickets without replacement. What are the chances of drawing the red ticket and then the white? Since at the beginning there are three tickets and they all have the same chances, then the probability of drawing the red ticket is 1/3. Suppose the first ticket is drawn and turns out to be the red one, then there are two tickets left, both with the same chances of being drawn. So the probability of drawing the white one is 1/2. There are 3 ways of drawing the first ticket and 2 ways of drawing the second for each one of the ways of drawing the first. So there are 6 possible combinations of first and second tickets of which only one is red-white. Implying that the probability if 1/ = 6 3 2

15 Multiplication Rule Examples: 1. What is the probability that the first card taken from a deck of well shuffled cards will be the seven of clubs and the second will be the queen of hearts? 1/52 is the chance that the first one is the seven of clubs. 1/51 is the chance that the second will be the queen of hearts. So the probability is: =

16 Multiplication Rule 2. What is the probability that the first and the second cards are aces? There are 4 aces out 52 cards. So the probability of the first card being an ace is 4/52. If the first one is an ace, there are 3 aces left in the deck, so the chance that the second is also an ace is 3/51. So the probability is: = A coin is tossed twice. What are the chances that the result is a head followed by a tail? The chance of a head is 1/2. No matter what the first toss is, the probability of a tail in the second toss is 1/2. So the probability is: = 4 2 2

17 Independence Notice that in the last example is doesn't really matter that the first toss resulted in heads or tails. The results of the first toss do not affect the probability of the second toss. This is because the two tosses are independent. Example: A box contains five tickets labeled 1, 1, 2, 2 and 3. Two draws are made at random, with replacement, from the box. Suppose the first draw is a 1, what are the chances of getting a 2 in the second draw?

18 Independence When drawing with replacement the ticket that is drawn the first time is replaced back into the box. So the chances of getting a 2 in the second draw are the same for any outcome of the first draw. Suppose the draws are done without replacement. Then after the first draw there is one less ticket in the box and this affects the probability of drawing a 2 in the second draw. When two events are independent the probability that both will happen is the product of their unconditional probabilities. This is a special case of the multiplication rule.

19 Notation Consider an event A. The probability of A is denoted as P(A). Consider two events A and B. The conditional probability of A given B is denoted as P(A B). The multiplication rule can be written as: P(A & B) = P(A)P(B A)=P(B)P(A B). The events A and B are independent if: P(A B)=P(A) and P(B A)=P(B) When the events A and B are independent then the multiplication rule can be written as: P(A & B) = P(A)P(B).

20 Counting outcomes As we saw previously, when sampling at random, the probability of an event can be calculated by counting the number of possible outcomes that correspond to the event and dividing that number by the total number of outcomes. The former implies listing the ways something can happen. Let's consider the problem of rolling two dice. There are 6 possible outcomes for the first die and, for each of those, there are 6 possible outcomes of the second die to pair with the results of the first. So we have 6 x 6 = 36 possible pairs as outcomes of the experiment. We can use the following 6 x 6 table to answer a few questions regarding rolling two dice.

21 Counting outcomes Q: What is the probability that the sum will be equal to 2? A: There is only one way of getting 2 as the sum of the two dice, so the probability is 1/36. Q: What is the probability that the sum will be 7? A: There are 6 possible ways of getting a sum of 7, thus the probability is 6/36 = 1/6.

22 Counting outcomes With three dice life is even more complicated. To start with we have 6 possibilities for each die. That produces 6 x 6 x 6 = 6 3 = 216 possible outcomes. Suppose we want to know the chances that the sum of the three dice is 9. We can do that by obtaining the following combinations If we think of the chances that the sum will be equal to 10 we also get six possible combinations Nevertheless the chances of a 9 and a 10 are different since the listed combinations can be obtained in a different number of ways. In fact the following table counts the number of triplets that produce each outcome.

23 Counting outcomes So the probability that the sum will be 9 is 25/216 whilst the probability that sum will be 10 is 27/216.

24 Addition Rule We saw that the multiplicative rule is useful when looking at two events that occur jointly. So it is related to the problem of observing A and B. Let's consider the or case. Two dice are rolled and the sum of the two is observed. The events: the sum is greater than 6 and the sum is smaller than 3 are disjoint.

25 Addition Rule Q: What are the chances that a card from a well shuffled deck will be either hearts or spades? A: We either think that there are 26 out of the 52 cards that are either spades or hearts, and so the probability is 26/52 = 1/2. Or we can think that the chance of the card being hearts is 1/4 and the chance of it being spades is 1/4. Since the two events are disjoint, the chance of either spades or hearts is 1/4+1/4 = 1/2. Q: What are the chances of getting at least one 1 when two dice are rolled? A: Consider the events: 1 in the red die and one in the blue die. If we use the addition rule then the chances are 1/6+1/6 = 1/3 = 12/36. But if we observe the table we have that there are 11 ways of getting a 1. Thus the chances are just 11/36.

26 Addition Rule The addition rule does not apply in this case since the two events are not disjoint. The addition rule is counting the outcome (1, 1) twice. The right answer is obtained by subtracting the probability that the events happen simultaneously. In the dice example we have 1/6 + 1/6-1/36 = 11/36, which is the correct answer. The mathematical notation for this is: P(A or B) = P(A) + P(B) - P(A and B)

27 Independence vs. Disjoint Q: If two events are disjoint, are they also independent? A: No. Actually when two events are disjoint, the occurrence of one gives a lot of information about the occurrence of the other. In particular, the other can not happen! Remember that two events are independent when the probability of one is unaffected by the other event happening. Since this is not the case when events are disjoint, then they are not independent. Suppose A is an event and denote A c as the opposite of A. Then A and A c are disjoint but, for any value of P(A), P(A A c ) = 0, so they are not independent.

28 Examples Q1: What is the probability that in four rolls of a die at least one 1 will turn up? A: In one roll of a die there is 1/6 probability of getting a 1. In 4 rolls there is: = 6 3 Q2: What is the probability that in 24 rolls of a pair of dice, at least one double 1 will turn up? A: In one roll of a pair of dice there is 1/36 chance of getting a double 1. In 24 rolls the chances are: = 36 3 We are adding probabilities for non mutually exclusive events. To see how wrong our argument is, think of rolling one die 8 times, then we 1 8 > 1 6 would get probability of observing a 1!

29 What is the right calculation? Examples First problem: Think of the opposite event. The gambler looses if none of the four rolls come up 1. What are the chances of not getting a 1 in a specific roll? This can be calculated as 1-1/6 = 5/6. For the gambler to loose this has to happen the first and the second and the third and the fourth. The rolls are all independent, thus we use the multiplication rule and obtain (5/6) 4 = Thus the chance of winning is = Second problem: In a similar way we get the chances of the event which is the opposite of getting a double 1 in one particular roll: 35/36. We want this to happen 24 times, so we get (35/26) 24 = The chance of winning is =

30 Components in Series/Parallel A system of three components in series is such that the whole system works if all the components work. That corresponds to the figure If all three components are independent and they have probability P1, P2 and P3 of working properly, then the system will work properly if all three components work and that, using the multiplication rule, happens with probability P = P1 P2 P3 This can be generalized to an arbitrary number of components.

31 Components in Series/Parallel Suppose that a system is made of three component and it is such that it will work if any of the three components work properly. Then the components are in parallel. This corresponds to the figure below. To work out the probability that the system will function, consider the opposite event: the system will not function. This only happens if all three components do not function.

32 Components in Series/Parallel The probability that component 1 will not function is 1-P1. For component 2 we have 1-P2 and for component 3 we have 1-P3. Using the multiplicative rule we obtain that the system will not function with probability (1-P1)(1-P2)(1-P3). So the probability that the system will function is: P = 1-(1-P1)(1-P2)(1-P3) Again, this can be generalized to an arbitrary number of components. Suppose P1 = P2 = P3 = 1/3 then: Series: P = (1/3) 3 = 1 / 27. Parallel: P = 1-(1-1/3) 3 =19 / 27.

33 Summary of Probability Rules 0 P(A) 1. P(not A) = 1 P(A). P(A or B) = P(A) + P(B) P(AB) (addition rule). If A, B are disjoint then P(A or B) = P(A) + P(B). P(A and B) = P(A)P(B A)=P(B)P(A B) (multiplication rule). If A, B are independent then P(A and B) = P(A)P(B). From the multiplication rule we get the definition of the conditional probability: P(A and B) P(A B) = P(B)

Contemporary Mathematics- MAT 130. Probability. a) What is the probability of obtaining a number less than 4?

Contemporary Mathematics- MAT 130. Probability. a) What is the probability of obtaining a number less than 4? Contemporary Mathematics- MAT 30 Solve the following problems:. A fair die is tossed. What is the probability of obtaining a number less than 4? What is the probability of obtaining a number less than

More information

Lesson 1. Basics of Probability. Principles of Mathematics 12: Explained! www.math12.com 314

Lesson 1. Basics of Probability. Principles of Mathematics 12: Explained! www.math12.com 314 Lesson 1 Basics of Probability www.math12.com 314 Sample Spaces: Probability Lesson 1 Part I: Basic Elements of Probability Consider the following situation: A six sided die is rolled The sample space

More information

Section 6.2 Definition of Probability

Section 6.2 Definition of Probability Section 6.2 Definition of Probability Probability is a measure of the likelihood that an event occurs. For example, if there is a 20% chance of rain tomorrow, that means that the probability that it will

More information

36 Odds, Expected Value, and Conditional Probability

36 Odds, Expected Value, and Conditional Probability 36 Odds, Expected Value, and Conditional Probability What s the difference between probabilities and odds? To answer this question, let s consider a game that involves rolling a die. If one gets the face

More information

Probability. Sample space: all the possible outcomes of a probability experiment, i.e., the population of outcomes

Probability. Sample space: all the possible outcomes of a probability experiment, i.e., the population of outcomes Probability Basic Concepts: Probability experiment: process that leads to welldefined results, called outcomes Outcome: result of a single trial of a probability experiment (a datum) Sample space: all

More information

In the situations that we will encounter, we may generally calculate the probability of an event

In the situations that we will encounter, we may generally calculate the probability of an event What does it mean for something to be random? An event is called random if the process which produces the outcome is sufficiently complicated that we are unable to predict the precise result and are instead

More information

Basic Probability Theory II

Basic Probability Theory II RECAP Basic Probability heory II Dr. om Ilvento FREC 408 We said the approach to establishing probabilities for events is to Define the experiment List the sample points Assign probabilities to the sample

More information

AMS 5 CHANCE VARIABILITY

AMS 5 CHANCE VARIABILITY AMS 5 CHANCE VARIABILITY The Law of Averages When tossing a fair coin the chances of tails and heads are the same: 50% and 50%. So if the coin is tossed a large number of times, the number of heads and

More information

A Few Basics of Probability

A Few Basics of Probability A Few Basics of Probability Philosophy 57 Spring, 2004 1 Introduction This handout distinguishes between inductive and deductive logic, and then introduces probability, a concept essential to the study

More information

Probability: The Study of Randomness Randomness and Probability Models. IPS Chapters 4 Sections 4.1 4.2

Probability: The Study of Randomness Randomness and Probability Models. IPS Chapters 4 Sections 4.1 4.2 Probability: The Study of Randomness Randomness and Probability Models IPS Chapters 4 Sections 4.1 4.2 Chapter 4 Overview Key Concepts Random Experiment/Process Sample Space Events Probability Models Probability

More information

AP Stats - Probability Review

AP Stats - Probability Review AP Stats - Probability Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. I toss a penny and observe whether it lands heads up or tails up. Suppose

More information

Unit 19: Probability Models

Unit 19: Probability Models Unit 19: Probability Models Summary of Video Probability is the language of uncertainty. Using statistics, we can better predict the outcomes of random phenomena over the long term from the very complex,

More information

Definition and Calculus of Probability

Definition and Calculus of Probability In experiments with multivariate outcome variable, knowledge of the value of one variable may help predict another. For now, the word prediction will mean update the probabilities of events regarding the

More information

Probability and Expected Value

Probability and Expected Value Probability and Expected Value This handout provides an introduction to probability and expected value. Some of you may already be familiar with some of these topics. Probability and expected value are

More information

Determine the empirical probability that a person selected at random from the 1000 surveyed uses Mastercard.

Determine the empirical probability that a person selected at random from the 1000 surveyed uses Mastercard. Math 120 Practice Exam II Name You must show work for credit. 1) A pair of fair dice is rolled 50 times and the sum of the dots on the faces is noted. Outcome 2 4 5 6 7 8 9 10 11 12 Frequency 6 8 8 1 5

More information

Statistics 100A Homework 2 Solutions

Statistics 100A Homework 2 Solutions Statistics Homework Solutions Ryan Rosario Chapter 9. retail establishment accepts either the merican Express or the VIS credit card. total of percent of its customers carry an merican Express card, 6

More information

Elementary Statistics and Inference. Elementary Statistics and Inference. 16 The Law of Averages (cont.) 22S:025 or 7P:025.

Elementary Statistics and Inference. Elementary Statistics and Inference. 16 The Law of Averages (cont.) 22S:025 or 7P:025. Elementary Statistics and Inference 22S:025 or 7P:025 Lecture 20 1 Elementary Statistics and Inference 22S:025 or 7P:025 Chapter 16 (cont.) 2 D. Making a Box Model Key Questions regarding box What numbers

More information

The overall size of these chance errors is measured by their RMS HALF THE NUMBER OF TOSSES NUMBER OF HEADS MINUS 0 400 800 1200 1600 NUMBER OF TOSSES

The overall size of these chance errors is measured by their RMS HALF THE NUMBER OF TOSSES NUMBER OF HEADS MINUS 0 400 800 1200 1600 NUMBER OF TOSSES INTRODUCTION TO CHANCE VARIABILITY WHAT DOES THE LAW OF AVERAGES SAY? 4 coins were tossed 1600 times each, and the chance error number of heads half the number of tosses was plotted against the number

More information

Curriculum Design for Mathematic Lesson Probability

Curriculum Design for Mathematic Lesson Probability Curriculum Design for Mathematic Lesson Probability This curriculum design is for the 8th grade students who are going to learn Probability and trying to show the easiest way for them to go into this class.

More information

(b) You draw two balls from an urn and track the colors. When you start, it contains three blue balls and one red ball.

(b) You draw two balls from an urn and track the colors. When you start, it contains three blue balls and one red ball. Examples for Chapter 3 Probability Math 1040-1 Section 3.1 1. Draw a tree diagram for each of the following situations. State the size of the sample space. (a) You flip a coin three times. (b) You draw

More information

The study of probability has increased in popularity over the years because of its wide range of practical applications.

The study of probability has increased in popularity over the years because of its wide range of practical applications. 6.7. Probability. The study of probability has increased in popularity over the years because of its wide range of practical applications. In probability, each repetition of an experiment is called a trial,

More information

Remarks on the Concept of Probability

Remarks on the Concept of Probability 5. Probability A. Introduction B. Basic Concepts C. Permutations and Combinations D. Poisson Distribution E. Multinomial Distribution F. Hypergeometric Distribution G. Base Rates H. Exercises Probability

More information

A probability experiment is a chance process that leads to well-defined outcomes. 3) What is the difference between an outcome and an event?

A probability experiment is a chance process that leads to well-defined outcomes. 3) What is the difference between an outcome and an event? Ch 4.2 pg.191~(1-10 all), 12 (a, c, e, g), 13, 14, (a, b, c, d, e, h, i, j), 17, 21, 25, 31, 32. 1) What is a probability experiment? A probability experiment is a chance process that leads to well-defined

More information

Math/Stats 425 Introduction to Probability. 1. Uncertainty and the axioms of probability

Math/Stats 425 Introduction to Probability. 1. Uncertainty and the axioms of probability Math/Stats 425 Introduction to Probability 1. Uncertainty and the axioms of probability Processes in the real world are random if outcomes cannot be predicted with certainty. Example: coin tossing, stock

More information

Bayesian Tutorial (Sheet Updated 20 March)

Bayesian Tutorial (Sheet Updated 20 March) Bayesian Tutorial (Sheet Updated 20 March) Practice Questions (for discussing in Class) Week starting 21 March 2016 1. What is the probability that the total of two dice will be greater than 8, given that

More information

Decision Making Under Uncertainty. Professor Peter Cramton Economics 300

Decision Making Under Uncertainty. Professor Peter Cramton Economics 300 Decision Making Under Uncertainty Professor Peter Cramton Economics 300 Uncertainty Consumers and firms are usually uncertain about the payoffs from their choices Example 1: A farmer chooses to cultivate

More information

Exam. Name. How many distinguishable permutations of letters are possible in the word? 1) CRITICS

Exam. Name. How many distinguishable permutations of letters are possible in the word? 1) CRITICS Exam Name How many distinguishable permutations of letters are possible in the word? 1) CRITICS 2) GIGGLE An order of award presentations has been devised for seven people: Jeff, Karen, Lyle, Maria, Norm,

More information

Concepts of Probability

Concepts of Probability Concepts of Probability Trial question: we are given a die. How can we determine the probability that any given throw results in a six? Try doing many tosses: Plot cumulative proportion of sixes Also look

More information

Chapter 7 Probability. Example of a random circumstance. Random Circumstance. What does probability mean?? Goals in this chapter

Chapter 7 Probability. Example of a random circumstance. Random Circumstance. What does probability mean?? Goals in this chapter Homework (due Wed, Oct 27) Chapter 7: #17, 27, 28 Announcements: Midterm exams keys on web. (For a few hours the answer to MC#1 was incorrect on Version A.) No grade disputes now. Will have a chance to

More information

Find the indicated probability. 1) If a single fair die is rolled, find the probability of a 4 given that the number rolled is odd.

Find the indicated probability. 1) If a single fair die is rolled, find the probability of a 4 given that the number rolled is odd. Math 0 Practice Test 3 Fall 2009 Covers 7.5, 8.-8.3 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the indicated probability. ) If a single

More information

Chapter 5 Section 2 day 1 2014f.notebook. November 17, 2014. Honors Statistics

Chapter 5 Section 2 day 1 2014f.notebook. November 17, 2014. Honors Statistics Chapter 5 Section 2 day 1 2014f.notebook November 17, 2014 Honors Statistics Monday November 17, 2014 1 1. Welcome to class Daily Agenda 2. Please find folder and take your seat. 3. Review Homework C5#3

More information

Chapter 4 & 5 practice set. The actual exam is not multiple choice nor does it contain like questions.

Chapter 4 & 5 practice set. The actual exam is not multiple choice nor does it contain like questions. Chapter 4 & 5 practice set. The actual exam is not multiple choice nor does it contain like questions. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

More information

Lecture 13. Understanding Probability and Long-Term Expectations

Lecture 13. Understanding Probability and Long-Term Expectations Lecture 13 Understanding Probability and Long-Term Expectations Thinking Challenge What s the probability of getting a head on the toss of a single fair coin? Use a scale from 0 (no way) to 1 (sure thing).

More information

Probability, statistics and football Franka Miriam Bru ckler Paris, 2015.

Probability, statistics and football Franka Miriam Bru ckler Paris, 2015. Probability, statistics and football Franka Miriam Bru ckler Paris, 2015 Please read this before starting! Although each activity can be performed by one person only, it is suggested that you work in groups

More information

Ch. 13.3: More about Probability

Ch. 13.3: More about Probability Ch. 13.3: More about Probability Complementary Probabilities Given any event, E, of some sample space, U, of a random experiment, we can always talk about the complement, E, of that event: this is the

More information

Math 3C Homework 3 Solutions

Math 3C Homework 3 Solutions Math 3C Homework 3 s Ilhwan Jo and Akemi Kashiwada ilhwanjo@math.ucla.edu, akashiwada@ucla.edu Assignment: Section 2.3 Problems 2, 7, 8, 9,, 3, 5, 8, 2, 22, 29, 3, 32 2. You draw three cards from a standard

More information

Standard 12: The student will explain and evaluate the financial impact and consequences of gambling.

Standard 12: The student will explain and evaluate the financial impact and consequences of gambling. STUDENT MODULE 12.1 GAMBLING PAGE 1 Standard 12: The student will explain and evaluate the financial impact and consequences of gambling. Risky Business Simone, Paula, and Randy meet in the library every

More information

Week 2: Conditional Probability and Bayes formula

Week 2: Conditional Probability and Bayes formula Week 2: Conditional Probability and Bayes formula We ask the following question: suppose we know that a certain event B has occurred. How does this impact the probability of some other A. This question

More information

Chapter 5 A Survey of Probability Concepts

Chapter 5 A Survey of Probability Concepts Chapter 5 A Survey of Probability Concepts True/False 1. Based on a classical approach, the probability of an event is defined as the number of favorable outcomes divided by the total number of possible

More information

Formula for Theoretical Probability

Formula for Theoretical Probability Notes Name: Date: Period: Probability I. Probability A. Vocabulary is the chance/ likelihood of some event occurring. Ex) The probability of rolling a for a six-faced die is 6. It is read as in 6 or out

More information

Hoover High School Math League. Counting and Probability

Hoover High School Math League. Counting and Probability Hoover High School Math League Counting and Probability Problems. At a sandwich shop there are 2 kinds of bread, 5 kinds of cold cuts, 3 kinds of cheese, and 2 kinds of dressing. How many different sandwiches

More information

Section 6-5 Sample Spaces and Probability

Section 6-5 Sample Spaces and Probability 492 6 SEQUENCES, SERIES, AND PROBABILITY 52. How many committees of 4 people are possible from a group of 9 people if (A) There are no restrictions? (B) Both Juan and Mary must be on the committee? (C)

More information

Statistics and Random Variables. Math 425 Introduction to Probability Lecture 14. Finite valued Random Variables. Expectation defined

Statistics and Random Variables. Math 425 Introduction to Probability Lecture 14. Finite valued Random Variables. Expectation defined Expectation Statistics and Random Variables Math 425 Introduction to Probability Lecture 4 Kenneth Harris kaharri@umich.edu Department of Mathematics University of Michigan February 9, 2009 When a large

More information

MA 1125 Lecture 14 - Expected Values. Friday, February 28, 2014. Objectives: Introduce expected values.

MA 1125 Lecture 14 - Expected Values. Friday, February 28, 2014. Objectives: Introduce expected values. MA 5 Lecture 4 - Expected Values Friday, February 2, 24. Objectives: Introduce expected values.. Means, Variances, and Standard Deviations of Probability Distributions Two classes ago, we computed the

More information

UNDERGROUND TONK LEAGUE

UNDERGROUND TONK LEAGUE UNDERGROUND TONK LEAGUE WWW.TONKOUT.COM RULES Players are dealt (5) five cards to start. Player to left of dealer has first play. Player must draw a card from the deck or Go For Low. If a player draws

More information

Probabilistic Strategies: Solutions

Probabilistic Strategies: Solutions Probability Victor Xu Probabilistic Strategies: Solutions Western PA ARML Practice April 3, 2016 1 Problems 1. You roll two 6-sided dice. What s the probability of rolling at least one 6? There is a 1

More information

Probability & Probability Distributions

Probability & Probability Distributions Probability & Probability Distributions Carolyn J. Anderson EdPsych 580 Fall 2005 Probability & Probability Distributions p. 1/61 Probability & Probability Distributions Elementary Probability Theory Definitions

More information

Chapter 13 & 14 - Probability PART

Chapter 13 & 14 - Probability PART Chapter 13 & 14 - Probability PART IV : PROBABILITY Dr. Joseph Brennan Math 148, BU Dr. Joseph Brennan (Math 148, BU) Chapter 13 & 14 - Probability 1 / 91 Why Should We Learn Probability Theory? Dr. Joseph

More information

Lecture 1 Introduction Properties of Probability Methods of Enumeration Asrat Temesgen Stockholm University

Lecture 1 Introduction Properties of Probability Methods of Enumeration Asrat Temesgen Stockholm University Lecture 1 Introduction Properties of Probability Methods of Enumeration Asrat Temesgen Stockholm University 1 Chapter 1 Probability 1.1 Basic Concepts In the study of statistics, we consider experiments

More information

STAT 35A HW2 Solutions

STAT 35A HW2 Solutions STAT 35A HW2 Solutions http://www.stat.ucla.edu/~dinov/courses_students.dir/09/spring/stat35.dir 1. A computer consulting firm presently has bids out on three projects. Let A i = { awarded project i },

More information

ECE302 Spring 2006 HW1 Solutions January 16, 2006 1

ECE302 Spring 2006 HW1 Solutions January 16, 2006 1 ECE302 Spring 2006 HW1 Solutions January 16, 2006 1 Solutions to HW1 Note: These solutions were generated by R. D. Yates and D. J. Goodman, the authors of our textbook. I have added comments in italics

More information

Chapter 4 - Practice Problems 1

Chapter 4 - Practice Problems 1 Chapter 4 - Practice Problems SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Provide an appropriate response. ) Compare the relative frequency formula

More information

MATHEMATICS 154, SPRING 2010 PROBABILITY THEORY Outline #3 (Combinatorics, bridge, poker)

MATHEMATICS 154, SPRING 2010 PROBABILITY THEORY Outline #3 (Combinatorics, bridge, poker) Last modified: February, 00 References: MATHEMATICS 5, SPRING 00 PROBABILITY THEORY Outline # (Combinatorics, bridge, poker) PRP(Probability and Random Processes, by Grimmett and Stirzaker), Section.7.

More information

Grade 6 Math Circles Mar.21st, 2012 Probability of Games

Grade 6 Math Circles Mar.21st, 2012 Probability of Games University of Waterloo Faculty of Mathematics Centre for Education in Mathematics and Computing Grade 6 Math Circles Mar.21st, 2012 Probability of Games Gambling is the wagering of money or something of

More information

ACMS 10140 Section 02 Elements of Statistics October 28, 2010. Midterm Examination II

ACMS 10140 Section 02 Elements of Statistics October 28, 2010. Midterm Examination II ACMS 10140 Section 02 Elements of Statistics October 28, 2010 Midterm Examination II Name DO NOT remove this answer page. DO turn in the entire exam. Make sure that you have all ten (10) pages of the examination

More information

Week 5: Expected value and Betting systems

Week 5: Expected value and Betting systems Week 5: Expected value and Betting systems Random variable A random variable represents a measurement in a random experiment. We usually denote random variable with capital letter X, Y,. If S is the sample

More information

Ch. 13.2: Mathematical Expectation

Ch. 13.2: Mathematical Expectation Ch. 13.2: Mathematical Expectation Random Variables Very often, we are interested in sample spaces in which the outcomes are distinct real numbers. For example, in the experiment of rolling two dice, we

More information

Probability definitions

Probability definitions Probability definitions 1. Probability of an event = chance that the event will occur. 2. Experiment = any action or process that generates observations. In some contexts, we speak of a data-generating

More information

Elementary Statistics and Inference. Elementary Statistics and Inference. 17 Expected Value and Standard Error. 22S:025 or 7P:025.

Elementary Statistics and Inference. Elementary Statistics and Inference. 17 Expected Value and Standard Error. 22S:025 or 7P:025. Elementary Statistics and Inference S:05 or 7P:05 Lecture Elementary Statistics and Inference S:05 or 7P:05 Chapter 7 A. The Expected Value In a chance process (probability experiment) the outcomes of

More information

Betting systems: how not to lose your money gambling

Betting systems: how not to lose your money gambling Betting systems: how not to lose your money gambling G. Berkolaiko Department of Mathematics Texas A&M University 28 April 2007 / Mini Fair, Math Awareness Month 2007 Gambling and Games of Chance Simple

More information

Chapter 16: law of averages

Chapter 16: law of averages Chapter 16: law of averages Context................................................................... 2 Law of averages 3 Coin tossing experiment......................................................

More information

STA 371G: Statistics and Modeling

STA 371G: Statistics and Modeling STA 371G: Statistics and Modeling Decision Making Under Uncertainty: Probability, Betting Odds and Bayes Theorem Mingyuan Zhou McCombs School of Business The University of Texas at Austin http://mingyuanzhou.github.io/sta371g

More information

Expected Value and the Game of Craps

Expected Value and the Game of Craps Expected Value and the Game of Craps Blake Thornton Craps is a gambling game found in most casinos based on rolling two six sided dice. Most players who walk into a casino and try to play craps for the

More information

Probability Using Dice

Probability Using Dice Using Dice One Page Overview By Robert B. Brown, The Ohio State University Topics: Levels:, Statistics Grades 5 8 Problem: What are the probabilities of rolling various sums with two dice? How can you

More information

Session 8 Probability

Session 8 Probability Key Terms for This Session Session 8 Probability Previously Introduced frequency New in This Session binomial experiment binomial probability model experimental probability mathematical probability outcome

More information

Math 141. Lecture 2: More Probability! Albyn Jones 1. jones@reed.edu www.people.reed.edu/ jones/courses/141. 1 Library 304. Albyn Jones Math 141

Math 141. Lecture 2: More Probability! Albyn Jones 1. jones@reed.edu www.people.reed.edu/ jones/courses/141. 1 Library 304. Albyn Jones Math 141 Math 141 Lecture 2: More Probability! Albyn Jones 1 1 Library 304 jones@reed.edu www.people.reed.edu/ jones/courses/141 Outline Law of total probability Bayes Theorem the Multiplication Rule, again Recall

More information

Lab 11. Simulations. The Concept

Lab 11. Simulations. The Concept Lab 11 Simulations In this lab you ll learn how to create simulations to provide approximate answers to probability questions. We ll make use of a particular kind of structure, called a box model, that

More information

Statistics in Geophysics: Introduction and Probability Theory

Statistics in Geophysics: Introduction and Probability Theory Statistics in Geophysics: Introduction and Steffen Unkel Department of Statistics Ludwig-Maximilians-University Munich, Germany Winter Term 2013/14 1/32 What is Statistics? Introduction Statistics is the

More information

ACMS 10140 Section 02 Elements of Statistics October 28, 2010 Midterm Examination II Answers

ACMS 10140 Section 02 Elements of Statistics October 28, 2010 Midterm Examination II Answers ACMS 10140 Section 02 Elements of Statistics October 28, 2010 Midterm Examination II Answers Name DO NOT remove this answer page. DO turn in the entire exam. Make sure that you have all ten (10) pages

More information

Combinatorics 3 poker hands and Some general probability

Combinatorics 3 poker hands and Some general probability Combinatorics 3 poker hands and Some general probability Play cards 13 ranks Heart 4 Suits Spade Diamond Club Total: 4X13=52 cards You pick one card from a shuffled deck. What is the probability that it

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Practice Test Chapter 9 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the odds. ) Two dice are rolled. What are the odds against a sum

More information

Section 7C: The Law of Large Numbers

Section 7C: The Law of Large Numbers Section 7C: The Law of Large Numbers Example. You flip a coin 00 times. Suppose the coin is fair. How many times would you expect to get heads? tails? One would expect a fair coin to come up heads half

More information

Probability and Venn diagrams UNCORRECTED PAGE PROOFS

Probability and Venn diagrams UNCORRECTED PAGE PROOFS Probability and Venn diagrams 12 This chapter deals with further ideas in chance. At the end of this chapter you should be able to: identify complementary events and use the sum of probabilities to solve

More information

6.042/18.062J Mathematics for Computer Science. Expected Value I

6.042/18.062J Mathematics for Computer Science. Expected Value I 6.42/8.62J Mathematics for Computer Science Srini Devadas and Eric Lehman May 3, 25 Lecture otes Expected Value I The expectation or expected value of a random variable is a single number that tells you

More information

Texas Hold em. From highest to lowest, the possible five card hands in poker are ranked as follows:

Texas Hold em. From highest to lowest, the possible five card hands in poker are ranked as follows: Texas Hold em Poker is one of the most popular card games, especially among betting games. While poker is played in a multitude of variations, Texas Hold em is the version played most often at casinos

More information

Solution (Done in class)

Solution (Done in class) MATH 115 CHAPTER 4 HOMEWORK Sections 4.1-4.2 N. PSOMAS 4.6 Winning at craps. The game of craps starts with a come-out roll where the shooter rolls a pair of dice. If the total is 7 or 11, the shooter wins

More information

V. RANDOM VARIABLES, PROBABILITY DISTRIBUTIONS, EXPECTED VALUE

V. RANDOM VARIABLES, PROBABILITY DISTRIBUTIONS, EXPECTED VALUE V. RANDOM VARIABLES, PROBABILITY DISTRIBUTIONS, EXPETED VALUE A game of chance featured at an amusement park is played as follows: You pay $ to play. A penny and a nickel are flipped. You win $ if either

More information

Probabilities of Poker Hands with Variations

Probabilities of Poker Hands with Variations Probabilities of Poker Hands with Variations Jeff Duda Acknowledgements: Brian Alspach and Yiu Poon for providing a means to check my numbers Poker is one of the many games involving the use of a 52-card

More information

Homework 20: Compound Probability

Homework 20: Compound Probability Homework 20: Compound Probability Definition The probability of an event is defined to be the ratio of times that you expect the event to occur after many trials: number of equally likely outcomes resulting

More information

POKER LOTTO LOTTERY GAME CONDITIONS These Game Conditions apply, until amended or revised, to the POKER LOTTO lottery game.

POKER LOTTO LOTTERY GAME CONDITIONS These Game Conditions apply, until amended or revised, to the POKER LOTTO lottery game. POKER LOTTO LOTTERY GAME CONDITIONS These Game Conditions apply, until amended or revised, to the POKER LOTTO lottery game. 1.0 Rules 1.1 POKER LOTTO is governed by the Rules Respecting Lottery Games of

More information

Gaming the Law of Large Numbers

Gaming the Law of Large Numbers Gaming the Law of Large Numbers Thomas Hoffman and Bart Snapp July 3, 2012 Many of us view mathematics as a rich and wonderfully elaborate game. In turn, games can be used to illustrate mathematical ideas.

More information

Contemporary Mathematics Online Math 1030 Sample Exam I Chapters 12-14 No Time Limit No Scratch Paper Calculator Allowed: Scientific

Contemporary Mathematics Online Math 1030 Sample Exam I Chapters 12-14 No Time Limit No Scratch Paper Calculator Allowed: Scientific Contemporary Mathematics Online Math 1030 Sample Exam I Chapters 12-14 No Time Limit No Scratch Paper Calculator Allowed: Scientific Name: The point value of each problem is in the left-hand margin. You

More information

MAS113 Introduction to Probability and Statistics

MAS113 Introduction to Probability and Statistics MAS113 Introduction to Probability and Statistics 1 Introduction 1.1 Studying probability theory There are (at least) two ways to think about the study of probability theory: 1. Probability theory is a

More information

Statistics 100A Homework 4 Solutions

Statistics 100A Homework 4 Solutions Chapter 4 Statistics 00A Homework 4 Solutions Ryan Rosario 39. A ball is drawn from an urn containing 3 white and 3 black balls. After the ball is drawn, it is then replaced and another ball is drawn.

More information

Homework 2 Solutions

Homework 2 Solutions CSE 21 - Winter 2012 Homework #2 Homework 2 Solutions 2.1 In this homework, we will consider ordinary decks of playing cards which have 52 cards, with 13 of each of the four suits (Hearts, Spades, Diamonds

More information

Introduction to Game Theory IIIii. Payoffs: Probability and Expected Utility

Introduction to Game Theory IIIii. Payoffs: Probability and Expected Utility Introduction to Game Theory IIIii Payoffs: Probability and Expected Utility Lecture Summary 1. Introduction 2. Probability Theory 3. Expected Values and Expected Utility. 1. Introduction We continue further

More information

Responsible Gambling Education Unit: Mathematics A & B

Responsible Gambling Education Unit: Mathematics A & B The Queensland Responsible Gambling Strategy Responsible Gambling Education Unit: Mathematics A & B Outline of the Unit This document is a guide for teachers to the Responsible Gambling Education Unit:

More information

What Is Probability?

What Is Probability? 1 What Is Probability? The idea: Uncertainty can often be "quantified" i.e., we can talk about degrees of certainty or uncertainty. This is the idea of probability: a higher probability expresses a higher

More information

Chapter 4: Probability and Counting Rules

Chapter 4: Probability and Counting Rules Chapter 4: Probability and Counting Rules Learning Objectives Upon successful completion of Chapter 4, you will be able to: Determine sample spaces and find the probability of an event using classical

More information

6. Let X be a binomial random variable with distribution B(10, 0.6). What is the probability that X equals 8? A) (0.6) (0.4) B) 8! C) 45(0.6) (0.

6. Let X be a binomial random variable with distribution B(10, 0.6). What is the probability that X equals 8? A) (0.6) (0.4) B) 8! C) 45(0.6) (0. Name: Date:. For each of the following scenarios, determine the appropriate distribution for the random variable X. A) A fair die is rolled seven times. Let X = the number of times we see an even number.

More information

Complement. If A is an event, then the complement of A, written A c, means all the possible outcomes that are not in A.

Complement. If A is an event, then the complement of A, written A c, means all the possible outcomes that are not in A. Complement If A is an event, then the complement of A, written A c, means all the possible outcomes that are not in A. For example, if A is the event UNC wins at least 5 football games, then A c is the

More information

Introductory Probability. MATH 107: Finite Mathematics University of Louisville. March 5, 2014

Introductory Probability. MATH 107: Finite Mathematics University of Louisville. March 5, 2014 Introductory Probability MATH 07: Finite Mathematics University of Louisville March 5, 204 What is probability? Counting and probability 2 / 3 Probability in our daily lives We see chances, odds, and probabilities

More information

IAM 530 ELEMENTS OF PROBABILITY AND STATISTICS INTRODUCTION

IAM 530 ELEMENTS OF PROBABILITY AND STATISTICS INTRODUCTION IAM 530 ELEMENTS OF PROBABILITY AND STATISTICS INTRODUCTION 1 WHAT IS STATISTICS? Statistics is a science of collecting data, organizing and describing it and drawing conclusions from it. That is, statistics

More information

2. Three dice are tossed. Find the probability of a) a sum of 4; or b) a sum greater than 4 (may use complement)

2. Three dice are tossed. Find the probability of a) a sum of 4; or b) a sum greater than 4 (may use complement) Probability Homework Section P4 1. A two-person committee is chosen at random from a group of four men and three women. Find the probability that the committee contains at least one man. 2. Three dice

More information

Fundamentals of Probability

Fundamentals of Probability Fundamentals of Probability Introduction Probability is the likelihood that an event will occur under a set of given conditions. The probability of an event occurring has a value between 0 and 1. An impossible

More information

How To Find The Sample Space Of A Random Experiment In R (Programming)

How To Find The Sample Space Of A Random Experiment In R (Programming) Probability 4.1 Sample Spaces For a random experiment E, the set of all possible outcomes of E is called the sample space and is denoted by the letter S. For the coin-toss experiment, S would be the results

More information

Probabilities. Probability of a event. From Random Variables to Events. From Random Variables to Events. Probability Theory I

Probabilities. Probability of a event. From Random Variables to Events. From Random Variables to Events. Probability Theory I Victor Adamchi Danny Sleator Great Theoretical Ideas In Computer Science Probability Theory I CS 5-25 Spring 200 Lecture Feb. 6, 200 Carnegie Mellon University We will consider chance experiments with

More information

Homework 8 Solutions

Homework 8 Solutions CSE 21 - Winter 2014 Homework Homework 8 Solutions 1 Of 330 male and 270 female employees at the Flagstaff Mall, 210 of the men and 180 of the women are on flex-time (flexible working hours). Given that

More information

Chapter 3. Probability

Chapter 3. Probability Chapter 3 Probability Every Day, each us makes decisions based on uncertainty. Should you buy an extended warranty for your new DVD player? It depends on the likelihood that it will fail during the warranty.

More information

Introduction to Discrete Probability. Terminology. Probability definition. 22c:19, section 6.x Hantao Zhang

Introduction to Discrete Probability. Terminology. Probability definition. 22c:19, section 6.x Hantao Zhang Introduction to Discrete Probability 22c:19, section 6.x Hantao Zhang 1 Terminology Experiment A repeatable procedure that yields one of a given set of outcomes Rolling a die, for example Sample space

More information