Revisions to Nonfarm Payroll Employment: 1964 to 2011


 Marilynn Lambert
 1 years ago
 Views:
Transcription
1 Revisions o Nonfarm Payroll Employmen: 1964 o 2011 Tom Sark December 2011 Summary Over recen monhs, he Bureau of Labor Saisics (BLS) has revised upward is iniial esimaes of he monhly change in nonfarm payroll employmen. Similar posiive revisions occurred o he iniial esimaes for Sepember 2010 hrough February Moreover, upward revisions o iniial esimaes also occurred in he immediae monhs following he mos recen NBER businesscycle rough of June This paern of posiive revisions suggess ha he BLS migh be having rouble pinning down iniial esimaes of job gains in he early sages of an expansion. I also cauions us agains placing oo much weigh on very early, someimes unreliable esimaes of macroeconomic daa. In his noe, I repor on he behavior of payroll employmen revisions a similar poins of pas business cycles. I use he Philadelphia Fed s realime daa se for macroeconomiss o analyze revisions o iniial esimaes for nonfarm payroll employmen over he period November 1964 o Sepember The key findings are: Iniial esimaes of job gains are biased downward by nearly 18,000 jobs. Tha is, over he enire sample period, he average revision o he iniial esimae of monhly job gains is 18,000 jobs, when he revision is measured from he iniial esimae o he esimae ha he BLS releases wo monhs laer. Noably, I find no evidence of bias due o periods of businesscycle expansion as a whole. However, I do esimae a saisically significan posiive bias over he mos recen expansion: The views expressed here are hose of he auhor and do no necessarily reflec hose of he Federal Reserve Bank of Philadelphia or he Federal Reserve Sysem. Tom Sark is he assisan direcor and manager of he Philadelphia Fed's Real Time Daa Research Cener and can be conaced a
2 Over he period from July 2009 o Sepember 2011, he average revision o he iniial esimae of job gains is 36,000 jobs per monh. I find a small posiive (bu saisically significan) associaion beween he revision o job gains and he level of job gains. Mehodology I use he Philadelphia Fed s realime daa se for macroeconomiss o analyze he revisions o he BLS s iniial esimaes of he monhovermonh change in nonfarm payroll employmen. 1 The daa se records he monhly hisorical levels of employmen (E), as ha hisory was repored by he BLS in is monhly repor on he labor marke. The BLS s repors on he employmen siuaion include an iniial esimae of employmen for he previous monh. They also include any revisions o he prior monhs. I compue monhly job gains as he monhovermonh change in he level of nonfarm payroll employmen, E E 1. I focus on he cumulaive revision ha he BLS repors wo monhs afer i releases is iniial esimae. This womonh cumulaive revision o monhly job gains is Rev ( E E ) ( E E ), 1 Two Monhs Laer 1 Iniial where ( E E 1) Iniial denoes he BLS s iniial esimae of job gains and ( E E 1 ) Two Monhs Laer denoes he revised esimae, as he BLS repors i wo monhs laer. For example, in Ocober he BLS repored job gains of 103,000 for Sepember. Two monhs laer, he BLS revised is esimae o 210,000. The revision o job gains afer wo monhs is 210,000 minus 103,000, or 107,000 jobs (Table 1). Figure 1 shows he revisions over he period November 1964 o Sepember The revisions can be quie large and, in some cases, persisen. Clear sequences of posiive revisions follow he businesscycle roughs of November 1970 and June However, i is difficul o characerize he revisions in he monhs following he remaining roughs. I quanify he behavior of employmen revisions by esimaing he sequence of regressions shown below: 1 The daa ha I used in his paper and realime daa for addiional variables from he Philadelphia Fed's realime daa se for macroeconomiss can be found a: 2
3 (1) Rev e (2) Rev D e (3) Rev D70M11 D75M3 D82M11 D91M3 D01M11 D09M6 e (4) Rev ( E E ) e 1 Laes (5) Rev ( E E ) 1 Laes 1D70M11 2D75M3 3D82M11 4D91M3 5D01M11 6D09M6 e The firs regression relaes he revision (Rev) o a consan ( ) and a regression residual ( e ). The consan measures he average revision. The second regression adds a zeroone dummy variable ( D ) o he model. The dummy variable akes he value of uniy when he observaion on he revision falls ino a period of recovery from a recession rough. Noice ha he coefficien on he dummy variable ( ) measures he differenial effec of a recovery on he revision. I benchmark he period of a recovery o he number of monhs (29) since he mos recen rough in June Figure 2 shows he evoluion of he dummy variable (red line) and he periods of NBERdaed recessions (shaded areas). The hird regression replaces he dummy variable for all recoveries wih a disinc dummy variable for each recovery. The recovery periods are hose associaed wih he NBER s roughs of: November 1970, March 1975, November 1982, March 1991, November 2001, and June Noice ha I omi he brief recovery period following he rough of July The coefficiens aached o he recoveryspecific dummy variables measure he marginal effec on he average revision of he corresponding recovery. The fourh regression measures he effec of he change in employmen ( E E 1) on he revision. I measure he change in employmen wih he observaions of he laes vinage available in he realime daa se (December 2011). The fifh regression allows he change in employmen and he recoveryspecific dummy variables o affec he revision. Figures 3 and 4 show scaer diagrams of he revisions (yaxis) and he corresponding changes in payroll employmen (xaxis). I show he observaions for all monhs (red dos). I also isolae he poins ha fall ino monhs of recovery, as defined above (green dos). The scaer diagrams 3
4 sugges a posiive associaion beween revisions and he changes in payroll employmen. The associaion holds over he full sample period (Figure 3) as well as over he period beginning wih 1990 (Figure 4). Noe, in paricular, ha he larges negaive revisions are ofen associaed wih job losses. Empirical Findings Table 2 presens he resuls from esimaing regressions (1) o (5). On average, revisions o he change in payrolls are posiive and saisically significan over he period from 1964 o 2011 (column 1). The average revision is nearly 18,000 jobs per monh. However, noe ha his esimae masks some underlying variaion in average revisions over ime. Figure 5 shows he resuls when I compue esimaes of he mean revision using a rolling 60monh window of observaions. The mean revision is almos always greaer han zero and nearly always saisically significan. (The horizonal blue shading indicaes he 90 percen confidence inerval around he mean.) The esimaes of he mean revision range from a low of 15,000 jobs per monh (June 1982 o May 1987) o a high of 53,000 jobs per monh (Ocober 1969 o Sepember 1974). The mos recen esimaes show mean revisions near zero. This resul reflecs, in par, large negaive revisions during he laes recession and nearly offseing posiive revisions during he subsequen recovery. Over he enire sample period, here is lile effec on he mean revision from recoveries as a whole: The esimaed coefficien on he businesscycle recovery dummy variable ( D ) is posiive (5.621) bu no saisically significan (column 2). This resul confirms he iniial impressions ha one ges from examining he revisions shown in Figure 1. As noed earlier, some recoveries have been associaed wih posiive revisions o payroll employmen. I find a posiive and saisically significan effec on mean revisions in he recoveries following he roughs of November 1970 and June 2009 (column 3). In he monhs following he November 1970 rough, he revisions averaged 54,000 jobs per monh. 2 Following he June 2009 rough, he revisions averaged nearly 36,000 jobs per monh. Revisions end o he upward side when job gains ( E E 1) hemselves are posiive. The effec is saisically significan bu small (column 4). Noably, when I combine he recoveryspecific dummy variables and he employmen change in one regression, he resuls are qualiaively unchanged (column 5). 2 I derive his esimae and he nex one by adding he coefficien on he relevan dummy variable o he consan. 4
5 Table 1. Recen MonhOverMonh Changes in Nonfarm Payroll Employmen: Iniial Release, Two Subsequen Releases, and he Revision, Thousands of Jobs Observaion Iniial Second Third Revision Release Release Release 2009: : : : : : : : : : : : : : : : : : : : : : : : : : : : : Table Noes. The able shows he values for he monhovermonh change in nonfarm payroll employmen over he period since he June 2009 rough. The daa are expressed in housands of jobs. The column labeled Iniial shows he Bureau of Labor Saisics' iniial release for he monh. The following wo columns (labeled Second and Third) show he values ha he BLS released one and wo monhs afer i released he iniial esimae. The las column (labeled Revision) shows he difference beween he hird release and he iniial release. 5
6 Table 2. Regression Resuls for Revisions o he Change in Nonfarm Payroll Employmen, Dependen Variable: Rev ( E E 1 ) Laer ( E E 1) Two Monhs Iniial (1) (2) (3) (4) (5) Consan (4.310) (3.236) (3.236) (1.241) (0.756) D (0.713) D70M (6.220) D75M (1.433) D82M (1.415) D91M (1.749) D01M (1.168) D09M (3.197) E E (5.107) (4.881) (3.276) (4.271) (2.152) (0.156) (3.177) (5.071) Table Noes. The able repors he resuls from esimaing equaions (1) o (5). The dependen variable is he cumulaive revision o he change in nonfarm payroll employmen from he iniial release o he release wo monhs laer. The sample period is 1964:11 o 2011:9. The number in parenheses is he HAC saisic, derived using he NeweyWes esimaor wih a runcaion lag of 24 monhs. Qualiaively similar resuls obain for runcaion lags of 0, 12, and 36. (Preesing resuls for condiional heeroscedasiciy and serial correlaion in he regression residuals indicae he presence of boh.) The variables beginning wih he leer D are zeroone dummy variables ha ake he value uniy when he observaion falls ino a period of NBER expansion, as defined in he ex. The variable E E 1 is he monhovermonh change in nonfarm payroll employmen, measured using he daa as hey appeared in December The change in nonfarm payroll employmen and he revision o he change are expressed in housands of jobs. All daa come from he Philadelphia Fed s realime daa se for macroeconomiss. 6
7 Figure Cumulaive Revision o MonhoverMonh Change in Nonfarm Payroll Employmen Iniial Release o Second Revision Revisions (000s) The figure shows revisions o job gains, in housands of jobs. Shading indicaes recessions. 7
8 Figure A ZeroOne Dummy Variable Indicaes 29 Periods Afer Each Trough Shading indicaes recessions. The red line shows he zeroone dummy variable. The rough in July 1980 is omied. 8
9 Figure Change in Nonfarm Payroll Employmen: Revisions and MonhOverMonh Changes 1964: : Revisions (000s) MonhOverMonh Changes (000s) All Observaions PosTrough Observaions The graph shows he cumulaive revision afer wo monhs (yaxis) and he laesvinage change in payroll employmen (xaxis). 9
10 Figure Change in Nonfarm Payroll Employmen: Revisions and MonhOverMonh Changes 1990: : Revisions (000s) MonhOverMonh Changes (000s) All Observaions PosTrough Observaions The graph shows he cumulaive revision afer wo monhs (yaxis) and he laesvinage change in payroll employmen (xaxis). 10
11 Figure Mean Revision Over a Rolling 60Monh Window of Observaions Mean Ploed a he Sample Endpoin 100 Mean Revision (000s) Sample Endpoin The graph shows he mean revision and he corresponding 90 percen confidence inerval. Shading indicaes recessions. 11
INVESTIGATION OF THE INFLUENCE OF UNEMPLOYMENT ON ECONOMIC INDICATORS
INVESTIGATION OF THE INFLUENCE OF UNEMPLOYMENT ON ECONOMIC INDICATORS Ilona Tregub, Olga Filina, Irina Kondakova Financial Universiy under he Governmen of he Russian Federaion 1. Phillips curve In economics,
More informationChapter 8: Regression with Lagged Explanatory Variables
Chaper 8: Regression wih Lagged Explanaory Variables Time series daa: Y for =1,..,T End goal: Regression model relaing a dependen variable o explanaory variables. Wih ime series new issues arise: 1. One
More informationChapter 8 Student Lecture Notes 81
Chaper Suden Lecure Noes  Chaper Goals QM: Business Saisics Chaper Analyzing and Forecasing Series Daa Afer compleing his chaper, you should be able o: Idenify he componens presen in a ime series Develop
More informationUsefulness of the Forward Curve in Forecasting Oil Prices
Usefulness of he Forward Curve in Forecasing Oil Prices Akira Yanagisawa Leader Energy Demand, Supply and Forecas Analysis Group The Energy Daa and Modelling Cener Summary When people analyse oil prices,
More informationVector Autoregressions (VARs): Operational Perspectives
Vecor Auoregressions (VARs): Operaional Perspecives Primary Source: Sock, James H., and Mark W. Wason, Vecor Auoregressions, Journal of Economic Perspecives, Vol. 15 No. 4 (Fall 2001), 101115. Macroeconomericians
More informationWhy Did the Demand for Cash Decrease Recently in Korea?
Why Did he Demand for Cash Decrease Recenly in Korea? Byoung Hark Yoo Bank of Korea 26. 5 Absrac We explores why cash demand have decreased recenly in Korea. The raio of cash o consumpion fell o 4.7% in
More informationWhy Do Real and Nominal. InventorySales Ratios Have Different Trends?
Why Do Real and Nominal InvenorySales Raios Have Differen Trends? By Valerie A. Ramey Professor of Economics Deparmen of Economics Universiy of California, San Diego and Research Associae Naional Bureau
More informationSupplementary Appendix for Depression Babies: Do Macroeconomic Experiences Affect RiskTaking?
Supplemenary Appendix for Depression Babies: Do Macroeconomic Experiences Affec RiskTaking? Ulrike Malmendier UC Berkeley and NBER Sefan Nagel Sanford Universiy and NBER Sepember 2009 A. Deails on SCF
More information4.8 Exponential Growth and Decay; Newton s Law; Logistic Growth and Decay
324 CHAPTER 4 Exponenial and Logarihmic Funcions 4.8 Exponenial Growh and Decay; Newon s Law; Logisic Growh and Decay OBJECTIVES 1 Find Equaions of Populaions Tha Obey he Law of Uninhibied Growh 2 Find
More informationNikkei Stock Average Volatility Index Realtime Version Index Guidebook
Nikkei Sock Average Volailiy Index Realime Version Index Guidebook Nikkei Inc. Wih he modificaion of he mehodology of he Nikkei Sock Average Volailiy Index as Nikkei Inc. (Nikkei) sars calculaing and
More informationPart 1: White Noise and Moving Average Models
Chaper 3: Forecasing From Time Series Models Par 1: Whie Noise and Moving Average Models Saionariy In his chaper, we sudy models for saionary ime series. A ime series is saionary if is underlying saisical
More informationImpact of Debt on Primary Deficit and GSDP Gap in Odisha: Empirical Evidences
S.R. No. 002 10/2015/CEFT Impac of Deb on Primary Defici and GSDP Gap in Odisha: Empirical Evidences 1. Inroducion The excessive pressure of public expendiure over is revenue receip is financed hrough
More information11/6/2013. Chapter 14: Dynamic ADAS. Introduction. Introduction. Keeping track of time. The model s elements
Inroducion Chaper 14: Dynamic DS dynamic model of aggregae and aggregae supply gives us more insigh ino how he economy works in he shor run. I is a simplified version of a DSGE model, used in cuingedge
More informationIssues Using OLS with Time Series Data. Time series data NOT randomly sampled in same way as cross sectional each obs not i.i.d
These noes largely concern auocorrelaion Issues Using OLS wih Time Series Daa Recall main poins from Chaper 10: Time series daa NOT randomly sampled in same way as cross secional each obs no i.i.d Why?
More information1. The graph shows the variation with time t of the velocity v of an object.
1. he graph shows he variaion wih ime of he velociy v of an objec. v Which one of he following graphs bes represens he variaion wih ime of he acceleraion a of he objec? A. a B. a C. a D. a 2. A ball, iniially
More informationMorningstar Investor Return
Morningsar Invesor Reurn Morningsar Mehodology Paper Augus 31, 2010 2010 Morningsar, Inc. All righs reserved. The informaion in his documen is he propery of Morningsar, Inc. Reproducion or ranscripion
More informationEconomics 140A Hypothesis Testing in Regression Models
Economics 140A Hypohesis Tesing in Regression Models While i is algebraically simple o work wih a populaion model wih a single varying regressor, mos populaion models have muliple varying regressors 1
More informationChapter 7. Response of FirstOrder RL and RC Circuits
Chaper 7. esponse of FirsOrder L and C Circuis 7.1. The Naural esponse of an L Circui 7.2. The Naural esponse of an C Circui 7.3. The ep esponse of L and C Circuis 7.4. A General oluion for ep and Naural
More informationDIFFERENTIAL EQUATIONS with TI89 ABDUL HASSEN and JAY SCHIFFMAN. A. Direction Fields and Graphs of Differential Equations
DIFFERENTIAL EQUATIONS wih TI89 ABDUL HASSEN and JAY SCHIFFMAN We will assume ha he reader is familiar wih he calculaor s keyboard and he basic operaions. In paricular we have assumed ha he reader knows
More informationDOES TRADING VOLUME INFLUENCE GARCH EFFECTS? SOME EVIDENCE FROM THE GREEK MARKET WITH SPECIAL REFERENCE TO BANKING SECTOR
Invesmen Managemen and Financial Innovaions, Volume 4, Issue 3, 7 33 DOES TRADING VOLUME INFLUENCE GARCH EFFECTS? SOME EVIDENCE FROM THE GREEK MARKET WITH SPECIAL REFERENCE TO BANKING SECTOR Ahanasios
More informationInfluence of the Dow returns on the intraday Spanish stock market behavior
Influence of he Dow reurns on he inraday Spanish sock marke behavior José Luis Miralles Marcelo, José Luis Miralles Quirós, María del Mar Miralles Quirós Deparmen of Financial Economics, Universiy of Exremadura
More informationAn Empirical Comparison of Asset Pricing Models for the Tokyo Stock Exchange
An Empirical Comparison of Asse Pricing Models for he Tokyo Sock Exchange Absrac In his sudy we compare he performance of he hree kinds of asse pricing models proposed by Fama and French (1993), Carhar
More informationChapter 2 Problems. s = d t up. = 40km / hr d t down. 60km / hr. d t total. + t down. = t up. = 40km / hr + d. 60km / hr + 40km / hr
Chaper 2 Problems 2.2 A car ravels up a hill a a consan speed of 40km/h and reurns down he hill a a consan speed of 60 km/h. Calculae he average speed for he rip. This problem is a bi more suble han i
More informationGraphing the Von Bertalanffy Growth Equation
file: d:\b1732013\von_beralanffy.wpd dae: Sepember 23, 2013 Inroducion Graphing he Von Beralanffy Growh Equaion Previously, we calculaed regressions of TL on SL for fish size daa and ploed he daa and
More informationStability. Coefficients may change over time. Evolution of the economy Policy changes
Sabiliy Coefficiens may change over ime Evoluion of he economy Policy changes Time Varying Parameers y = α + x β + Coefficiens depend on he ime period If he coefficiens vary randomly and are unpredicable,
More informationCHARGE AND DISCHARGE OF A CAPACITOR
REFERENCES RC Circuis: Elecrical Insrumens: Mos Inroducory Physics exs (e.g. A. Halliday and Resnick, Physics ; M. Sernheim and J. Kane, General Physics.) This Laboraory Manual: Commonly Used Insrumens:
More informationThe Identification of the Response of Interest Rates to Monetary Policy Actions Using MarketBased Measures of Monetary Policy Shocks
The Idenificaion of he Response of Ineres Raes o Moneary Policy Acions Using MarkeBased Measures of Moneary Policy Shocks Daniel L. Thornon Federal Reserve Bank of S. Louis Phone (314) 4448582 FAX (314)
More informationIf You Are No Longer Able to Work
If You Are No Longer Able o Work NY STRS A Guide for Making Disabiliy Reiremen Decisions INTRODUCTION If you re forced o sop working because of a serious illness or injury, you and your family will be
More informationA Probability Density Function for Google s stocks
A Probabiliy Densiy Funcion for Google s socks V.Dorobanu Physics Deparmen, Poliehnica Universiy of Timisoara, Romania Absrac. I is an approach o inroduce he Fokker Planck equaion as an ineresing naural
More informationAcceleration Lab Teacher s Guide
Acceleraion Lab Teacher s Guide Objecives:. Use graphs of disance vs. ime and velociy vs. ime o find acceleraion of a oy car.. Observe he relaionship beween he angle of an inclined plane and he acceleraion
More informationMeasuring macroeconomic volatility Applications to export revenue data, 19702005
FONDATION POUR LES ETUDES ET RERS LE DEVELOPPEMENT INTERNATIONAL Measuring macroeconomic volailiy Applicaions o expor revenue daa, 1970005 by Joël Cariolle Policy brief no. 47 March 01 The FERDI is a
More information1. y 5y + 6y = 2e t Solution: Characteristic equation is r 2 5r +6 = 0, therefore r 1 = 2, r 2 = 3, and y 1 (t) = e 2t,
Homework6 Soluions.7 In Problem hrough 4 use he mehod of variaion of parameers o find a paricular soluion of he given differenial equaion. Then check your answer by using he mehod of undeermined coeffiens..
More informationTechnical Description of S&P 500 BuyWrite Monthly Index Composition
Technical Descripion of S&P 500 BuyWrie Monhly Index Composiion The S&P 500 BuyWrie Monhly (BWM) index is a oal reurn index based on wriing he nearby ahemoney S&P 500 call opion agains he S&P 500 index
More informationYTM is positively related to default risk. YTM is positively related to liquidity risk. YTM is negatively related to special tax treatment.
. Two quesions for oday. A. Why do bonds wih he same ime o mauriy have differen YTM s? B. Why do bonds wih differen imes o mauriy have differen YTM s? 2. To answer he firs quesion les look a he risk srucure
More informationUsing Monte Carlo Method to Compare CUSUM and. EWMA Statistics
Using Mone Carlo Mehod o Compare CUSUM and EWMA Saisics Xiaoyu Shen Zhen Zhang Absrac: Since ordinary daases usually conain change poins of variance, CUSUM and EWMA saisics can be used o deec hese change
More informationAnchoring Bias in Consensus Forecasts and its Effect on Market Prices
Finance and Economics Discussion Series Divisions of Research & Saisics and Moneary Affairs Federal Reserve Board, Washingon, D.C. Anchoring Bias in Consensus Forecass and is Effec on Marke Prices Sean
More informationChapter 4. Properties of the Least Squares Estimators. Assumptions of the Simple Linear Regression Model. SR3. var(e t ) = σ 2 = var(y t )
Chaper 4 Properies of he Leas Squares Esimaors Assumpions of he Simple Linear Regression Model SR1. SR. y = β 1 + β x + e E(e ) = 0 E[y ] = β 1 + β x SR3. var(e ) = σ = var(y ) SR4. cov(e i, e j ) = cov(y
More informationRepresenting Periodic Functions by Fourier Series. (a n cos nt + b n sin nt) n=1
Represening Periodic Funcions by Fourier Series 3. Inroducion In his Secion we show how a periodic funcion can be expressed as a series of sines and cosines. We begin by obaining some sandard inegrals
More informationSPECIAL REPORT May 4, Shifting Drivers of Inflation Canada versus the U.S.
Paul Ferley Assisan Chief Economis 4169747231 paul.ferley@rbc.com Nahan Janzen Economis 4169740579 nahan.janzen@rbc.com SPECIAL REPORT May 4, 2010 Shifing Drivers of Inflaion Canada versus he U.S.
More informationThe Transport Equation
The Transpor Equaion Consider a fluid, flowing wih velociy, V, in a hin sraigh ube whose cross secion will be denoed by A. Suppose he fluid conains a conaminan whose concenraion a posiion a ime will be
More informationThe impact of the trading systems development on bidask spreads
ChunAn Li (Taiwan), HungCheng Lai (Taiwan)* The impac of he rading sysems developmen on bidask spreads Absrac Following he closure, on 30 June 2005, of he open oucry sysem on he Singapore Exchange (SGX),
More informationII.1. Debt reduction and fiscal multipliers. dbt da dpbal da dg. bal
Quarerly Repor on he Euro Area 3/202 II.. Deb reducion and fiscal mulipliers The deerioraion of public finances in he firs years of he crisis has led mos Member Saes o adop sizeable consolidaion packages.
More informationcooking trajectory boiling water B (t) microwave 0 2 4 6 8 101214161820 time t (mins)
Alligaor egg wih calculus We have a large alligaor egg jus ou of he fridge (1 ) which we need o hea o 9. Now here are wo accepable mehods for heaing alligaor eggs, one is o immerse hem in boiling waer
More informationChapter 8 Copyright Henning Umland All Rights Reserved
Chaper 8 Copyrigh 19972004 Henning Umland All Righs Reserved Rise, Se, Twiligh General Visibiliy For he planning of observaions, i is useful o know he imes during which a cerain body is above he horizon
More informationMACROECONOMIC FORECASTS AT THE MOF A LOOK INTO THE REAR VIEW MIRROR
MACROECONOMIC FORECASTS AT THE MOF A LOOK INTO THE REAR VIEW MIRROR The firs experimenal publicaion, which summarised pas and expeced fuure developmen of basic economic indicaors, was published by he Minisry
More informationCan Higher Inflation Be More Stable? Evidence from Japan and the US
Journal of Inernaional Economic Sudies (), No9, 9 6 The Insiue of Comparaive Economic Sudies, Hosei Universiy Can Higher Inflaion Be More Sable? Evidence from Japan and he US Georgios Karras* Universiy
More informationCircuit Types. () i( t) ( )
Circui Types DC Circuis Idenifying feaures: o Consan inpus: he volages of independen volage sources and currens of independen curren sources are all consan. o The circui does no conain any swiches. All
More informationRotational Inertia of a Point Mass
Roaional Ineria of a Poin Mass Saddleback College Physics Deparmen, adaped from PASCO Scienific PURPOSE The purpose of his experimen is o find he roaional ineria of a poin experimenally and o verify ha
More informationPrincipal components of stock market dynamics. Methodology and applications in brief (to be updated ) Andrei Bouzaev, bouzaev@ya.
Principal componens of sock marke dynamics Mehodology and applicaions in brief o be updaed Andrei Bouzaev, bouzaev@ya.ru Why principal componens are needed Objecives undersand he evidence of more han one
More informationUMR EMC Laboratory UMR EMC Laboratory Technical Report: TR
UMR EMC Laboraory UMR EMC Laboraory Dep. of Elecrical & Compuer Engineering 870 Miner Circle Universiy of Missouri Rolla Rolla, MO 654090040 UMR EMC Laboraory Technical Repor: TR0800 Effec of Delay
More informationForecasting Malaysian Gold Using. GARCH Model
Applied Mahemaical Sciences, Vol. 7, 2013, no. 58, 28792884 HIKARI Ld, www.mhikari.com Forecasing Malaysian Gold Using GARCH Model Pung Yean Ping 1, Nor Hamizah Miswan 2 and Maizah Hura Ahmad 3 Deparmen
More informationCointegration: The Engle and Granger approach
Coinegraion: The Engle and Granger approach Inroducion Generally one would find mos of he economic variables o be nonsaionary I(1) variables. Hence, any equilibrium heories ha involve hese variables require
More informationMathematics in Pharmacokinetics What and Why (A second attempt to make it clearer)
Mahemaics in Pharmacokineics Wha and Why (A second aemp o make i clearer) We have used equaions for concenraion () as a funcion of ime (). We will coninue o use hese equaions since he plasma concenraions
More informationJournal Of Business & Economics Research September 2005 Volume 3, Number 9
Opion Pricing And Mone Carlo Simulaions George M. Jabbour, (Email: jabbour@gwu.edu), George Washingon Universiy YiKang Liu, (yikang@gwu.edu), George Washingon Universiy ABSTRACT The advanage of Mone Carlo
More informationHouse Price Index (HPI)
House Price Index (HPI) The price index of second hand houses in Colombia (HPI), regisers annually and quarerly he evoluion of prices of his ype of dwelling. The calculaion is based on he repeaed sales
More informationStock Market Liquidity and the Macroeconomy: Evidence from Japan
WP/05/6 Sock Marke Liquidiy and he Macroeconomy: Evidence from Japan Woon Gyu Choi and David Cook 2005 Inernaional Moneary Fund WP/05/6 IMF Working Paper IMF Insiue Sock Marke Liquidiy and he Macroeconomy:
More informationWeek #9  The Integral Section 5.1
Week #9  The Inegral Secion 5.1 From Calculus, Single Variable by HughesHalle, Gleason, McCallum e. al. Copyrigh 005 by John Wiley & Sons, Inc. This maerial is used by permission of John Wiley & Sons,
More information9. Capacitor and Resistor Circuits
ElecronicsLab9.nb 1 9. Capacior and Resisor Circuis Inroducion hus far we have consider resisors in various combinaions wih a power supply or baery which provide a consan volage source or direc curren
More informationWhen Do TIPS Prices Adjust to Inflation Information?
When Do TIPS Prices Adjus o Inflaion Informaion? Quenin C. Chu a, *, Deborah N. Piman b, Linda Q. Yu c Augus 15, 2009 a Deparmen of Finance, Insurance, and Real Esae. The Fogelman College of Business and
More informationCointegration Analysis of Exchange Rate in Foreign Exchange Market
Coinegraion Analysis of Exchange Rae in Foreign Exchange Marke Wang Jian, Wang Shuli School of Economics, Wuhan Universiy of Technology, P.R.China, 430074 Absrac: This paper educed ha he series of exchange
More informationThe naive method discussed in Lecture 1 uses the most recent observations to forecast future values. That is, Y ˆ t + 1
Business Condiions & Forecasing Exponenial Smoohing LECTURE 2 MOVING AVERAGES AND EXPONENTIAL SMOOTHING OVERVIEW This lecure inroduces imeseries smoohing forecasing mehods. Various models are discussed,
More informationA Note on Using the Svensson procedure to estimate the risk free rate in corporate valuation
A Noe on Using he Svensson procedure o esimae he risk free rae in corporae valuaion By Sven Arnold, Alexander Lahmann and Bernhard Schwezler Ocober 2011 1. The risk free ineres rae in corporae valuaion
More informationThe Relation Between Tscore, Zscore, Bone Mineral Density and Body Mass Index
The Relaion Beween Tscore, Zscore, Bone Mineral Densiy and Body Mass Index RABA'A KAREEM FARES ALMAITAH ALBalqa Applied Universiy (JORDAN) Tel: 00962796676697 *Email:hamzaalawi@ymail.com Absrac:
More informationPrice elasticity of demand for crude oil: estimates for 23 countries
Price elasiciy of demand for crude oil: esimaes for 23 counries John C.B. Cooper Absrac This paper uses a muliple regression model derived from an adapaion of Nerlove s parial adjusmen model o esimae boh
More informationDYNAMIC MODELS FOR VALUATION OF WRONGFUL DEATH PAYMENTS
DYNAMIC MODELS FOR VALUATION OF WRONGFUL DEATH PAYMENTS Hong Mao, Shanghai Second Polyechnic Universiy Krzyszof M. Osaszewski, Illinois Sae Universiy Youyu Zhang, Fudan Universiy ABSTRACT Liigaion, exper
More informationDescription of the CBOE S&P 500 BuyWrite Index (BXM SM )
Descripion of he CBOE S&P 500 BuyWrie Index (BXM SM ) Inroducion. The CBOE S&P 500 BuyWrie Index (BXM) is a benchmark index designed o rack he performance of a hypoheical buywrie sraegy on he S&P 500
More informationCentral Bank Communication and Exchange Rate Volatility: A GARCH Analysis
Cenral Bank Communicaion and Exchange Rae Volailiy: A GARCH Analysis Radovan Fišer Insiue of Economic Sudies, Charles Universiy, Prague Roman Horváh* Czech Naional Bank and Insiue of Economic Sudies, Charles
More informationAppendix D Flexibility Factor/Margin of Choice Desktop Research
Appendix D Flexibiliy Facor/Margin of Choice Deskop Research Cheshire Eas Council Cheshire Eas Employmen Land Review Conens D1 Flexibiliy Facor/Margin of Choice Deskop Research 2 Final Ocober 2012 \\GLOBAL.ARUP.COM\EUROPE\MANCHESTER\JOBS\200000\22348900\4
More informationFinance and Economics Discussion Series Divisions of Research & Statistics and Monetary Affairs Federal Reserve Board, Washington, D.C.
Finance and Economics Discussion Series Divisions of Research & Saisics and Moneary Affairs Federal Reserve Board, Washingon, D.C. The Effecs of Unemploymen Benefis on Unemploymen and Labor Force Paricipaion:
More informationAP Calculus AB 2013 Scoring Guidelines
AP Calculus AB 1 Scoring Guidelines The College Board The College Board is a missiondriven noforprofi organizaion ha connecs sudens o college success and opporuniy. Founded in 19, he College Board was
More informationModule 4. Singlephase AC circuits. Version 2 EE IIT, Kharagpur
Module 4 Singlephase A circuis ersion EE T, Kharagpur esson 5 Soluion of urren in A Series and Parallel ircuis ersion EE T, Kharagpur n he las lesson, wo poins were described:. How o solve for he impedance,
More informationTHE NEW MARKET EFFECT ON RETURN AND VOLATILITY OF SPANISH STOCK SECTOR INDEXES
THE NEW MARKET EFFECT ON RETURN AND VOLATILITY OF SPANISH STOCK SECTOR INDEXES Juan Ángel Lafuene Universidad Jaume I Unidad Predeparamenal de Finanzas y Conabilidad Campus del Riu Sec. 1080, Casellón
More informationYEN FUTURES: EXAMINING HEDGING EFFECTIVENESS BIAS AND CROSSCURRENCY HEDGING RESULTS ROBERT T. DAIGLER FLORIDA INTERNATIONAL UNIVERSITY SUBMITTED FOR
YEN FUTURES: EXAMINING HEDGING EFFECTIVENESS BIAS AND CROSSCURRENCY HEDGING RESULTS ROBERT T. DAIGLER FLORIDA INTERNATIONAL UNIVERSITY SUBMITTED FOR THE FIRST ANNUAL PACIFICBASIN FINANCE CONFERENCE The
More informationStatistical Analysis with Little s Law. Supplementary Material: More on the Call Center Data. by SongHee Kim and Ward Whitt
Saisical Analysis wih Lile s Law Supplemenary Maerial: More on he Call Cener Daa by SongHee Kim and Ward Whi Deparmen of Indusrial Engineering and Operaions Research Columbia Universiy, New York, NY 1799
More informationSegmentation, Probability of Default and Basel II Capital Measures. for Credit Card Portfolios
Segmenaion, Probabiliy of Defaul and Basel II Capial Measures for Credi Card Porfolios Draf: Aug 3, 2007 *Work compleed while a Federal Reserve Bank of Philadelphia Dennis Ash Federal Reserve Bank of Philadelphia
More informationAn empirical analysis about forecasting Tmall airconditioning sales using time series model Yan Xia
An empirical analysis abou forecasing Tmall aircondiioning sales using ime series model Yan Xia Deparmen of Mahemaics, Ocean Universiy of China, China Absrac Time series model is a hospo in he research
More informationDuration and Convexity ( ) 20 = Bond B has a maturity of 5 years and also has a required rate of return of 10%. Its price is $613.
Graduae School of Business Adminisraion Universiy of Virginia UVAF38 Duraion and Convexiy he price of a bond is a funcion of he promised paymens and he marke required rae of reurn. Since he promised
More informationThe Information Content of Implied Skewness and Kurtosis Changes Prior to Earnings Announcements for Stock and Option Returns
The Informaion Conen of Implied kewness and urosis Changes Prior o Earnings Announcemens for ock and Opion Reurns Dean Diavaopoulos Deparmen of Finance Villanova Universiy James. Doran Bank of America
More informationThe Relationship between Stock Return Volatility and. Trading Volume: The case of The Philippines*
The Relaionship beween Sock Reurn Volailiy and Trading Volume: The case of The Philippines* Manabu Asai Faculy of Economics Soka Universiy Angelo Unie Economics Deparmen De La Salle Universiy Manila May
More informationSEASONAL ADJUSTMENT. 1 Introduction. 2 Methodology. 3 X11ARIMA and X12ARIMA Methods
SEASONAL ADJUSTMENT 1 Inroducion 2 Mehodology 2.1 Time Series and Is Componens 2.1.1 Seasonaliy 2.1.2 TrendCycle 2.1.3 Irregulariy 2.1.4 Trading Day and Fesival Effecs 3 X11ARIMA and X12ARIMA Mehods
More informationRecovering Market Expectations of FOMC Rate Changes with Options on Federal Funds Futures
w o r k i n g p a p e r 5 7 Recovering Marke Expecaions of FOMC Rae Changes wih Opions on Federal Funds Fuures by John B. Carlson, Ben R. Craig, and William R. Melick FEDERAL RESERVE BANK OF CLEVELAND
More informationHANDOUT 14. A.) Introduction: Many actions in life are reversible. * Examples: Simple One: a closed door can be opened and an open door can be closed.
Inverse Funcions Reference Angles Inverse Trig Problems Trig Indeniies HANDOUT 4 INVERSE FUNCTIONS KEY POINTS A.) Inroducion: Many acions in life are reversible. * Examples: Simple One: a closed door can
More informationINTEREST RATE FUTURES AND THEIR OPTIONS: SOME PRICING APPROACHES
INTEREST RATE FUTURES AND THEIR OPTIONS: SOME PRICING APPROACHES OPENGAMMA QUANTITATIVE RESEARCH Absrac. Exchangeraded ineres rae fuures and heir opions are described. The fuure opions include hose paying
More informationWhen Is Growth ProPoor? Evidence from a Panel of Countries
Forhcoming, Journal of Developmen Economics When Is Growh ProPoor? Evidence from a Panel of Counries Aar Kraay The World Bank Firs Draf: December 2003 Revised: December 2004 Absrac: Growh is propoor
More informationThe Sensitivity of Corporate Bond Volatility to Macroeconomic Announcements. by Nikolay Kosturov* and Duane Stock**
The Sensiiviy of Corporae Bond Volailiy o Macroeconomic nnouncemens by Nikolay Kosurov* and Duane Sock** * Michael F.Price College of Business, Universiy of Oklahoma, 307 Wes Brooks, H 205, Norman, OK
More informationForecasting, Ordering and Stock Holding for Erratic Demand
ISF 2002 23 rd o 26 h June 2002 Forecasing, Ordering and Sock Holding for Erraic Demand Andrew Eaves Lancaser Universiy / Andalus Soluions Limied Inroducion Erraic and slowmoving demand Demand classificaion
More informationMOTION ALONG A STRAIGHT LINE
Chaper 2: MOTION ALONG A STRAIGHT LINE 1 A paricle moes along he ais from i o f Of he following alues of he iniial and final coordinaes, which resuls in he displacemen wih he larges magniude? A i =4m,
More information2.6 Limits at Infinity, Horizontal Asymptotes Math 1271, TA: Amy DeCelles. 1. Overview. 2. Examples. Outline: 1. Definition of limits at infinity
.6 Limis a Infiniy, Horizonal Asympoes Mah 7, TA: Amy DeCelles. Overview Ouline:. Definiion of is a infiniy. Definiion of horizonal asympoe 3. Theorem abou raional powers of. Infinie is a infiniy This
More informationEconomics Honors Exam 2008 Solutions Question 5
Economics Honors Exam 2008 Soluions Quesion 5 (a) (2 poins) Oupu can be decomposed as Y = C + I + G. And we can solve for i by subsiuing in equaions given in he quesion, Y = C + I + G = c 0 + c Y D + I
More informationexpressed here and the approaches suggested are of the author and not necessarily of NSEIL.
I. Inroducion Do Fuures and Opions rading increase sock marke volailiy Dr. Premalaa Shenbagaraman * In he las decade, many emerging and ransiion economies have sared inroducing derivaive conracs. As was
More informationMultiple Structural Breaks in the Nominal Interest Rate and Inflation in Canada and the United States
Deparmen of Economics Discussion Paper 0007 Muliple Srucural Breaks in he Nominal Ineres Rae and Inflaion in Canada and he Unied Saes Frank J. Akins, Universiy of Calgary Preliminary Draf February, 00
More informationBidask Spread and Order Size in the Foreign Exchange Market: An Empirical Investigation
Bidask Spread and Order Size in he Foreign Exchange Marke: An Empirical Invesigaion Liang Ding* Deparmen of Economics, Macaleser College, 1600 Grand Avenue, S. Paul, MN55105, U.S.A. Shor Tile: Bidask
More informationHow Fast Do Tokyo and New York Stock Exchanges. Respond to Each Other?: An Analysis with. HighFrequency Data
Discussion Paper No.10 How Fas Do Tokyo and New York Sock Exchanges Respond o Each Oher?: An Analysis wih HighFrequency Daa Yoshiro Tsusui and Kenjiro Hirayama Ocober 2008 GCOE Secrearia Graduae School
More informationSmall and Large Trades Around Earnings Announcements: Does Trading Behavior Explain PostEarningsAnnouncement Drift?
Small and Large Trades Around Earnings Announcemens: Does Trading Behavior Explain PosEarningsAnnouncemen Drif? Devin Shanhikumar * Firs Draf: Ocober, 2002 This Version: Augus 19, 2004 Absrac This paper
More informationRC (ResistorCapacitor) Circuits. AP Physics C
(ResisorCapacior Circuis AP Physics C Circui Iniial Condiions An circui is one where you have a capacior and resisor in he same circui. Suppose we have he following circui: Iniially, he capacior is UNCHARGED
More informationChabot College Physics Lab RC Circuits Scott Hildreth
Chabo College Physics Lab Circuis Sco Hildreh Goals: Coninue o advance your undersanding of circuis, measuring resisances, currens, and volages across muliple componens. Exend your skills in making breadboard
More informationFactors Affecting Initial Enrollment Intensity: PartTime versus FullTime Enrollment
acors Affecing Iniial Enrollmen Inensiy: artime versus ulltime Enrollmen By Leslie S. Sraon Associae rofessor Dennis M. O Toole Associae rofessor James N. Wezel rofessor Deparmen of Economics Virginia
More informationMonetary Policy & Real Estate Investment Trusts *
Moneary Policy & Real Esae Invesmen Truss * Don Bredin, Universiy College Dublin, Gerard O Reilly, Cenral Bank and Financial Services Auhoriy of Ireland & Simon Sevenson, Cass Business School, Ciy Universiy
More informationSPEC model selection algorithm for ARCH models: an options pricing evaluation framework
Applied Financial Economics Leers, 2008, 4, 419 423 SEC model selecion algorihm for ARCH models: an opions pricing evaluaion framework Savros Degiannakis a, * and Evdokia Xekalaki a,b a Deparmen of Saisics,
More informationDo Investors Overreact or Underreact to Accruals? A Reexamination of the Accrual Anomaly
Do Invesors Overreac or Underreac o Accruals? A Reexaminaion of he Accrual Anomaly Yong Yu* Smeal College of Business Pennsylvania Sae Universiy This draf: December 30, 2005 Absrac Sloan (996) finds ha
More information