SPEC model selection algorithm for ARCH models: an options pricing evaluation framework

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "SPEC model selection algorithm for ARCH models: an options pricing evaluation framework"

Transcription

1 Applied Financial Economics Leers, 2008, 4, SEC model selecion algorihm for ARCH models: an opions pricing evaluaion framework Savros Degiannakis a, * and Evdokia Xekalaki a,b a Deparmen of Saisics, Ahens Universiy of Economics and Business, Greece b Deparmen of Saisics, Universiy of California, Berkeley, USA A number of single ARCH model-based mehods of predicing volailiy are compared o Degiannakis and Xekalaki s (2005) poly-model sandardized predicion error crierion (SEC) algorihm mehod in erms of profis from rading acual opions of he S&500 index reurns. The resuls show ha raders using he SEC for deciding which model s forecass o use a any given poin in ime achieve he highes profis. I. Inroducion Degiannakis and Xekalaki (2007) examined he abiliy of he sandardized predicion error crierion (SEC) model selecion algorihm o indicae he ARCH model ha generaes beer volailiy predicions wih a number of saisical evaluaion crieria. In he conex of a simulaed opions marke, Xekalaki and Degiannakis (2005) have found ha he SEC algorihm performs beer han any oher comparaive mehod of model selecion in pricing sraddles wih 1 day o mauriy. The presen manuscrip evaluaes he abiliy of he SEC algorihm in selecing a each poin in ime an accurae volailiy forecas for he remaining life of a sraddle 1 opion. The forecass of opion prices are calculaed by feeding he volailiy esimaed by he ARCH models ino he Black and Scholes (BS) opion pricing model. The obained resuls indicae ha SEC has a saisfacory performance in selecing he ARCH models ha yield beer volailiy predicions for opion pricing. II. ARCH Models For y ¼ ln(s /S 1 ) denoing he coninuously compound rae of reurn from ime 1 o, where S is he asse price a ime, a se of ARCH models are esimaed. The condiional mean is considered as a h order auoregressive process: y ¼ c 0 þ X i¼1 ðc i y i Þþz ð1þ for z i:i:d: Nð0, 1Þ, and he condiional variance is commonly regarded as one of Assumpion (i) a GARCH(p, q) funcion: 2 ¼ u0, 0, w0 ðv,,! Þ 0, ð2þ wih u 0 ¼ð1, "2 1,..., "2 q Þ, 0 ¼ 0, w0 ¼ ð 2 1,..., 2 p Þ, v0 ¼ (a 0, a 1,..., a q ), 0 ¼ 0,! 0 ¼ (b 1,..., b p ), Assumpion (ii) an EGARCH(p, q) funcion: ln 2 ¼ u 0, 0, w0 ðv,,! Þ 0, ð3þ *Corresponding auhor. 1 A sraddle opion is he purchase of boh a call and a pu opion wih he same expiraion dae and exercise price. Applied Financial Economics Leers ISSN prin/issn online ß 2008 Taylor & Francis 419 hp:// DOI: /

2 420 S. Degiannakis and E. Xekalaki wih u 0 ¼ð1, " 1= 1,..., " q = q Þ, 0 ¼ð" 1 = mos appropriae model o be used for obaining a 1,..., " q = q Þ, w 0 ¼ðlnð2 1 Þ,...,lnð2 p ÞÞ, volailiy forecas for he nex poin in ime. v 0 ¼ (a 0,a 1,..., a q ), 0 ¼ (g 1,..., g q ),! 0 ¼ (b 1,..., b p ), Assumpion (iii) or as a TARCH(p, q) funcion: 2 ¼ u0, 0, w0 ðv,,! Þ 0, ð4þ IV. Measuring he Forecasing erformance wih u 0 ¼ð1, "2,..., "2 Þ, 0 1 q ¼ðd 1" 2 1 Þ, w0 ¼ ð 2,..., 2 Þ, v0 ¼ (a 1 p 0, a 1,..., a q ), 0 ¼ (g), The BS formula o price call and pu opions! 0 ¼ (b 1,..., b p ), d ¼ 1if" < 0 and d ¼ 0 oherwise. a day þ 1 given he informaion available a The predicion of he condiional variance a day day, wih days o mauriy, denoed, respecively, þ i given he informaion se available a day can by C and þ1, can be presened in he be compued as: ^ 2 þi Eð 2 þi I following form: Þ¼Eu þi, þi 0, w0 þi I Þðv, ðþ,! ðþ Þ¼ðu 0 þi þi þi, ðþ,! ðþ Þ. Thus, he C ¼ S e Nðd 1 Þ Ke rf Nðd 2 Þ ð5þ AR()GARCH(p, q), AR()EGARCH(p, q) and ¼ S e Nð d 1 ÞþKe rf Nð d 2 Þ AR()TARCH(p, q) models are applied, for 2 ¼ 0,...,4,p ¼ 0, 1, 2 and q ¼ 1, 2. lnðs =KÞþ rf þ 1=2 d 1 ¼ pffiffiffi III. The SEC Model Selecion Algorihm Assume ha a se of M candidae ARCH models is available and ha he mos suiable model is sough for predicing condiional volailiy. The ARCH model, wih he lowes value of he sum of he T mos recen esimaed squared sandardized one-sepahead predicion errors, T 1 ^"2 þ1 =^2 þ1, can be considered for obaining one-sep-ahead forecass of he condiional volailiy. Assume furher ha he M compeing ARCH processes have been esimaed using a rolling sample of n observaions. The SEC algorihm for selecing he mos suiable of he M candidae models a each of a series of poins in ime is comprised of he following seps. For model m, (m ¼ 1, 2,..., M) and for each poin in ime, ( ¼ n, n þ 1,...), he vecor of coefficiens ^ ðmþðþ ð^ ðmþðþ, ^v ðmþðþ, ^ ðmþðþ, ^! ðmþðþ Þ is esimaed using a rolling sample of n observaions. Using he d 2 ¼ d 1 þ1 p ffiffiffi, ð6þ where, S is he daily closing sock price as a forecas of S þ 1, rf is he daily risk free ineres rae, g is he daily dividend yield, K is he exercise price, N(.) is he cumulaive q normal disribuion funcion and is he volailiy during he life of he opion. If he sraddle price forecas is greaer han he marke sraddle price, he sraddle is bough. If he sraddle price forecas is less han he marke sraddle price, he sraddle is sold: þi ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 1 þ1 i¼2 ^2 If C þ 4 þ C ) The sraddle is bough a ime ð7þ If C þ 5 þ C ) The sraddle is sold a ime ð8þ The rae of reurn from sraddle rading is: 8 C þ C 1 1 X, if C 1 C 1 þ þ 1 C 1 1 4F >< 1 NRT ¼ C 1 þ 1 C X þ r f, if C 1 þ 1 C 1 C 1 þ 1 4F >: 1 rf, oherwise, ð9þ vecor of coefficiens ^ðmþðþ, compue R ðmþ Tþnþ1 ¼n ^" 2ðmÞ þ1 =^2ðmÞ Tþn The mos suiable model o forecas volailiy a ime T þ n is he model m wih he minimum value of. The algorihm is repeaed for each of a sequence of poins in ime for he selecion of he R ðmþ Tþn where X denoes he ransacion cos. We assume ha he sraddles are raded only when he absolue difference beween he forecas and he acual sraddle price exceeds he amoun of he filer, F. Oherwise, agens are assumed o inves a he risk free rae.

3 Evaluaing SEC algorihm in opion pricing 421 V. Daases The daa se consiss of 1064 S & 500 sock index daily reurns in he period from 14 March 1996 o 2 June A rolling sample of consan size equal o n ¼ 500 is considered. Hence, he firs one-sepahead volailiy predicion, ^ 2 þ1, is available a ime ¼ 500, or on 11 March The use of a resriced sample size incorporaes changes in he rading behaviour more efficienly. 2 The S & 500 index opions daa were obained from he Daasream for he period from 11 March 1998 hrough 2 June 2000, oally 564 rading days. roper daa are available for 456 rading days. In order o minimize he biasedness of he BS formula, only he sraddle opions wih exercise prices closes o he index level, mauriy longer han 10 rading days and rading volume 4100 were considered. racice has shown ha he BS pricing model ends o misprice deep-ou-ofhe-money and deep-in-he-money opions, while i works beer for near-he-money opions (see, e.g. Daigler, 1994, p. 153). Also, a mauriy period of lengh no shorer han 10 rading days is considered o avoid mispricings aribuable o causes of pracical as well as of heoreical naure. VI. Resuls The day-by-day raes of reurn are reflecive of he corresponding predicive performances of he models. We have on he one hand raders who always choose o use one and he same ARCH model for heir forecass and raders who a each poin in ime choose o use he ARCH model suggesed by he SEC algorihm on he oher. There are 85 raders and each rader employs an ARCH model o forecas fuure volailiy and sraddle prices. For each rader, he daily rae of reurn from rading sraddles for 456 days is compued according o Equaion 9. 3 A ransacion cos of $2 ha reflecs he bid ask spread is considered. Various values for he filer F are applied, i.e. $0, $1.25, $1.75, $2.00, $2.25, $2.75, $3.50. For F ¼ $3.50, he rader using he AR(3)GARCH(0,2) forecass makes he highes daily profi of 1.35% wih a corresponding SD of 15.24% and a -raio of 1.89 (or p-value 0.06). Applying he SEC model selecion algorihm, he sum of squared sandardized one-sep-ahead predicion errors, T ^z2 1, was esimaed considering various values for T, and, in paricular, T ¼ 5(5)80. 4 Thus, i is assumed ha here are 16 raders each of which uses on each rading day, he ARCH model picked by he SEC algorihm o forecas volailiy and sraddle prices for he nex rading day. Wih a filer of $3.5, he rader uilizing he SEC algorihm wih T ¼ 5 achieves he highes profi of 1.46% per day wih a corresponding SD of 15.85% and a -raio of 1.97 (or p-value 0.05). Even marginally, he SEC(5) model selecion algorihm generaes higher reurns han hose achieved by any oher rader using only a single ARCH model. 5 Thus, he SEC model selecion algorihm appears o have a saisfacory performance in selecing hose models ha generae beer volailiy predicions. One migh ake he view ha he SEC algorihm would favour he model ha produces higher volailiy forecass. However, comparing he SEC algorihm wih a model selecion algorihm ha was consruced so as o selec he model wih he maximum sum of he T mos recen esimaed onesep-ahead volailiy forecass (denoed by MAXVAR) for various values of T revealed ha his is no he case. In none of he cases did he daily profis achieved by raders using MAXVAR(T) exceed he profis made by raders using SEC(T) for T ¼ 5(5)80. Only in an average of 5% of he rading days did he MAXVAR(T) algorihm pick he same models as hose picked by he SEC(T) algorihm. Considering he squared daily reurns as a proxy for he unobserved acual variance, a se of saisical crieria o measure he closeness of he forecass o he realizaions are also esimaed: Squared Error of Condiional Variance (SEVar): 2 ^ 2 y 2 þ1 ð10þ Absolue Error of Condiional Variance (AEVar): ^ 2 þ1 y 2 þ1 ð11þ 2 See for example Xekalaki and Degiannakis (2005). 3 Because of he large amoun of daa, ables wih all he ARCH models are available upon reques. 4 T ¼ a(b)c denoes T ¼ a, a þ b, a þ 2b,..., c b, c. 5 For any value for he filer, he SEC algorihm generaes he highes reurns, bu he p-value is he lowes for F ¼ $3.5. The Sharpe raios, which are available upon reques, were also calculaed giving similar resuls.

4 422 S. Degiannakis and E. Xekalaki Table 1. The ne rae of reurn, compued as in Equaion 9, from rading sraddles on he S & 500 index based on he SEC algorihm and he model selecion algorihms presened in Equaions 10 18, wih $2.00 ransacion coss and a $3.5 filer Model selecion mehod Sample size Mean -raio SEC T ¼ % 1.97 SEVar T ¼ % 0.80 AEVar T ¼ % 1.03 SEDev T ¼ % 0.97 AEDev T ¼ % 1.08 HASEVar T ¼ % 1.47 HAAEVar T ¼ % 1.65 HASEDev T ¼ % 1.18 HAAEDev T ¼ % 1.45 LEVar T ¼ % 1.00 Noes: The column iled sample size refers o he sample size, T, for which he corresponding model selecion algorihm leads o he highes rae of reurn. Squared Error of Condiional SD (SE Dev): 2 ^ y þ1 Absolue Error of Condiional SD (AEDev): ^ þ1 y þ1 ð12þ ð13þ Heeroscedasiciy Adused Squared Error of Cond. Variance (HASEVar): 1 y2 þ1 ^ 2!! 2 ð14þ Heeroscedasiciy Adused Absolue Error of Cond. Variance (HAAEVar):! 1 y2 þ1 ð15þ ^ 2 Heeroscedasiciy Adused Squared Error of Cond. S. Deviaion (HASEDev): 1 y 2 þ1 ð16þ ^ Heeroscedasiciy Adused Absolue Error of Cond. S. Deviaion (HAAEDev): 1 y þ1 ^ ð17þ Logarihmic Error of Condiional Variance (LEVar): 0! 1 ln y2 þ1 A ð18þ ^ 2 Applying he SEC model selecion algorihm, he sum of squared sandardized one-sep-ahead predicion errors, T ^"2 þ1 =^2 þ1, was esimaed considering various values for T. Therefore, each of he model selecion crieria is compued considering various values for T, and, in paricular, T ¼ 10(10)80. Selecing a sraegy based on any of several compeing mehods of model selecion naurally amouns o selecing he ARCH model ha, a each of a sequence of poins in ime, has he lowes value of he evaluaion funcion. In none of he cases, did he daily reurns come ou o be higher han he reurns achieved by he SEC algorihm. Table 1 presens he daily rae of reurns based on he ARCH models seleced by he 10-model selecion mehods. 6 The HAAEVar selecion algorihm, for T ¼ 40, yielded he highes daily profi (1.24%) wih a -raio of VII. Conclusion and Suggesions for Furher Research The resuls of our sudy showed ha he SEC algorihm ouperformed all of he single ARCH model-based mehods as well as a se of oher mehods of model selecion. This is in agreemen wih Xekalaki and Degiannakis s (2005) findings 6 Deailed ables for he daily rae of reurn from rading sraddles based on he ARCH models seleced by he 10-model selecion mehods are available upon reques.

5 Evaluaing SEC algorihm in opion pricing 423 from a comparaive sudy of ARCH model selecion algorihms performed on he basis of simulaed opions daa, who also showed ha he SEC algorihm for T ¼ 5 achieved he highes rae of reurn. The validiy of he variance forecass depends on which opion pricing formula is used. Even if one could find he model, which predics he volailiy precisely, i is well known ha he BS formula does no describe he dynamics of pricing he opions perfecly. In fuure research, he esimaion of ARCH-based opion pricing models such ha of Duan (1995) and Heson and Nandi (2000) is suggesed. The SEC algorihm does increase he volailiy predicion accuracy and can be considered as a ool in picking he model ha would yield he bes volailiy predicion. However, he SEC algorihm provides profis significanly greaer han 0 under a perfec framework of no commissions. Only he bid-ask spread was aken ino accoun. 7 Under realisic ransacion charges for a rader and marke impac coss, he daily profis are wiped ou. If someone could really gain 1.46% per rading day afer commissions, he presened resuls would make a good case for marke inefficiency or a leas for a huge emporary inefficiency. References Daigler, R. T. (1994) Advanced Opion Trading, robus ublishing Company, Chicago, USA. Degiannakis, S. and Xekalaki, E. (2005) redicabiliy and model selecion in he conex of ARCH models, Journal of Applied Sochasic Models in Business and Indusry, 21, Degiannakis, S. and Xekalaki, E. (2007) Assessing he performance of a predicion error crierion model selecion algorihm in he conex of ARCH Models, Applied Financial Economics, 17, Duan, J. (1995). The GARCH opion pricing model, Mahemaical Finance, 5, Heson, S. L. and Nandi, S. (2000) A closed-form GARCH opion valuaion model, The Review of Financial Sudies, 13, Xekalaki, E. and Degiannakis, S. (2005) Evaluaing volailiy forecass in opion pricing in he conex of a simulaed opions marke, Compuaional Saisics and Daa Analysis, 49, On average, a ransacion cos of 2% for each opion conrac was considered, or 8% (2% 4) for rading sraddles. However, he bid-ask spread could be even wider. A sraddle rader migh sipulae limi prices for boh pu and call opions o narrow i down, bu, in mos cases, he orders would remain unfilled.

Chapter 8: Regression with Lagged Explanatory Variables

Chapter 8: Regression with Lagged Explanatory Variables Chaper 8: Regression wih Lagged Explanaory Variables Time series daa: Y for =1,..,T End goal: Regression model relaing a dependen variable o explanaory variables. Wih ime series new issues arise: 1. One

More information

Journal Of Business & Economics Research September 2005 Volume 3, Number 9

Journal Of Business & Economics Research September 2005 Volume 3, Number 9 Opion Pricing And Mone Carlo Simulaions George M. Jabbour, (Email: jabbour@gwu.edu), George Washingon Universiy Yi-Kang Liu, (yikang@gwu.edu), George Washingon Universiy ABSTRACT The advanage of Mone Carlo

More information

DOES TRADING VOLUME INFLUENCE GARCH EFFECTS? SOME EVIDENCE FROM THE GREEK MARKET WITH SPECIAL REFERENCE TO BANKING SECTOR

DOES TRADING VOLUME INFLUENCE GARCH EFFECTS? SOME EVIDENCE FROM THE GREEK MARKET WITH SPECIAL REFERENCE TO BANKING SECTOR Invesmen Managemen and Financial Innovaions, Volume 4, Issue 3, 7 33 DOES TRADING VOLUME INFLUENCE GARCH EFFECTS? SOME EVIDENCE FROM THE GREEK MARKET WITH SPECIAL REFERENCE TO BANKING SECTOR Ahanasios

More information

How Useful are the Various Volatility Estimators for Improving GARCH-based Volatility Forecasts? Evidence from the Nasdaq-100 Stock Index

How Useful are the Various Volatility Estimators for Improving GARCH-based Volatility Forecasts? Evidence from the Nasdaq-100 Stock Index Inernaional Journal of Economics and Financial Issues Vol. 4, No. 3, 04, pp.65-656 ISSN: 46-438 www.econjournals.com How Useful are he Various Volailiy Esimaors for Improving GARCH-based Volailiy Forecass?

More information

Vector Autoregressions (VARs): Operational Perspectives

Vector Autoregressions (VARs): Operational Perspectives Vecor Auoregressions (VARs): Operaional Perspecives Primary Source: Sock, James H., and Mark W. Wason, Vecor Auoregressions, Journal of Economic Perspecives, Vol. 15 No. 4 (Fall 2001), 101-115. Macroeconomericians

More information

Skewness and Kurtosis Adjusted Black-Scholes Model: A Note on Hedging Performance

Skewness and Kurtosis Adjusted Black-Scholes Model: A Note on Hedging Performance Finance Leers, 003, (5), 6- Skewness and Kurosis Adjused Black-Scholes Model: A Noe on Hedging Performance Sami Vähämaa * Universiy of Vaasa, Finland Absrac his aricle invesigaes he dela hedging performance

More information

Predicting Stock Market Index Trading Signals Using Neural Networks

Predicting Stock Market Index Trading Signals Using Neural Networks Predicing Sock Marke Index Trading Using Neural Neworks C. D. Tilakarane, S. A. Morris, M. A. Mammadov, C. P. Hurs Cenre for Informaics and Applied Opimizaion School of Informaion Technology and Mahemaical

More information

Forecasting Malaysian Gold Using. GARCH Model

Forecasting Malaysian Gold Using. GARCH Model Applied Mahemaical Sciences, Vol. 7, 2013, no. 58, 2879-2884 HIKARI Ld, www.m-hikari.com Forecasing Malaysian Gold Using GARCH Model Pung Yean Ping 1, Nor Hamizah Miswan 2 and Maizah Hura Ahmad 3 Deparmen

More information

Volatility Forecasting Techniques and Volatility Trading: the case of currency options

Volatility Forecasting Techniques and Volatility Trading: the case of currency options Volailiy Forecasing Techniques and Volailiy Trading: he case of currency opions by Lampros Kalivas PhD Candidae, Universiy of Macedonia, MSc in Inernaional Banking and Financial Sudies, Universiy of Souhampon,

More information

Morningstar Investor Return

Morningstar Investor Return Morningsar Invesor Reurn Morningsar Mehodology Paper Augus 31, 2010 2010 Morningsar, Inc. All righs reserved. The informaion in his documen is he propery of Morningsar, Inc. Reproducion or ranscripion

More information

TEMPORAL PATTERN IDENTIFICATION OF TIME SERIES DATA USING PATTERN WAVELETS AND GENETIC ALGORITHMS

TEMPORAL PATTERN IDENTIFICATION OF TIME SERIES DATA USING PATTERN WAVELETS AND GENETIC ALGORITHMS TEMPORAL PATTERN IDENTIFICATION OF TIME SERIES DATA USING PATTERN WAVELETS AND GENETIC ALGORITHMS RICHARD J. POVINELLI AND XIN FENG Deparmen of Elecrical and Compuer Engineering Marquee Universiy, P.O.

More information

THE DETERMINATION OF PORT FACILITIES MANAGEMENT FEE WITH GUARANTEED VOLUME USING OPTIONS PRICING MODEL

THE DETERMINATION OF PORT FACILITIES MANAGEMENT FEE WITH GUARANTEED VOLUME USING OPTIONS PRICING MODEL 54 Journal of Marine Science and echnology, Vol. 13, No. 1, pp. 54-60 (2005) HE DEERMINAION OF POR FACILIIES MANAGEMEN FEE WIH GUARANEED VOLUME USING OPIONS PRICING MODEL Kee-Kuo Chen Key words: build-and-lease

More information

Hedging with Forwards and Futures

Hedging with Forwards and Futures Hedging wih orwards and uures Hedging in mos cases is sraighforward. You plan o buy 10,000 barrels of oil in six monhs and you wish o eliminae he price risk. If you ake he buy-side of a forward/fuures

More information

The performance of popular stochastic volatility option pricing models during the Subprime crisis

The performance of popular stochastic volatility option pricing models during the Subprime crisis The performance of popular sochasic volailiy opion pricing models during he Subprime crisis Thibau Moyaer 1 Mikael Peijean 2 Absrac We assess he performance of he Heson (1993), Baes (1996), and Heson and

More information

Modelling and Forecasting Volatility of Gold Price with Other Precious Metals Prices by Univariate GARCH Models

Modelling and Forecasting Volatility of Gold Price with Other Precious Metals Prices by Univariate GARCH Models Deparmen of Saisics Maser's Thesis Modelling and Forecasing Volailiy of Gold Price wih Oher Precious Meals Prices by Univariae GARCH Models Yuchen Du 1 Supervisor: Lars Forsberg 1 Yuchen.Du.84@suden.uu.se

More information

A Note on Using the Svensson procedure to estimate the risk free rate in corporate valuation

A Note on Using the Svensson procedure to estimate the risk free rate in corporate valuation A Noe on Using he Svensson procedure o esimae he risk free rae in corporae valuaion By Sven Arnold, Alexander Lahmann and Bernhard Schwezler Ocober 2011 1. The risk free ineres rae in corporae valuaion

More information

The Forecasting Power of the Volatility Index in Emerging Markets: Evidence from the Taiwan Stock Market

The Forecasting Power of the Volatility Index in Emerging Markets: Evidence from the Taiwan Stock Market The Forecasing Power of he Volailiy Index in Emerging Markes: Evidence from he Taiwan Sock Marke Ming Jing Yang Deparmen and Graduae Insiue of Finance, Feng Chia Universiy 100 Wenhwa Road, Seawen, Taichung

More information

INTEREST RATE FUTURES AND THEIR OPTIONS: SOME PRICING APPROACHES

INTEREST RATE FUTURES AND THEIR OPTIONS: SOME PRICING APPROACHES INTEREST RATE FUTURES AND THEIR OPTIONS: SOME PRICING APPROACHES OPENGAMMA QUANTITATIVE RESEARCH Absrac. Exchange-raded ineres rae fuures and heir opions are described. The fuure opions include hose paying

More information

Why Did the Demand for Cash Decrease Recently in Korea?

Why Did the Demand for Cash Decrease Recently in Korea? Why Did he Demand for Cash Decrease Recenly in Korea? Byoung Hark Yoo Bank of Korea 26. 5 Absrac We explores why cash demand have decreased recenly in Korea. The raio of cash o consumpion fell o 4.7% in

More information

Individual Health Insurance April 30, 2008 Pages 167-170

Individual Health Insurance April 30, 2008 Pages 167-170 Individual Healh Insurance April 30, 2008 Pages 167-170 We have received feedback ha his secion of he e is confusing because some of he defined noaion is inconsisen wih comparable life insurance reserve

More information

The naive method discussed in Lecture 1 uses the most recent observations to forecast future values. That is, Y ˆ t + 1

The naive method discussed in Lecture 1 uses the most recent observations to forecast future values. That is, Y ˆ t + 1 Business Condiions & Forecasing Exponenial Smoohing LECTURE 2 MOVING AVERAGES AND EXPONENTIAL SMOOTHING OVERVIEW This lecure inroduces ime-series smoohing forecasing mehods. Various models are discussed,

More information

A COMPARISON OF FORECASTING MODELS FOR ASEAN EQUITY MARKETS

A COMPARISON OF FORECASTING MODELS FOR ASEAN EQUITY MARKETS Sunway Academic Journal, 1 1 (005) A COMPARISON OF FORECASTING MODELS FOR ASEAN EQUITY MARKETS WONG YOKE CHEN a Sunway Universiy College KOK KIM LIAN b Universiy of Malaya ABSTRACT This paper compares

More information

Term Structure of Prices of Asian Options

Term Structure of Prices of Asian Options Term Srucure of Prices of Asian Opions Jirô Akahori, Tsuomu Mikami, Kenji Yasuomi and Teruo Yokoa Dep. of Mahemaical Sciences, Risumeikan Universiy 1-1-1 Nojihigashi, Kusasu, Shiga 525-8577, Japan E-mail:

More information

Intraday S&P 500 Index Predictability and Options Trading Profitability

Intraday S&P 500 Index Predictability and Options Trading Profitability Inraday S&P 500 Index Predicabiliy and Opions Trading Profiabiliy Kian Guan Lim, Ying Chen, and Nelson K.L. Yap Revised Augus 2015 Absrac In his paper we sudy he inraday dynamics of E-mini S&P 500 index

More information

THE PERFORMANCE OF OPTION PRICING MODELS ON HEDGING EXOTIC OPTIONS

THE PERFORMANCE OF OPTION PRICING MODELS ON HEDGING EXOTIC OPTIONS HE PERFORMANE OF OPION PRIING MODEL ON HEDGING EXOI OPION Firs Draf: May 5 003 his Version Oc. 30 003 ommens are welcome Absrac his paper examines he empirical performance of various opion pricing models

More information

Machine Learning in Pairs Trading Strategies

Machine Learning in Pairs Trading Strategies Machine Learning in Pairs Trading Sraegies Yuxing Chen (Joseph) Deparmen of Saisics Sanford Universiy Email: osephc5@sanford.edu Weiluo Ren (David) Deparmen of Mahemaics Sanford Universiy Email: weiluo@sanford.edu

More information

Predicting Implied Volatility in the Commodity Futures Options Markets

Predicting Implied Volatility in the Commodity Futures Options Markets Predicing Implied Volailiy in he Commodiy Fuures Opions Markes By Sephen Ferris* Deparmen of Finance College of Business Universiy of Missouri - Columbia Columbia, MO 65211 Phone: 573-882-9905 Email: ferris@missouri.edu

More information

Hotel Room Demand Forecasting via Observed Reservation Information

Hotel Room Demand Forecasting via Observed Reservation Information Proceedings of he Asia Pacific Indusrial Engineering & Managemen Sysems Conference 0 V. Kachivichyanuul, H.T. Luong, and R. Piaaso Eds. Hoel Room Demand Forecasing via Observed Reservaion Informaion aragain

More information

Modeling VIX Futures and Pricing VIX Options in the Jump Diusion Modeling

Modeling VIX Futures and Pricing VIX Options in the Jump Diusion Modeling Modeling VIX Fuures and Pricing VIX Opions in he Jump Diusion Modeling Faemeh Aramian Maseruppsas i maemaisk saisik Maser hesis in Mahemaical Saisics Maseruppsas 2014:2 Maemaisk saisik April 2014 www.mah.su.se

More information

Stock Trading with Recurrent Reinforcement Learning (RRL) CS229 Application Project Gabriel Molina, SUID 5055783

Stock Trading with Recurrent Reinforcement Learning (RRL) CS229 Application Project Gabriel Molina, SUID 5055783 Sock raing wih Recurren Reinforcemen Learning (RRL) CS9 Applicaion Projec Gabriel Molina, SUID 555783 I. INRODUCION One relaively new approach o financial raing is o use machine learning algorihms o preic

More information

The Economic Value of Volatility Timing Using a Range-based Volatility Model

The Economic Value of Volatility Timing Using a Range-based Volatility Model The Economic Value of Volailiy Timing Using a Range-based Volailiy Model Ray Yeuien Chou * Insiue of Economics, Academia Sinica & Insiue of Business Managemen, Naional Chiao Tung Universiy Nahan Liu Deparmen

More information

A Note on the Impact of Options on Stock Return Volatility. Nicolas P.B. Bollen

A Note on the Impact of Options on Stock Return Volatility. Nicolas P.B. Bollen A Noe on he Impac of Opions on Sock Reurn Volailiy Nicolas P.B. Bollen ABSTRACT This paper measures he impac of opion inroducions on he reurn variance of underlying socks. Pas research generally finds

More information

Nikkei Stock Average Volatility Index Real-time Version Index Guidebook

Nikkei Stock Average Volatility Index Real-time Version Index Guidebook Nikkei Sock Average Volailiy Index Real-ime Version Index Guidebook Nikkei Inc. Wih he modificaion of he mehodology of he Nikkei Sock Average Volailiy Index as Nikkei Inc. (Nikkei) sars calculaing and

More information

Market Liquidity and the Impacts of the Computerized Trading System: Evidence from the Stock Exchange of Thailand

Market Liquidity and the Impacts of the Computerized Trading System: Evidence from the Stock Exchange of Thailand 36 Invesmen Managemen and Financial Innovaions, 4/4 Marke Liquidiy and he Impacs of he Compuerized Trading Sysem: Evidence from he Sock Exchange of Thailand Sorasar Sukcharoensin 1, Pariyada Srisopisawa,

More information

I. Basic Concepts (Ch. 1-4)

I. Basic Concepts (Ch. 1-4) (Ch. 1-4) A. Real vs. Financial Asses (Ch 1.2) Real asses (buildings, machinery, ec.) appear on he asse side of he balance shee. Financial asses (bonds, socks) appear on boh sides of he balance shee. Creaing

More information

The predictive power of volatility models: evidence from the ETF market

The predictive power of volatility models: evidence from the ETF market Invesmen Managemen and Financial Innovaions, Volume, Issue, 4 Chang-Wen Duan (Taiwan), Jung-Chu Lin (Taiwan) The predicive power of volailiy models: evidence from he ETF marke Absrac This sudy uses exchange-raded

More information

Measuring the Downside Risk of the Exchange-Traded Funds: Do the Volatility Estimators Matter?

Measuring the Downside Risk of the Exchange-Traded Funds: Do the Volatility Estimators Matter? Proceedings of he Firs European Academic Research Conference on Global Business, Economics, Finance and Social Sciences (EAR5Ialy Conference) ISBN: 978--6345-028-6 Milan-Ialy, June 30-July -2, 205, Paper

More information

Measuring macroeconomic volatility Applications to export revenue data, 1970-2005

Measuring macroeconomic volatility Applications to export revenue data, 1970-2005 FONDATION POUR LES ETUDES ET RERS LE DEVELOPPEMENT INTERNATIONAL Measuring macroeconomic volailiy Applicaions o expor revenue daa, 1970-005 by Joël Cariolle Policy brief no. 47 March 01 The FERDI is a

More information

Does Option Trading Have a Pervasive Impact on Underlying Stock Prices? *

Does Option Trading Have a Pervasive Impact on Underlying Stock Prices? * Does Opion Trading Have a Pervasive Impac on Underlying Sock Prices? * Neil D. Pearson Universiy of Illinois a Urbana-Champaign Allen M. Poeshman Universiy of Illinois a Urbana-Champaign Joshua Whie Universiy

More information

Option Put-Call Parity Relations When the Underlying Security Pays Dividends

Option Put-Call Parity Relations When the Underlying Security Pays Dividends Inernaional Journal of Business and conomics, 26, Vol. 5, No. 3, 225-23 Opion Pu-all Pariy Relaions When he Underlying Securiy Pays Dividends Weiyu Guo Deparmen of Finance, Universiy of Nebraska Omaha,

More information

Risk-Adjusted, Ex Ante, Optimal, Technical Trading Rules in Equity Markets. Christopher J. Neely

Risk-Adjusted, Ex Ante, Optimal, Technical Trading Rules in Equity Markets. Christopher J. Neely WORKING PAPER SERIES Risk-Adjused, Ex Ane, Opimal, Technical Trading Rules in Equiy Markes Chrisopher J. Neely Working Paper 999-05D hp://research.slouisfed.org/wp/999/999-05.pdf Revised Augus 200 FEDERAL

More information

THE IMPACT OF CUBES ON THE MARKET QUALITY OF NASDAQ 100 INDEX FUTURES

THE IMPACT OF CUBES ON THE MARKET QUALITY OF NASDAQ 100 INDEX FUTURES Invesmen Managemen and Financial Innovaions, Volume 3, Issue 3, 2006 117 THE IMPACT OF CUBES ON THE MARKET QUALITY OF NASDAQ 100 INDEX FUTURES Seyfein Unal, M. Mesu Kayali, Cuney Koyuncu Absrac Using Hasbrouck

More information

LIFE INSURANCE WITH STOCHASTIC INTEREST RATE. L. Noviyanti a, M. Syamsuddin b

LIFE INSURANCE WITH STOCHASTIC INTEREST RATE. L. Noviyanti a, M. Syamsuddin b LIFE ISURACE WITH STOCHASTIC ITEREST RATE L. oviyani a, M. Syamsuddin b a Deparmen of Saisics, Universias Padjadjaran, Bandung, Indonesia b Deparmen of Mahemaics, Insiu Teknologi Bandung, Indonesia Absrac.

More information

4. International Parity Conditions

4. International Parity Conditions 4. Inernaional ariy ondiions 4.1 urchasing ower ariy he urchasing ower ariy ( heory is one of he early heories of exchange rae deerminaion. his heory is based on he concep ha he demand for a counry's currency

More information

Contrarian insider trading and earnings management around seasoned equity offerings; SEOs

Contrarian insider trading and earnings management around seasoned equity offerings; SEOs Journal of Finance and Accounancy Conrarian insider rading and earnings managemen around seasoned equiy offerings; SEOs ABSTRACT Lorea Baryeh Towson Universiy This sudy aemps o resolve he differences in

More information

Usefulness of the Forward Curve in Forecasting Oil Prices

Usefulness of the Forward Curve in Forecasting Oil Prices Usefulness of he Forward Curve in Forecasing Oil Prices Akira Yanagisawa Leader Energy Demand, Supply and Forecas Analysis Group The Energy Daa and Modelling Cener Summary When people analyse oil prices,

More information

Options and Volatility

Options and Volatility Opions and Volailiy Peer A. Abken and Saika Nandi Abken and Nandi are senior economiss in he financial secion of he Alana Fed s research deparmen. V olailiy is a measure of he dispersion of an asse price

More information

MACROECONOMIC FORECASTS AT THE MOF A LOOK INTO THE REAR VIEW MIRROR

MACROECONOMIC FORECASTS AT THE MOF A LOOK INTO THE REAR VIEW MIRROR MACROECONOMIC FORECASTS AT THE MOF A LOOK INTO THE REAR VIEW MIRROR The firs experimenal publicaion, which summarised pas and expeced fuure developmen of basic economic indicaors, was published by he Minisry

More information

ARCH 2013.1 Proceedings

ARCH 2013.1 Proceedings Aricle from: ARCH 213.1 Proceedings Augus 1-4, 212 Ghislain Leveille, Emmanuel Hamel A renewal model for medical malpracice Ghislain Léveillé École d acuaria Universié Laval, Québec, Canada 47h ARC Conference

More information

PROFIT TEST MODELLING IN LIFE ASSURANCE USING SPREADSHEETS PART ONE

PROFIT TEST MODELLING IN LIFE ASSURANCE USING SPREADSHEETS PART ONE Profi Tes Modelling in Life Assurance Using Spreadshees PROFIT TEST MODELLING IN LIFE ASSURANCE USING SPREADSHEETS PART ONE Erik Alm Peer Millingon 2004 Profi Tes Modelling in Life Assurance Using Spreadshees

More information

Demand and Price Forecasting Models for Strategic and Planning Decisions in a Supply Chain

Demand and Price Forecasting Models for Strategic and Planning Decisions in a Supply Chain Proc. Schl. ITE Tokai Univ. vol.3,no,,pp.37-4 Vol.,No.,,pp. - Paper Demand and Price Forecasing Models for Sraegic and Planning Decisions in a Supply Chain by Vichuda WATTANARAT *, Phounsakda PHIMPHAVONG

More information

Chapter 7. Response of First-Order RL and RC Circuits

Chapter 7. Response of First-Order RL and RC Circuits Chaper 7. esponse of Firs-Order L and C Circuis 7.1. The Naural esponse of an L Circui 7.2. The Naural esponse of an C Circui 7.3. The ep esponse of L and C Circuis 7.4. A General oluion for ep and Naural

More information

Evolutionary building of stock trading experts in real-time systems

Evolutionary building of stock trading experts in real-time systems Evoluionary building of sock rading expers in real-ime sysems Jerzy J. Korczak Universié Louis Paseur Srasbourg, France Email: jjk@dp-info.u-srasbg.fr Absrac: This paper addresses he problem of consrucing

More information

Algorithmic trading strategy, based on GARCH (1, 1) volatility and volume weighted average price of asset

Algorithmic trading strategy, based on GARCH (1, 1) volatility and volume weighted average price of asset IOSR Journal of Business and Managemen (IOSR-JBM) ISSN: 78-87X. Volume, Issue (Sep-Oc. ), PP 3-35 Algorihmic rading sraegy, based on GARCH (, ) volailiy and volume weighed average price of asse Simranji

More information

Market Timing & Trading Strategies using Asset Rotation

Market Timing & Trading Strategies using Asset Rotation Marke Timing & Trading Sraegies using Asse Roaion Panagiois Schizas * and Dimirios D. Thomakos Deparmen of Economics Universiy of Peloponnese 22 00 Greece 2/6/200 Absrac We presen empirical resuls on he

More information

Does Option Trading Have a Pervasive Impact on Underlying Stock Prices? *

Does Option Trading Have a Pervasive Impact on Underlying Stock Prices? * Does Opion Trading Have a Pervasive Impac on Underlying Soc Prices? * Neil D. Pearson Universiy of Illinois a Urbana-Champaign Allen M. Poeshman Universiy of Illinois a Urbana-Champaign Joshua Whie Universiy

More information

THE FIRM'S INVESTMENT DECISION UNDER CERTAINTY: CAPITAL BUDGETING AND RANKING OF NEW INVESTMENT PROJECTS

THE FIRM'S INVESTMENT DECISION UNDER CERTAINTY: CAPITAL BUDGETING AND RANKING OF NEW INVESTMENT PROJECTS VII. THE FIRM'S INVESTMENT DECISION UNDER CERTAINTY: CAPITAL BUDGETING AND RANKING OF NEW INVESTMENT PROJECTS The mos imporan decisions for a firm's managemen are is invesmen decisions. While i is surely

More information

SURVEYING THE RELATIONSHIP BETWEEN STOCK MARKET MAKER AND LIQUIDITY IN TEHRAN STOCK EXCHANGE COMPANIES

SURVEYING THE RELATIONSHIP BETWEEN STOCK MARKET MAKER AND LIQUIDITY IN TEHRAN STOCK EXCHANGE COMPANIES Inernaional Journal of Accouning Research Vol., No. 7, 4 SURVEYING THE RELATIONSHIP BETWEEN STOCK MARKET MAKER AND LIQUIDITY IN TEHRAN STOCK EXCHANGE COMPANIES Mohammad Ebrahimi Erdi, Dr. Azim Aslani,

More information

DYNAMIC MODELS FOR VALUATION OF WRONGFUL DEATH PAYMENTS

DYNAMIC MODELS FOR VALUATION OF WRONGFUL DEATH PAYMENTS DYNAMIC MODELS FOR VALUATION OF WRONGFUL DEATH PAYMENTS Hong Mao, Shanghai Second Polyechnic Universiy Krzyszof M. Osaszewski, Illinois Sae Universiy Youyu Zhang, Fudan Universiy ABSTRACT Liigaion, exper

More information

expressed here and the approaches suggested are of the author and not necessarily of NSEIL.

expressed here and the approaches suggested are of the author and not necessarily of NSEIL. I. Inroducion Do Fuures and Opions rading increase sock marke volailiy Dr. Premalaa Shenbagaraman * In he las decade, many emerging and ransiion economies have sared inroducing derivaive conracs. As was

More information

Bid-ask Spread and Order Size in the Foreign Exchange Market: An Empirical Investigation

Bid-ask Spread and Order Size in the Foreign Exchange Market: An Empirical Investigation Bid-ask Spread and Order Size in he Foreign Exchange Marke: An Empirical Invesigaion Liang Ding* Deparmen of Economics, Macaleser College, 1600 Grand Avenue, S. Paul, MN55105, U.S.A. Shor Tile: Bid-ask

More information

Markit Excess Return Credit Indices Guide for price based indices

Markit Excess Return Credit Indices Guide for price based indices Marki Excess Reurn Credi Indices Guide for price based indices Sepember 2011 Marki Excess Reurn Credi Indices Guide for price based indices Conens Inroducion...3 Index Calculaion Mehodology...4 Semi-annual

More information

DEMAND FORECASTING MODELS

DEMAND FORECASTING MODELS DEMAND FORECASTING MODELS Conens E-2. ELECTRIC BILLED SALES AND CUSTOMER COUNTS Sysem-level Model Couny-level Model Easside King Couny-level Model E-6. ELECTRIC PEAK HOUR LOAD FORECASTING Sysem-level Forecas

More information

Duration and Convexity ( ) 20 = Bond B has a maturity of 5 years and also has a required rate of return of 10%. Its price is $613.

Duration and Convexity ( ) 20 = Bond B has a maturity of 5 years and also has a required rate of return of 10%. Its price is $613. Graduae School of Business Adminisraion Universiy of Virginia UVA-F-38 Duraion and Convexiy he price of a bond is a funcion of he promised paymens and he marke required rae of reurn. Since he promised

More information

The Greek financial crisis: growing imbalances and sovereign spreads. Heather D. Gibson, Stephan G. Hall and George S. Tavlas

The Greek financial crisis: growing imbalances and sovereign spreads. Heather D. Gibson, Stephan G. Hall and George S. Tavlas The Greek financial crisis: growing imbalances and sovereign spreads Heaher D. Gibson, Sephan G. Hall and George S. Tavlas The enry The enry of Greece ino he Eurozone in 2001 produced a dividend in he

More information

LEASING VERSUSBUYING

LEASING VERSUSBUYING LEASNG VERSUSBUYNG Conribued by James D. Blum and LeRoy D. Brooks Assisan Professors of Business Adminisraion Deparmen of Business Adminisraion Universiy of Delaware Newark, Delaware The auhors discuss

More information

DELTA-GAMMA-THETA HEDGING OF CRUDE OIL ASIAN OPTIONS

DELTA-GAMMA-THETA HEDGING OF CRUDE OIL ASIAN OPTIONS ACA UNIVERSIAIS AGRICULURAE E SILVICULURAE MENDELIANAE BRUNENSIS Volume 63 04 Number 6, 05 hp://dx.doi.org/0.8/acaun056306897 DELA-GAMMA-HEA HEDGING OF CRUDE OIL ASIAN OPIONS Juraj Hruška Deparmen of Finance,

More information

Modeling a distribution of mortgage credit losses Petr Gapko 1, Martin Šmíd 2

Modeling a distribution of mortgage credit losses Petr Gapko 1, Martin Šmíd 2 Modeling a disribuion of morgage credi losses Per Gapko 1, Marin Šmíd 2 1 Inroducion Absrac. One of he bigges risks arising from financial operaions is he risk of counerpary defaul, commonly known as a

More information

JCER DISCUSSION PAPER No.136

JCER DISCUSSION PAPER No.136 JCER DISCUSSION PAPER No.136 Belief changes and expecaion heerogeneiy in buy- and sell-side professionals in he Japanese sock marke Ryuichi Yamamoo and Hideaki Hiraa February 2012 公 益 社 団 法 人 日 本 経 済 研

More information

Pricing Futures and Futures Options with Basis Risk

Pricing Futures and Futures Options with Basis Risk Pricing uures and uures Opions wih Basis Risk Chou-Wen ang Assisan professor in he Deparmen of inancial Managemen Naional Kaohsiung irs niversiy of cience & Technology Taiwan Ting-Yi Wu PhD candidae in

More information

The impact of the trading systems development on bid-ask spreads

The impact of the trading systems development on bid-ask spreads Chun-An Li (Taiwan), Hung-Cheng Lai (Taiwan)* The impac of he rading sysems developmen on bid-ask spreads Absrac Following he closure, on 30 June 2005, of he open oucry sysem on he Singapore Exchange (SGX),

More information

The Real Business Cycle paradigm. The RBC model emphasizes supply (technology) disturbances as the main source of

The Real Business Cycle paradigm. The RBC model emphasizes supply (technology) disturbances as the main source of Prof. Harris Dellas Advanced Macroeconomics Winer 2001/01 The Real Business Cycle paradigm The RBC model emphasizes supply (echnology) disurbances as he main source of macroeconomic flucuaions in a world

More information

Return Calculation of U.S. Treasury Constant Maturity Indices

Return Calculation of U.S. Treasury Constant Maturity Indices Reurn Calculaion of US Treasur Consan Mauri Indices Morningsar Mehodolog Paper Sepeber 30 008 008 Morningsar Inc All righs reserved The inforaion in his docuen is he proper of Morningsar Inc Reproducion

More information

Estimating Time-Varying Equity Risk Premium The Japanese Stock Market 1980-2012

Estimating Time-Varying Equity Risk Premium The Japanese Stock Market 1980-2012 Norhfield Asia Research Seminar Hong Kong, November 19, 2013 Esimaing Time-Varying Equiy Risk Premium The Japanese Sock Marke 1980-2012 Ibboson Associaes Japan Presiden Kasunari Yamaguchi, PhD/CFA/CMA

More information

The Relationship between Trading Volume, Returns and Volatility: Evidence from the Greek Futures Markets CHRISTOS FLOROS. Abstract

The Relationship between Trading Volume, Returns and Volatility: Evidence from the Greek Futures Markets CHRISTOS FLOROS. Abstract The elaionship beween Trading Volume, eurns and Volailiy: Evidence from he Greek Fuures Markes CHISTOS FLOOS Deparmen of Economics, Universiy of Porsmouh, Locksway oad, Porsmouh, PO4 8JF, UK. E-Mail: Chrisos.Floros@por.ac.uk,

More information

Description of the CBOE S&P 500 BuyWrite Index (BXM SM )

Description of the CBOE S&P 500 BuyWrite Index (BXM SM ) Descripion of he CBOE S&P 500 BuyWrie Index (BXM SM ) Inroducion. The CBOE S&P 500 BuyWrie Index (BXM) is a benchmark index designed o rack he performance of a hypoheical buy-wrie sraegy on he S&P 500

More information

Florida State University Libraries

Florida State University Libraries Florida Sae Universiy Libraries Elecronic Theses, Treaises and Disseraions The Graduae School 2008 Two Essays on he Predicive Abiliy of Implied Volailiy Consanine Diavaopoulos Follow his and addiional

More information

Understanding the Profit and Loss Distribution of Trading Algorithms

Understanding the Profit and Loss Distribution of Trading Algorithms Undersanding he Profi and Loss Disribuion of Trading Algorihms Rober Kissell Vice Presiden, JPMorgan Rober.Kissell@JPMChase.com Robero Malamu, PhD Vice Presiden, JPMorgan Robero.Malamu@JPMChase.com February

More information

Forecasting Daily Supermarket Sales Using Exponentially Weighted Quantile Regression

Forecasting Daily Supermarket Sales Using Exponentially Weighted Quantile Regression Forecasing Daily Supermarke Sales Using Exponenially Weighed Quanile Regression James W. Taylor Saïd Business School Universiy of Oxford European Journal of Operaional Research, 2007, Vol. 178, pp. 154-167.

More information

The effect of demand distributions on the performance of inventory policies

The effect of demand distributions on the performance of inventory policies DOI 10.2195/LJ_Ref_Kuhn_en_200907 The effec of demand disribuions on he performance of invenory policies SONJA KUHNT & WIEBKE SIEBEN FAKULTÄT STATISTIK TECHNISCHE UNIVERSITÄT DORTMUND 44221 DORTMUND Invenory

More information

This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore.

This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore. This documen is downloaded from DR-NTU, Nanyang Technological Universiy Library, Singapore. Tile A Bayesian mulivariae risk-neural mehod for pricing reverse morgages Auhor(s) Kogure, Asuyuki; Li, Jackie;

More information

The Maturity Structure of Volatility and Trading Activity in the KOSPI200 Futures Market

The Maturity Structure of Volatility and Trading Activity in the KOSPI200 Futures Market The Mauriy Srucure of Volailiy and Trading Aciviy in he KOSPI200 Fuures Marke Jong In Yoon Division of Business and Commerce Baekseok Univerisy Republic of Korea Email: jiyoon@bu.ac.kr Received Sepember

More information

Technical Description of S&P 500 Buy-Write Monthly Index Composition

Technical Description of S&P 500 Buy-Write Monthly Index Composition Technical Descripion of S&P 500 Buy-Wrie Monhly Index Composiion The S&P 500 Buy-Wrie Monhly (BWM) index is a oal reurn index based on wriing he nearby a-he-money S&P 500 call opion agains he S&P 500 index

More information

A DCC Analysis of Two Stock Market Returns Volatility with an Oil Price Factor: An Evidence Study of Singapore and Thailand s Stock Markets

A DCC Analysis of Two Stock Market Returns Volatility with an Oil Price Factor: An Evidence Study of Singapore and Thailand s Stock Markets Journal of Convergence Informaion Technology Volume 4, Number 1, March 9 A DCC Analysis of Two Sock Marke Reurns Volailiy wih an Oil Price Facor: An Evidence Sudy of Singapore and Thailand s Sock Markes

More information

Time Series Properties of Liquidation Discount

Time Series Properties of Liquidation Discount 20h Inernaional Congress on Modelling and Simulaion, Adelaide, Ausralia, 1 6 December 2013 www.mssanz.org.au/modsim2013 Time Series Properies of Liquidaion Discoun F. Chan a, J. Gould a, R. Singh a and

More information

Ownership structure, liquidity, and trade informativeness

Ownership structure, liquidity, and trade informativeness Journal of Finance and Accounancy ABSTRACT Ownership srucure, liquidiy, and rade informaiveness Dan Zhou California Sae Universiy a Bakersfield In his paper, we examine he relaionship beween ownership

More information

The Kinetics of the Stock Markets

The Kinetics of the Stock Markets Asia Pacific Managemen Review (00) 7(1), 1-4 The Kineics of he Sock Markes Hsinan Hsu * and Bin-Juin Lin ** (received July 001; revision received Ocober 001;acceped November 001) This paper applies he

More information

Finance, production, manufacturing and logistics: VaR models for dynamic Impawn rate of steel in inventory financing

Finance, production, manufacturing and logistics: VaR models for dynamic Impawn rate of steel in inventory financing E3 Journal of Business Managemen and Economics Vol. 3(3). pp. 7-37, March, 0 Available online hp://www.e3journals.org ISSN 4-748 E3 Journals 0 Full lengh research paper Finance, producion, manufacuring

More information

Predicting Stock Volatility Using After-Hours Information: Evidence. from the NASDAQ Actively Traded Stocks

Predicting Stock Volatility Using After-Hours Information: Evidence. from the NASDAQ Actively Traded Stocks Predicing Sock Volailiy Using Afer-Hours Informaion: Evidence from he NASDAQ Acively Traded Socks Chun-Hung Chen 1 Office of he Comproller of he Currency Wei-Choun Yu 2 Winona Sae Universiy Eric Zivo 3

More information

Load Prediction Using Hybrid Model for Computational Grid

Load Prediction Using Hybrid Model for Computational Grid Load Predicion Using Hybrid Model for Compuaional Grid Yongwei Wu, Yulai Yuan, Guangwen Yang 3, Weimin Zheng 4 Deparmen of Compuer Science and Technology, Tsinghua Universiy, Beijing 00084, China, 3, 4

More information

PARAMETRIC EXTREME VAR WITH LONG-RUN VOLATILITY: COMPARING OIL AND GAS COMPANIES OF BRAZIL AND USA.

PARAMETRIC EXTREME VAR WITH LONG-RUN VOLATILITY: COMPARING OIL AND GAS COMPANIES OF BRAZIL AND USA. Perspecivas Globais para a Engenharia de Produção Foraleza, CE, Brasil, 13 a 16 de ouubro de 015. PARAMETRIC EXTREME VAR WITH LONG-RUN VOLATILITY: COMPARING OIL AND GAS COMPANIES OF BRAZIL AND USA. RICARDO

More information

Improving Technical Trading Systems By Using A New MATLAB based Genetic Algorithm Procedure

Improving Technical Trading Systems By Using A New MATLAB based Genetic Algorithm Procedure 4h WSEAS In. Conf. on NON-LINEAR ANALYSIS, NON-LINEAR SYSTEMS and CHAOS, Sofia, Bulgaria, Ocober 27-29, 2005 (pp29-34) Improving Technical Trading Sysems By Using A New MATLAB based Geneic Algorihm Procedure

More information

Mathematics in Pharmacokinetics What and Why (A second attempt to make it clearer)

Mathematics in Pharmacokinetics What and Why (A second attempt to make it clearer) Mahemaics in Pharmacokineics Wha and Why (A second aemp o make i clearer) We have used equaions for concenraion () as a funcion of ime (). We will coninue o use hese equaions since he plasma concenraions

More information

Analysis of Calendar Effects: Day-of-the-Week Effect on the Stock Exchange of Thailand (SET)

Analysis of Calendar Effects: Day-of-the-Week Effect on the Stock Exchange of Thailand (SET) 200-023X Analysis of Calendar Effecs: Day-of-he-Week Effec on he Sock Echange of Thailand () Phaisarn Suheebanjard and Wichian Premchaiswadi Absrac According o he Efficien Marke Hypohesis (EMH), a sock

More information

Risk Modelling of Collateralised Lending

Risk Modelling of Collateralised Lending Risk Modelling of Collaeralised Lending Dae: 4-11-2008 Number: 8/18 Inroducion This noe explains how i is possible o handle collaeralised lending wihin Risk Conroller. The approach draws on he faciliies

More information

Forecasting Sales: A Model and Some Evidence from the Retail Industry. Russell Lundholm Sarah McVay Taylor Randall

Forecasting Sales: A Model and Some Evidence from the Retail Industry. Russell Lundholm Sarah McVay Taylor Randall Forecasing Sales: A odel and Some Evidence from he eail Indusry ussell Lundholm Sarah cvay aylor andall Why forecas financial saemens? Seems obvious, bu wo common criicisms: Who cares, can we can look

More information

Stock Price Prediction Using the ARIMA Model

Stock Price Prediction Using the ARIMA Model 2014 UKSim-AMSS 16h Inernaional Conference on Compuer Modelling and Simulaion Sock Price Predicion Using he ARIMA Model 1 Ayodele A. Adebiyi., 2 Aderemi O. Adewumi 1,2 School of Mahemaic, Saisics & Compuer

More information

SHB Gas Oil. Index Rules v1.3 Version as of 1 January 2013

SHB Gas Oil. Index Rules v1.3 Version as of 1 January 2013 SHB Gas Oil Index Rules v1.3 Version as of 1 January 2013 1. Index Descripions The SHB Gasoil index (he Index ) measures he reurn from changes in he price of fuures conracs, which are rolled on a regular

More information

Part 1: White Noise and Moving Average Models

Part 1: White Noise and Moving Average Models Chaper 3: Forecasing From Time Series Models Par 1: Whie Noise and Moving Average Models Saionariy In his chaper, we sudy models for saionary ime series. A ime series is saionary if is underlying saisical

More information

Does Skewness Matter? Evidence from the Index Options Market

Does Skewness Matter? Evidence from the Index Options Market Does Skewness Maer? Evidence from he Index Opions Marke Madhu Kalimipalli School of Business and Economics Wilfrid Laurier Universiy Waerloo, Onario, Canada NL 3C5 Tel: 59-884-070 (ex. 87) mkalimip@wlu.ca

More information