Batteries in general: Batteries. Anode/cathode in rechargeable batteries. Rechargeable batteries

Size: px
Start display at page:

Download "Batteries in general: Batteries. Anode/cathode in rechargeable batteries. Rechargeable batteries"

Transcription

1 Bttris i grl: Bttris How -bsd bttris work A rducig (gtiv) lctrod A oxidizig (positiv) lctrod A - th ioic coductor Rchrgbl bttris Rctios ust b rvrsibl Not too y irrvrsibl sid rctios Aod/cthod i rchrgbl bttris Th lctrods i rchrgbl bttris will chg btw big od d cthod dpdig o if th bttry is chrgd or dischrgd Th trs positiv d gtiv lctrod y b usd istd 1

2 Elctrods Elctrods Ngtiv lctrod I bttry, th positiv lctrod withdrws Positiv lctros fro th gtiv. lctrod (ii this cs fro Ngtiv lctrod I bttry, th positiv lctrod withdrws Positiv lctros fro th gtiv. lctrod I this cs fro Elctro trsport Elctro trsport + - Ngtiv lctrod Th lctros c ot ov Positiv through th, lctrod oly through th xtrl circuit - Ngtiv lctrod Th lctros c ot ov Positiv through th, lctrod oly through th xtrl circuit 2

3 Elctro trsport Elctro trsport - - Ngtiv lctrod Th lctros c ot ov Positiv through th, lctrod oly through th xtrl circuit Ngtiv lctrod Th lctros c ot ov Positiv through th, lctrod oly through th xtrl circuit Elctro trsport - Elctro trsport - Ngtiv lctrod Th lctros c ot ov Positiv through th, lctrod oly through th xtrl circuit Ngtiv lctrod Th lctros c ot ov Positiv through th, lctrod oly through th xtrl circuit 3

4 Elctro trsport Io trsport Ngtiv lctrod - Th lctros c ot ov Positiv through th, lctrod oly through th xtrl circuit If ios do ot follow fro - th gtiv to th positiv Ngtiv Positiv lctrod, th cll rctio lctrod lctrod will stop. Io trsport Two kids of chrg trsport Ngtiv lctrod If ios do ot follow fro - th gtiv to th positiv Positiv lctrod, th cll rctio Ngtiv Positiv Th trs positiv d lctrod will stop. lctrod lctrod gtiv lctrod y b isldig. (Frdy) 4

5 Two kids of chrg trsport Two kids of chrg trsport Ngtiv lctrod To bgi with, both Positiv lctrods r lctriclly lctrod utrl. (Thy hv qul outs of positiv d gtiv prticls) Ngtiv lctrod Th tr positiv lctrod s tht this lctrod Positiv cotis sothig tht lctrod ttrcts lctros. Two such xpls r Cu 2+ r Co 4+ Two kids of chrg trsport Two kids of chrg trsport Ngtiv lctrod Wh lctros r pulld - ovr, th lctrods will b Positiv chrgd i wy tht stops lctrod y furthr rctio Ngtiv lctrod (O y sy tht th - positiv lctrod gts Positiv gtiv chrg, d th lctrod gtiv lctrod gts positiv chrg) 5

6 Two kids of chrg trsport Two kids of chrg trsport Ngtiv lctrod - Th io trsport qulizs Positiv th chrg d llows th lctrod rctio to go o. Ngtiv lctrod - Th io trsport qulizs Positiv th chrg d llows th lctrod rctio to go o. Ngtiv lctrod Two kids of chrg trsport Positiv lctrod s i grl hv - low coductivity, d should b thi, with lrg surfc (ot log d rrow) -bsd bttris Oxidtio (gtiv lctrod): + - Rductio (positiv lctrod): Cosists of copouds cotiig trsitio tls with or th o oxidtio stt. E.g. coblt: Co Co 3+ 6

7 Uchrgd bttry Chrgig - Ngtiv lctrod d of grphit Positiv lctrod d of CoO2 + - CoO2 cotis d Co 3+ ios Wh th bttry is chrgd, lctros d -ios r «pupd» ovr to th grphit lctrod d ks -tl Siultously, Co 3+ is oxidizd to Co 4+ Chrgig - Chrgig Wh th bttry is chrgd, lctros d -ios r «pupd» ovr to th grphit lctrod d ks -tl Siultously, Co 3+ is oxidizd to Co 4+ Wh th bttry is chrgd, lctros d -ios r «pupd» ovr to th grphit lctrod d ks -tl Siultously, Co 3+ is oxidizd to Co 4+ 7

8 Chrgig - Dischrg Wh th bttry is chrgd, lctros d -ios r «pupd» ovr to th grphit lctrod d ks -tl Siultously, Co 3+ is oxidizd to Co 4+ Co 4+ is strog oxidtio gt (ttrcts lctros powrfully), d is sily oxidizd. This givs -coblt bttris high voltg (Norlly bout 3,7 V) Dischrg - Dischrg / Chrg Co 4+ is strog oxidtio gt (withdrws lctros powrfully), d is sily oxidizd. This givs -coblt bttris high voltg (Norlly bout 3,7 V) Ths bttris c b chrgd d dischrgd y tis, d is sotis clld Rockig chir bttris 8

9 Dischrg / Chrg - Dischrg / Chrg Ths bttris c b chrgd d dischrgd y tis, d is sotis clld Rockig chir bttris Ths bttris c b chrgd d dischrgd y tis, d is sotis clld Rockig chir bttris Dischrg / Chrg - Dischrg / Chrg Ths bttris c b chrgd d dischrgd y tis, d is sotis clld Rockig chir bttris Ths bttris c b chrgd d dischrgd y tis, d is sotis clld Rockig chir bttris 9

10 Dischrg / Chrg - Dischrg / Chrg Ths bttris c b chrgd d dischrgd y tis, d is sotis clld Rockig chir bttris Ths bttris c b chrgd d dischrgd y tis, d is sotis clld Rockig chir bttris Dischrg / Chrg - Dischrg / Chrg Ths bttris c b chrgd d dischrgd y tis, d is sotis clld Rockig chir bttris Ths bttris c b chrgd d dischrgd y tis, d is sotis clld Rockig chir bttris 10

11 Dischrg / Chrg - Dischrg / Chrg Ths bttris c b chrgd d dischrgd y tis, d is sotis clld Rockig chir bttris Ths bttris c b chrgd d dischrgd y tis, d is sotis clld Rockig chir bttris Dischrg / Chrg - Dischrg / Chrg Ths bttris c b chrgd d dischrgd y tis, d is sotis clld Rockig chir bttris Ths bttris c b chrgd d dischrgd y tis, d is sotis clld Rockig chir bttris 11

12 Dischrg / Chrg - Dischrg / Chrg Ths bttris c b chrgd d dischrgd y tis, d is sotis clld Rockig chir bttris Ths bttris c b chrgd d dischrgd y tis, d is sotis clld Rockig chir bttris Dischrg / Chrg - Dischrg / Chrg Ths bttris c b chrgd d dischrgd y tis, d is sotis clld Rockig chir bttris Ths bttris c b chrgd d dischrgd y tis, d is sotis clld Rockig chir bttris 12

13 -bsd bttris Ngtiv lctrod Thir copots: tiu is vry rctiv (rducig gt), but wh solvd (itrcltd) i grphit, it c b usd sfly i bttris. Elctros d c sily ov ito d out fro th grphit lctrod Nt rctio: + - All bttris ust hv with good ioic coductivity, but o lctroic coductivity I old-fshiod bttris, this could b ppr oistd with slt solutio Sic rcts strogly with wtr, th s i -bsd bttris r ithr solid, or solutio of copoud i orgic solvt. Positiv lctrod Th positiv lctrod cotis trsitio tl bl to switch btw two oxidtio stts (Co,,F, Ni, V...) It ust b coductor, d hv th bility to solv (itrclt). CoO2 is coo lctrod tril with t rctio:

14 odr bttris r d i y shps d sizs Iprovig -bsd bttris Wht r th probls? f ti -bsd bttris oly lst for fw yrs bcus of: Irrvrsibl rctios durig chrgig d durig hvy dischrgig - d t high tprturs Prforc High powr c giv irrvrsibl dg liits th us i.g. lctric vhicls s should hv high coductc d rsist high tprturs 14

15 Rchrg ti supply High powr d tprturs giv irrvrsibl dg Rsultig i log rchrg ti Th worlds supply of is liitd Altrtivs r tstd (.g. K, g, Al og N) Dsig To chiv bttr proprtis, lctrods, s d bttry dsig ust b optiizd o trils y b usd to solv so of ths probls Itrcltio i grphit Grphit is crbo with lyrd structur I btw ths lyrs, thr is ough spc for.g. - or K-ios to ov i d out This is clld itrcltio, d is iportt ftur i bttry lctrods O to c b itrcltd for vry 6th crbo to: C C6 15

16 C C6 Itrcltio i lithiu coblt oxid thiu coblt oxid s forul is CoO2 ios r itrcltd btw lyrs of coblt oxid Fro bov Sid viw O O Co CoO2 ios btw lyrs of coblt oxid Itrcltio i lithiu coblt oxid High voltg y forc lctros d ios out fro this structur Siilrly, coblt ios r oxidizd fro Co 3+ to Co 4+ 16

17 thiu-bsd bttris Rpidly dvlopig tchology O of svrl proisig bttry tchologis 17

Some Useful Integrals of Exponential Functions

Some Useful Integrals of Exponential Functions prvious indx nxt Som Usful Intgrls of Exponntil Functions Michl Fowlr W v shown tht diffrntiting th xponntil function just multiplis it by th constnt in th xponnt, tht is to sy, d x x Intgrting th xponntil

More information

SHAPES AND SHAPE WORDS!

SHAPES AND SHAPE WORDS! 1 Pintbl Activity Pg 1 SAPES AND SAPE WORDS! (bst fo 1 o plys) Fo ch child (o pi of childn), you will nd: wo copis of pgs nd Cyons Scissos Glu stick 10 indx cds Colo nd Mk Shp Cds! Giv ch child o pi of

More information

MATH 181-Exponents and Radicals ( 8 )

MATH 181-Exponents and Radicals ( 8 ) Mth 8 S. Numkr MATH 8-Epots d Rdicls ( 8 ) Itgrl Epots & Frctiol Epots Epotil Fuctios Epotil Fuctios d Grphs I. Epotil Fuctios Th fuctio f ( ), whr is rl umr, 0, d, is clld th potil fuctio, s. Rquirig

More information

Higher. Exponentials and Logarithms 160

Higher. Exponentials and Logarithms 160 hsn uknt Highr Mthmtics UNIT UTCME Eponntils nd Logrithms Contnts Eponntils nd Logrithms 6 Eponntils 6 Logrithms 6 Lws of Logrithms 6 Eponntils nd Logrithms to th Bs 65 5 Eponntil nd Logrithmic Equtions

More information

Lecture 27. Rectangular Metal Waveguides

Lecture 27. Rectangular Metal Waveguides Lctu 7 Rctgul Mtl Wvguids I this lctu u will l: Rctgul tl wvguids T d TM guidd ds i ctgul tl wvguids C 303 Fll 006 Fh R Cll Uivsit Plll Plt Mtl Wvguids d 1 T Mds: Dispsi lti: ( ) si { 1,, d d d 1 TM Mds:

More information

We will begin this chapter with a quick refresher of what an exponent is.

We will begin this chapter with a quick refresher of what an exponent is. .1 Exoets We will egi this chter with quick refresher of wht exoet is. Recll: So, exoet is how we rereset reeted ultilictio. We wt to tke closer look t the exoet. We will egi with wht the roerties re for

More information

Chapter 3 Section 3 Lesson Additional Rules for Exponents

Chapter 3 Section 3 Lesson Additional Rules for Exponents Chpter Sectio Lesso Additiol Rules for Epoets Itroductio I this lesso we ll eie soe dditiol rules tht gover the behvior of epoets The rules should be eorized; they will be used ofte i the reiig chpters

More information

Graph Theory Definitions

Graph Theory Definitions Grph Thory Dfinitions A grph is pir of sts (V, E) whr V is finit st ll th st of vrtis n E is st of 2-lmnt susts of V, ll th st of gs. W viw th gs s st of onntions twn th nos. Hr is n xmpl of grph G: G

More information

Power Means Calculus Product Calculus, Harmonic Mean Calculus, and Quadratic Mean Calculus

Power Means Calculus Product Calculus, Harmonic Mean Calculus, and Quadratic Mean Calculus Gug Istitut Jourl, Volum 4, No 4, Novmbr 008 H. Vic Do Powr Ms Clculus Product Clculus, Hrmoic M Clculus, d Qudrtic M Clculus H. Vic Do vick@dc.com Mrch, 008 Gug Istitut Jourl, Volum 4, No 4, Novmbr 008

More information

NerveCenter Protocol and Perl Metrics. November 2014 NCSD-PPM-01

NerveCenter Protocol and Perl Metrics. November 2014 NCSD-PPM-01 rvcntr Procol nd Prl Mtrics ovbr 2014 CSD-PPM-01 Procol nd Prl Mtrics Strting in rvcntr 6.1 Bld28, th nccd cond lin utility supports gnrting trics for rvcntr Srvr s procol lyr nd Prl intrprtrs. Cling upon

More information

Problem Set 6 Solutions

Problem Set 6 Solutions 6.04/18.06J Mathmatics for Computr Scic March 15, 005 Srii Dvadas ad Eric Lhma Problm St 6 Solutios Du: Moday, March 8 at 9 PM Problm 1. Sammy th Shar is a fiacial srvic providr who offrs loas o th followig

More information

New Advanced Higher Mathematics: Formulae

New Advanced Higher Mathematics: Formulae Advcd High Mthmtics Nw Advcd High Mthmtics: Fomul G (G): Fomul you must mmois i od to pss Advcd High mths s thy ot o th fomul sht. Am (A): Ths fomul giv o th fomul sht. ut it will still usful fo you to

More information

Are you ready for the four potential costs of auto-enrolment?

Are you ready for the four potential costs of auto-enrolment? Ar you rdy for th four pottl costs of uto-rolmt? Wth your busss o th rod to uto-rolmt, t s mportt you udrstd wht t could cost you. Ad w do t just m moy, but lso tm, hssl d possbly v f. Hr r som of th currt

More information

THE EFFECT OF GROUND SETTLEMENTS ON THE AXIAL RESPONSE OF PILES: SOME CLOSED FORM SOLUTIONS CUED/D-SOILS/TR 341 (Aug 2005) By A. Klar and K.

THE EFFECT OF GROUND SETTLEMENTS ON THE AXIAL RESPONSE OF PILES: SOME CLOSED FORM SOLUTIONS CUED/D-SOILS/TR 341 (Aug 2005) By A. Klar and K. THE EFFECT OF GROUND SETTEMENTS ON THE AXIA RESPONSE OF PIES: SOME COSED FORM SOUTIONS CUED/D-SOIS/TR 4 Aug 5 By A. Klr d K. Sog Klr d Sog "Th Effct of Groud Displcmt o Axil Rspos of Pils: Som Closd Form

More information

4.10 How to make Standard Form (Big M Method) Artificial variables

4.10 How to make Standard Form (Big M Method) Artificial variables . Ho to k Stdrd For (ig M Mthod) i.t. Artifiil vribl E vribl Equlity if Ho olv? ut rtifiil vribl hould b ro i th optil olutio. . To-Ph Sipl Mthod Ph I LP i.t. N Ro *liit rtifiil vribl fro Ro Ph II LP Eliit

More information

Right Angle Trigonometry

Right Angle Trigonometry Righ gl Trigoomry I. si Fs d Dfiiios. Righ gl gl msurig 90. Srigh gl gl msurig 80. u gl gl msurig w 0 d 90 4. omplmry gls wo gls whos sum is 90 5. Supplmry gls wo gls whos sum is 80 6. Righ rigl rigl wih

More information

Batch Printing. Creating New Batch Print Jobs

Batch Printing. Creating New Batch Print Jobs Bth Printing Bth printing llows you to print svrl rports t on. You n print rports to printr or to PDF or PRN fil. First, though, you must st up th th print jo, n thn you must xut it. Follow th instrutions

More information

Chapter 3 Chemical Equations and Stoichiometry

Chapter 3 Chemical Equations and Stoichiometry Chptr Chmicl Equtions nd Stoichiomtry Homwork (This is VERY importnt chptr) Chptr 27, 29, 1, 9, 5, 7, 9, 55, 57, 65, 71, 75, 77, 81, 87, 91, 95, 99, 101, 111, 117, 121 1 2 Introduction Up until now w hv

More information

Enumerating labeled trees

Enumerating labeled trees Eumratig labld trs Dfiitio: A labld tr is a tr th vrtics of which ar assigd uiqu umbrs from to. W ca cout such trs for small valus of by had so as to cojctur a gral formula. Eumratig labld trs Dfiitio:

More information

maruti lifestyle Villa & Villa Apartment Location Map

maruti lifestyle Villa & Villa Apartment Location Map mruti lifstyl Vill & Vill Aprtmnt Loction Mp Th only projct in cntrl Indi to gt 6 str rting by Avinsh Hous, Mruti Businss Prk, G.E. Rod, Ripur 492001 (C.G.) Dsign Architct Phon : + 91-771-4033425, Fx :

More information

Functions. A is called domain of f, and B is called codomain of f. If f maps element a A to element b B, we write f (a) = b

Functions. A is called domain of f, and B is called codomain of f. If f maps element a A to element b B, we write f (a) = b Funtions CS311H: Disrt Mthmtis Funtions Instrutor: Işıl Dilli untion rom st to st ssins h lmnt o to xtly on lmnt o. is ll omin o, n is ll oomin o. I mps lmnt to lmnt, w writ () = I () =, is ll im o ; is

More information

Student Satisfaction Survey

Student Satisfaction Survey Stut Stiftio Survy REPORT Dprtt of Ititutiol Rrh KIMEP UNIVERSITY 2013 KEY MESSAGE Th rgulr Stut Stiftio Survy, urig th lvl of tut tiftio with thir xpri t KIMEP, w out urig Mrh 15 April 7. Th totl ubr

More information

Instruction: Solving Exponential Equations without Logarithms. This lecture uses a four-step process to solve exponential equations:

Instruction: Solving Exponential Equations without Logarithms. This lecture uses a four-step process to solve exponential equations: 49 Instuction: Solving Eponntil Equtions without Logithms This lctu uss fou-stp pocss to solv ponntil qutions: Isolt th bs. Wit both sids of th qution s ponntil pssions with lik bss. St th ponnts qul to

More information

Orthogonal Functions. Orthogonal Series Expansion. Orthonormal Functions. Page 1. Orthogonal Functions and Fourier Series. (x)dx = 0.

Orthogonal Functions. Orthogonal Series Expansion. Orthonormal Functions. Page 1. Orthogonal Functions and Fourier Series. (x)dx = 0. Orthogol Fuctios q Th ir roduct of two fuctios f d f o itrvl [, ] is th umr Orthogol Fuctios d Fourir Sris ( f, f ) f f dx. q Two fuctios f d f r sid to orthogol o itrvl [, ] if ( f, f ) f f dx. q A st

More information

Application Note: Cisco A S A - Ce r t if ica t e T o S S L V P N Con n e ct ion P r of il e Overview: T h i s a p p l i ca ti o n n o te e x p l a i n s h o w to co n f i g u r e th e A S A to a cco m

More information

II. Equipment. Magnetic compass, magnetic dip compass, Helmholtz coils, HP 6212 A power supply, Keithley model 169 multimeter

II. Equipment. Magnetic compass, magnetic dip compass, Helmholtz coils, HP 6212 A power supply, Keithley model 169 multimeter Magntic fild of th arth I. Objctiv: Masur th magntic fild of th arth II. Equipmnt. Magntic compass, magntic dip compass, Hlmholtz s, HP 6212 A powr supply, Kithly modl 169 multimtr III Introduction. IIIa.

More information

BASIC DEFINITIONS AND TERMINOLOGY OF SOILS

BASIC DEFINITIONS AND TERMINOLOGY OF SOILS 1 BASIC DEFINITIONS AND TERMINOLOGY OF SOILS Soil i a thr pha atrial hich coit of olid particl hich ak up th oil klto ad void hich ay b full of atr if th oil i aturatd, ay b full of air if th oil i dry,

More information

AC Circuits Three-Phase Circuits

AC Circuits Three-Phase Circuits AC Circuits Thr-Phs Circuits Contnts Wht is Thr-Phs Circuit? Blnc Thr-Phs oltgs Blnc Thr-Phs Connction Powr in Blncd Systm Unblncd Thr-Phs Systms Aliction Rsidntil Wiring Sinusoidl voltg sourcs A siml

More information

Question 3: How do you find the relative extrema of a function?

Question 3: How do you find the relative extrema of a function? ustion 3: How do you find th rlativ trma of a function? Th stratgy for tracking th sign of th drivativ is usful for mor than dtrmining whr a function is incrasing or dcrasing. It is also usful for locating

More information

THE "COST" OF ENVIRONMENTAL CONTROL WITHIN BUILDINGS

THE COST OF ENVIRONMENTAL CONTROL WITHIN BUILDINGS TH "COST" OF VIROT COTRO WITHI BIDIGS BIDIGS as illustrated are essential to shelter people, animals, processes and products. Internal conditions have also to be controlled for the comfort and health of

More information

Fundamentals of Tensor Analysis

Fundamentals of Tensor Analysis MCEN 503/ASEN 50 Chptr Fundmntls of Tnsor Anlysis Fll, 006 Fundmntls of Tnsor Anlysis Concpts of Sclr, Vctor, nd Tnsor Sclr α Vctor A physicl quntity tht cn compltly dscrid y rl numr. Exmpl: Tmprtur; Mss;

More information

B y R us se ll E ri c Wr ig ht, DV M. M as te r of S ci en ce I n V et er in ar y Me di ca l Sc ie nc es. A pp ro ve d:

B y R us se ll E ri c Wr ig ht, DV M. M as te r of S ci en ce I n V et er in ar y Me di ca l Sc ie nc es. A pp ro ve d: E ff ec ts o f El ec tr ic al ly -S ti mu la te d Si lv er -C oa te d Im pl an ts a nd B ac te ri al C on ta mi na ti on i n a Ca ni ne R ad iu s Fr ac tu re G ap M od el B y R us se ll E ri c Wr ig ht,

More information

EXPONENTS AND RADICALS

EXPONENTS AND RADICALS Expoets d Rdicls MODULE - EXPONENTS AND RADICALS We hve lert bout ultiplictio of two or ore rel ubers i the erlier lesso. You c very esily write the followig, d Thik of the situtio whe is to be ultiplied

More information

Exponential Growth and Decay; Modeling Data

Exponential Growth and Decay; Modeling Data Exponntial Growth and Dcay; Modling Data In this sction, w will study som of th applications of xponntial and logarithmic functions. Logarithms wr invntd by John Napir. Originally, thy wr usd to liminat

More information

Chapter 3. Compound Interest. Section 2 Compound and Continuous Compound Interest. Solution. Example

Chapter 3. Compound Interest. Section 2 Compound and Continuous Compound Interest. Solution. Example Chapter 3 Matheatics of Fiace Sectio 2 Copoud ad Cotiuous Copoud Iterest Copoud Iterest Ulike siple iterest, copoud iterest o a aout accuulates at a faster rate tha siple iterest. The basic idea is that

More information

Bipolar Junction Transistors (BJT) A Bipolar Transistor essentially consists of a pair of PN Junction Diodes that are joined back-to-back.

Bipolar Junction Transistors (BJT) A Bipolar Transistor essentially consists of a pair of PN Junction Diodes that are joined back-to-back. Biolar Jutio Trasistors (BJT) A Biolar Trasistor sstially osists of a air of PN Jutio Diods that ar joid ak-to-ak. 1 BJT oratio Built-i voltag Built-i voltag Forward olarity is alid to th lft diod. Positiv

More information

1.- L a m e j o r o p c ió n e s c l o na r e l d i s co ( s e e x p li c a r á d es p u é s ).

1.- L a m e j o r o p c ió n e s c l o na r e l d i s co ( s e e x p li c a r á d es p u é s ). PROCEDIMIENTO DE RECUPERACION Y COPIAS DE SEGURIDAD DEL CORTAFUEGOS LINUX P ar a p od e r re c u p e ra r nu e s t r o c o rt a f u e go s an t e un d es a s t r e ( r ot u r a d e l di s c o o d e l a

More information

Homework # 3. Chapter 38. Photons, Electrons & Atoms

Homework # 3. Chapter 38. Photons, Electrons & Atoms Homwork # 3 Chaptr 38 Photos, Elctros & Atoms 38.4 A lasr usd to wld dtachd rtias mits light with a wavlgth of 650 m i pulss that ar 25.0 ms i duratio. Th avrag powr durig ach puls is 0.6 W. (a) How much

More information

Gaussian Elimination Autar Kaw

Gaussian Elimination Autar Kaw Gussi Elimitio Autr Kw After redig this chpter, you should be ble to:. solve set of simulteous lier equtios usig Nïve Guss elimitio,. ler the pitflls of the Nïve Guss elimitio method,. uderstd the effect

More information

Zuordnung dimensionelle Messgeräte zu Prüf- und Kalibriernormalen

Zuordnung dimensionelle Messgeräte zu Prüf- und Kalibriernormalen Zuordu disioll Mssrät zu Prüf- ud Klibrirorl This tbultd syosis cotis currtly vilbl rtfcts wh y b usd s stdrds d wh r suitbl for th clibrtio of stylus or oticl istruts d SPMs. Stdrds r listd i rbitrry

More information

Budgeting. Here are five easy ways to keep your budget. Keeping up with all the INS and OUTS POSITIVE. Budget Quick Start. Go Green!

Budgeting. Here are five easy ways to keep your budget. Keeping up with all the INS and OUTS POSITIVE. Budget Quick Start. Go Green! Bgig K lif G h igh l f chl Mbil, li, v g bkig h w chck cc c i blc M bk l ff li bkig, which i g w k ll f ic i chck Lk f chckig vig cc h icl li bkig l v bil bkig, c k chck bg i G G! G f l li lik li bill

More information

Talk Outline. Taxon coverage pattern. Part I: Partial taxon coverage. Lassoing a tree: Phylogenetic theory for sparse patterns of taxon coverage

Talk Outline. Taxon coverage pattern. Part I: Partial taxon coverage. Lassoing a tree: Phylogenetic theory for sparse patterns of taxon coverage Lssoing tr: Phylognti thory for sprs pttrns of ton ovrg Joint work with Tlk Outlin Prt 1: Disivnss Prt 2: Lssoing tr Mik Stl Anrs Drss Kthrin Hur Prt 3: Quntifying LGT [if tim?] Phylomni Novmr 10, 2011

More information

Week 11 - Inductance

Week 11 - Inductance Week - Inductnce November 6, 202 Exercise.: Discussion Questions ) A trnsformer consists bsiclly of two coils in close proximity but not in electricl contct. A current in one coil mgneticlly induces n

More information

Uses for Binary Trees -- Binary Search Trees

Uses for Binary Trees -- Binary Search Trees CS122 Algorithms n Dt Struturs MW 11:00 m 12:15 pm, MSEC 101 Instrutor: Xio Qin Ltur 10: Binry Srh Trs n Binry Exprssion Trs Uss or Binry Trs Binry Srh Trs n Us or storing n rtriving inormtion n Insrt,

More information

Heat (or Diffusion) equation in 1D*

Heat (or Diffusion) equation in 1D* Heat (or Diffusio) equatio i D* Derivatio of the D heat equatio Separatio of variables (refresher) Worked eamples *Kreysig, 8 th Ed, Sectios.4b Physical assumptios We cosider temperature i a log thi wire

More information

SINUS SURGERY. A Patient Guide to the Sinuses and Nose. William A. Portuese, M.D. Ballard Ear, Nose & Throat and Allergy Clinic

SINUS SURGERY. A Patient Guide to the Sinuses and Nose. William A. Portuese, M.D. Ballard Ear, Nose & Throat and Allergy Clinic SINUS SURGERY A Pin Guid o h Sinuss nd Nos Bllrd Er, Nos & Thro nd Allrgy Clinic Willim A Porus, MD SIGNS & SYMPTOMS OF CHRONIC SINUSITIS Fcil Hdchs Fcil Prssur / Pin Allrgis nd Hyfvr Rpiiv Sinus infcions

More information

FOREST LAKES MSTU BOND PROJECT F-58 SIDEWALKS, LIGHTING & PLANTING - PHASE I & IA

FOREST LAKES MSTU BOND PROJECT F-58 SIDEWALKS, LIGHTING & PLANTING - PHASE I & IA ORST KS STU TPON: CNTURY INK P.O. OX 4 NPS,. 3414 T: [3] 63-631 ON PROJCT -58 SIWKS, IGTING & PNTING - PS I & I RVIWING GNCIS COIR COUNTY COIR COUNTY COUNITY VOPNT SRVICS 8 NORT ORSSO RIV NPS,. 3414 T:

More information

GRANT ADMINISTRATION: How Do I Close Out An Expired Grant or Award?

GRANT ADMINISTRATION: How Do I Close Out An Expired Grant or Award? GRANT AMINISTRATION PROCEURES - Scio 6.5 GRANT AMINISTRATION: ow o I Clos Ou A Expird Gr or Awrd? Iroducio Th Niol Isius of lh ( NI ) hs sblishd h followig rquirs for fdrl gr or wrd o b closd ou by isiuios

More information

Oracle PL/SQL Programming Advanced

Oracle PL/SQL Programming Advanced Orl PL/SQL Progrmming Avn In orr to lrn whih qustions hv n nswr orrtly: 1. Print ths pgs. 2. Answr th qustions. 3. Sn this ssssmnt with th nswrs vi:. FAX to (212) 967-3498. Or. Mil th nswrs to th following

More information

A Note on Approximating. the Normal Distribution Function

A Note on Approximating. the Normal Distribution Function Applid Mathmatical Scincs, Vol, 00, no 9, 45-49 A Not on Approimating th Normal Distribution Function K M Aludaat and M T Alodat Dpartmnt of Statistics Yarmouk Univrsity, Jordan Aludaatkm@hotmailcom and

More information

Numerical and Experimental Study on Nugget Formation in Resistance Spot Welding for High Strength Steel Sheets in Automobile Bodies

Numerical and Experimental Study on Nugget Formation in Resistance Spot Welding for High Strength Steel Sheets in Automobile Bodies rasactios of JWRI, ol.38 (9), No. rasactios of JWRI, ol.38 (9), No. Numrical ad Exprimtal Study o Nuggt Formatio i Rsistac Spot Wldig for High Strgth Stl Shts i Automobil Bodis MA Nishu* ad MURAKAWA Hidkazu**

More information

12 Gravitational Force Near the Surface of the Earth, First Brush with Newton s 2 nd Law

12 Gravitational Force Near the Surface of the Earth, First Brush with Newton s 2 nd Law Chpter Grvittionl Force er the Surfce of the Erth, Firt Bruh with ewton nd Lw Grvittionl Force er the Surfce of the Erth, Firt Bruh with ewton nd Lw Soe folk think tht every object ner the urfce of the

More information

SYSTEMS & SERVICES VENDOR PROGRAMS SPECIALTY MARKET PROGRAMS BE A SPECIALIST OR REFER A SPECIALIST

SYSTEMS & SERVICES VENDOR PROGRAMS SPECIALTY MARKET PROGRAMS BE A SPECIALIST OR REFER A SPECIALIST SYSS & SVICS CNUY 21 is th xclusiv sponso in th l stt ctgoy, nd is th only l stt ogniztion tht cn off I ILS wd ils. Poud suppot of st Sls sinc 1979. In 2008, CNUY 21 Cnd ctd th Kids to Cp pog wh vy $2,100

More information

Non-Homogeneous Systems, Euler s Method, and Exponential Matrix

Non-Homogeneous Systems, Euler s Method, and Exponential Matrix Non-Homognous Systms, Eulr s Mthod, and Exponntial Matrix W carry on nonhomognous first-ordr linar systm of diffrntial quations. W will show how Eulr s mthod gnralizs to systms, giving us a numrical approach

More information

Installation Saving Space-efficient Panel Enhanced Physical Durability Enhanced Performance Warranty The IRR Comparison

Installation Saving Space-efficient Panel Enhanced Physical Durability Enhanced Performance Warranty The IRR Comparison Contnts Tchnology Nwly Dvlopd Cllo Tchnology Cllo Tchnology : Improvd Absorption of Light Doubl-sidd Cll Structur Cllo Tchnology : Lss Powr Gnration Loss Extrmly Low LID Clls 3 3 4 4 4 Advantag Installation

More information

Reading. Minimum Spanning Trees. Outline. A File Sharing Problem. A Kevin Bacon Problem. Spanning Trees. Section 9.6

Reading. Minimum Spanning Trees. Outline. A File Sharing Problem. A Kevin Bacon Problem. Spanning Trees. Section 9.6 Rin Stion 9.6 Minimum Spnnin Trs Outlin Minimum Spnnin Trs Prim s Alorithm Kruskl s Alorithm Extr:Distriut Shortst-Pth Alorithms A Fil Shrin Prolm Sy unh o usrs wnt to istriut il monst thmslvs. Btwn h

More information

PES 3950/PHYS 6950: Homework Assignment 5

PES 3950/PHYS 6950: Homework Assignment 5 PES 3950/PHYS 6950: Homwork ssignmnt 5 Handd out: Wdnsday pril 8 Du in: Wdnsday pril, at t start of class at 3:05 pm sarp Sow all working and rasoning to rciv full points. Qustion [5 points] a)[0 points]

More information

LanguageScript EasyScript speedwriting ComputerScript software MiniScript shorthand EnglishScript REGULAR TEXT

LanguageScript EasyScript speedwriting ComputerScript software MiniScript shorthand EnglishScript REGULAR TEXT LanguageScript is a short form of the language that can improve reading, writing, typing and transcription skills. It is based on the English grammar and language structure utilizing its basic components

More information

WAVEGUIDES (& CAVITY RESONATORS)

WAVEGUIDES (& CAVITY RESONATORS) CAPTR 3 WAVGUIDS & CAVIT RSONATORS AND DILCTRIC WAVGUIDS OPTICAL FIBRS 導 波 管 & 共 振 腔 與 介 質 導 波 管 光 纖 W t rqu is t irowv rg >4 G? t losss o wv i two-odutor trsissio li du to iprt odutor d loss diltri o

More information

Geometric Sequences. Definition: A geometric sequence is a sequence of the form

Geometric Sequences. Definition: A geometric sequence is a sequence of the form Geometic equeces Aothe simple wy of geetig sequece is to stt with umbe d epetedly multiply it by fixed ozeo costt. This type of sequece is clled geometic sequece. Defiitio: A geometic sequece is sequece

More information

Last time Interprocedural analysis Dimensions of precision (flow- and context-sensitivity) Flow-Sensitive Pointer Analysis

Last time Interprocedural analysis Dimensions of precision (flow- and context-sensitivity) Flow-Sensitive Pointer Analysis Flow-Insnsitiv Pointr Anlysis Lst tim Intrprocurl nlysis Dimnsions of prcision (flow- n contxt-snsitivity) Flow-Snsitiv Pointr Anlysis Toy Flow-Insnsitiv Pointr Anlysis CIS 570 Lctur 12 Flow-Insnsitiv

More information

Magic Message Maker Amaze your customers with this Gift of Caring communication piece

Magic Message Maker Amaze your customers with this Gift of Caring communication piece Magic Mssag Makr maz your customrs with this Gift of aring communication pic Girls larn th powr and impact of crativ markting with this attntion grabbing communication pic that will hlp thm o a World of

More information

What parents or other loved ones have to say

What parents or other loved ones have to say i s i l i Fm io t i i S N TRA A ut h o Y s s of Tr t r for P d i u G c Rsour Estblishd i 1983, Prid & Prjudic ws th first progrm to offr cousllig d support to lsbi, gy, bisxul, trssxul d trsgdr (LGBTT)

More information

The Chain Rule. rf dx. t t lim " (x) dt " (0) dx. df dt = df. dt dt. f (r) = rf v (1) df dx

The Chain Rule. rf dx. t t lim  (x) dt  (0) dx. df dt = df. dt dt. f (r) = rf v (1) df dx The Chin Rule The Chin Rule In this section, we generlize the chin rule to functions of more thn one vrible. In prticulr, we will show tht the product in the single-vrible chin rule extends to n inner

More information

Schedule C. Notice in terms of Rule 5(10) of the Capital Gains Rules, 1993

Schedule C. Notice in terms of Rule 5(10) of the Capital Gains Rules, 1993 (Rul 5(10)) Shul C Noti in trms o Rul 5(10) o th Cpitl Gins Ruls, 1993 Sttmnt to sumitt y trnsror o shrs whr thr is trnsr o ontrolling intrst Prt 1 - Dtils o Trnsror Nm Arss ROC No (ompnis only) Inom Tx

More information

What Is Required? You need to find the final temperature of an iron ring heated by burning alcohol. 4.95 g

What Is Required? You need to find the final temperature of an iron ring heated by burning alcohol. 4.95 g Calculatig Theral Eergy i a Bob Calorieter (Studet textbook page 309) 31. Predict the fial teperature of a 5.00 10 2 g iro rig that is iitially at 25.0 C ad is heated by cobustig 4.95 g of ethaol, C 2

More information

s = 1 2 at2 + v 0 t + s 0

s = 1 2 at2 + v 0 t + s 0 Mth A UCB, Sprig A. Ogus Solutios for Problem Set 4.9 # 5 The grph of the velocity fuctio of prticle is show i the figure. Sketch the grph of the positio fuctio. Assume s) =. A sketch is give below. Note

More information

G ri d m on i tori n g w i th N A G I O S (*) (*) Work in collaboration with P. Lo Re, G. S av a and G. T ortone WP3-I CHEP 2000, N F N 10.02.2000 M e e t i n g, N a p l e s, 29.1 1.20 0 2 R o b e r 1

More information

intro Imagine that someone asked you to describe church using only the bible. What would you say to them?

intro Imagine that someone asked you to describe church using only the bible. What would you say to them? intro Imagin that somon askd you to dscrib church using only th bibl. What would you say to thm? So many of th things w'v mad church to b arn't ssntial in scriptur. W'r on a journy of r-imagining what

More information

Chapter 5 The Discrete-Time Fourier Transform

Chapter 5 The Discrete-Time Fourier Transform ELG 30 Sigls d Systms Chptr 5 Chptr 5 Th Discrt-Tim ourir Trsform 5.0 Itroductio Thr r my similritis d strog prllls i lyzig cotiuous-tim d discrttim sigls. Thr r lso importt diffrcs. or xmpl, th ourir

More information

Repeated multiplication is represented using exponential notation, for example:

Repeated multiplication is represented using exponential notation, for example: Appedix A: The Lws of Expoets Expoets re short-hd ottio used to represet my fctors multiplied together All of the rules for mipultig expoets my be deduced from the lws of multiplictio d divisio tht you

More information

Words Symbols Diagram. abcde. a + b + c + d + e

Words Symbols Diagram. abcde. a + b + c + d + e Logi Gtes nd Properties We will e using logil opertions to uild mhines tht n do rithmeti lultions. It s useful to think of these opertions s si omponents tht n e hooked together into omplex networks. To

More information

Renewable Energy Sources. Solar Cells SJSU-E10 S John Athanasiou

Renewable Energy Sources. Solar Cells SJSU-E10 S John Athanasiou Rnwabl Enrgy Sourcs. Solar Clls SJSU-E10 S-2008 John Athanasiou 1 Rnwabl Enrgy Sourcs Rnwabl: Thy can last indfinitly 1. Wind Turbin: Convrting th wind nrgy into lctricity Wind, Propllr, Elctric Gnrator,

More information

Math Bowl 2009 Written Test Solutions. 2 8i

Math Bowl 2009 Written Test Solutions. 2 8i Mth owl 009 Writte Test Solutios i? i i i i i ( i)( i ( i )( i ) ) 8i i i (i ) 9i 8 9i 9 i How my pirs of turl umers ( m, ) stisfy the equtio? m We hve to hve m d d, the m ; d, the 0 m m Tryig these umers,

More information

Arithmetic Sequences

Arithmetic Sequences Arithmetic equeces A simple wy to geerte sequece is to strt with umber, d dd to it fixed costt d, over d over gi. This type of sequece is clled rithmetic sequece. Defiitio: A rithmetic sequece is sequece

More information

n Using the formula we get a confidence interval of 80±1.64

n Using the formula we get a confidence interval of 80±1.64 9.52 The professor of sttistics oticed tht the rks i his course re orlly distributed. He hs lso oticed tht his orig clss verge is 73% with stdrd devitio of 12% o their fil exs. His fteroo clsses verge

More information

Microwave Engineering

Microwave Engineering Microwv Egirig hg-hsig Hsu Dprtmt of Elctricl Egirig Ntiol Uitd Uivrsity Outli. Trsmissio Li Thory. Trsmissio Lis d Wvguids Grl Solutios for TEM, TE, d TM wvs ; Prlll Plt wvguid ; Rctgulr Wvguid ; oxil

More information

TIME VALUE OF MONEY: APPLICATION AND RATIONALITY- AN APPROACH USING DIFFERENTIAL EQUATIONS AND DEFINITE INTEGRALS

TIME VALUE OF MONEY: APPLICATION AND RATIONALITY- AN APPROACH USING DIFFERENTIAL EQUATIONS AND DEFINITE INTEGRALS MPRA Muich Prsoal RPEc Archiv TIME VALUE OF MONEY: APPLICATION AND RATIONALITY- AN APPROACH USING DIFFERENTIAL EQUATIONS AND DEFINITE INTEGRALS Mahbub Parvz Daffodil Itratioal Uivrsy 6. Dcmbr 26 Oli at

More information

Games and activities guide

Games and activities guide Gm d v gud W hv mpd Chg gm d v hd d yug pp h uu gud. C Av Gm Chg wp gm S u ud Fu ugh d Og d m Chg h B gm Lgh d dk Puzz d Quzz Chg quz P d gm Cwd puzz Wd h Rug wy Quz Qu Av P h pp Spg d Av Gm Chg Swp Gm

More information

Chapter 3.2 DC ammeters

Chapter 3.2 DC ammeters Chapter. DC aeter generic D ronval oveent i liited to eauring whatever current produce a. How can we increae the range of current that can be eaured? Conider the following circuit: V We have odelled the

More information

Approximation Algorithms

Approximation Algorithms Prsnttion or us with th txtook, Alorithm Dsin n Applitions, y M. T. Goorih n R. Tmssi, Wily, 2015 Approximtion Alorithms 1 Bik Tour Suppos you i to ri iyl roun Irln you will strt in Dulin th ol is to visit

More information

Usability Test Checklist

Usability Test Checklist Crtifi Profssionl for Usility n Usr Exprin Usility Tsting (CPUX-UT) Vrsion.0, Jun 0 Pulishr: UXQB. V. Contt: info@uxq.org www.uxq.org Autorn: R. Molih, T. Gis, B. Rumml, O. Klug, K. Polkhn Contnt Lgn...

More information

IIR FM pre-emphasis filter investigations and a digital implementation.

IIR FM pre-emphasis filter investigations and a digital implementation. II FM pr-mph fltr vtgto gtl mplmtto. Itl rmlg. So, lk I w, you'r wtg to mk compct gtl rcurv pr-mph fltr. Wll, th how I got o. A pr-mph fltr, fltr tht oot th hgh frquc. A II mplmtto ft mpul rpo mplmtto,

More information

MerCarb 2 bbl Carburetor

MerCarb 2 bbl Carburetor TO: SERVICE MANAGER TECHNICIANS PARTS MANAGER No. 97-8 Revised June 1999. Informtion underlined is new. MerCr 2 l Cruretor 8 Point Cruretor Check List To ensure tht the cruretor is the cuse of the engine

More information

The Casino Experience. Let us entertain you

The Casino Experience. Let us entertain you The Csio Expeiee Let us eteti you The Csio Expeiee If you e lookig fo get ight out, Csio Expeiee is just fo you. 10 The Stight Flush Expeiee 25 pe peso This is get itodutio to gmig tht sves you moey Kik

More information

! www.ukuleleorcstr.com Tse re T Ukulele Orcstr of ret Br s sets prticipti pieces ecember 2016 USA Sesl shows. Tse sets show mt of mic. Wn co lg ply wh Orcstr, might hve fun nd do m differently, different

More information

Section 7.5: Percentage Yield

Section 7.5: Percentage Yield Sectio 7.5: Percetage Yield Tutorial 1 Practice, page 338 1. (a) Give: Ni = 23.5 g Required: theoretical yield of ickel carboyl, Ni(CO) 4 Solutio: Step 1. List the give value, the required value, ad the

More information

Set Notation Element v is a member of set Element v is not a member of set Cardinality (number of members) of set V Set is a subset of set

Set Notation Element v is a member of set Element v is not a member of set Cardinality (number of members) of set V Set is a subset of set CS/EE 5740/6740: Computr Ai Dsign of Digitl Ciruits Chris J. Myrs Ltur 3: Sts, Rltions, n Funtions Ring: Chptr 3.1 v v S S St Nottion Elmnt v is mmr of st Elmnt v is not mmr of st Crinlity (numr of mmrs)

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) 92.222 - Linar Algbra II - Spring 2006 by D. Klain prliminary vrsion Corrctions and commnts ar wlcom! Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial

More information

Homework #6 Chapter 7 Homework Acids and Bases

Homework #6 Chapter 7 Homework Acids and Bases Homework #6 Chpter 7 Homework Acids nd Bses 18. ) H O(l) H 3O (q) OH (q) H 3 O OH Or H O(l) H (q) OH (q) H OH ) HCN(q) H O(l) H 3O (q) CN (q) H 3 O HCN CN Or HCN(q) H (q) CN (q) H CN HCN c) NH 3(q) H O(l)

More information

Section 3.3: Geometric Sequences and Series

Section 3.3: Geometric Sequences and Series ectio 3.3: Geometic equeces d eies Geometic equeces Let s stt out with defiitio: geometic sequece: sequece i which the ext tem is foud by multiplyig the pevious tem by costt (the commo tio ) Hee e some

More information

PRIMER TESTIMONIO. -F o l i o n ú m e r o 1 2 0. ḋḋḋḋḋḋḋḋḋḋḋḋḋḋḋḋḋḋḋḋḋḋḋḋḋḋḋḋḋḋḋḋḋḋḋḋḋ ESC RITU RA NU MERO TREINTA.- E n l a c i u d a d d e B u e n os A i r e s, c a p i t a l d e l a R e p ú b l i c

More information

3. Building a Binary Search Tree. 5. Splay Trees: A Self-Adjusting Data Structure

3. Building a Binary Search Tree. 5. Splay Trees: A Self-Adjusting Data Structure Chptr 10 BINARY TREES 1. Gnrl Binry Trs 2. Binry Srch Trs 3. Builing Binry Srch Tr 4. Hight Blnc: AVL Trs 5. Sply Trs: A Slf-Ajusting Dt Structur Outlin Trnsp. 1, Chptr 10, Binry Trs 243 1999 Prntic-Hll,

More information

Showing Recursive Sequences Converge

Showing Recursive Sequences Converge Showig Recursive Sequeces Coverge Itroductio My studets hve sked me bout how to prove tht recursively defied sequece coverges. Hopefully, fter redig these otes, you will be ble to tckle y such problem.

More information

Factorials! Stirling s formula

Factorials! Stirling s formula Author s not: This articl may us idas you havn t larnd yt, and might sm ovrly complicatd. It is not. Undrstanding Stirling s formula is not for th faint of hart, and rquirs concntrating on a sustaind mathmatical

More information

String Fingering Diagrams

String Fingering Diagrams STRIN FINRIN IRMS F..J. sil Strin Finrin irms F..J. sil 2n Jnury 200 strt This oumnt ontins st of strin instrumnt finrin irms tht my us for hkin multipl stops n omintions with nturl hrmonis. irms (fittin

More information

Physics 106 Lecture 12. Oscillations II. Recap: SHM using phasors (uniform circular motion) music structural and mechanical engineering waves

Physics 106 Lecture 12. Oscillations II. Recap: SHM using phasors (uniform circular motion) music structural and mechanical engineering waves Physics 6 Lctur Oscillations II SJ 7 th Ed.: Chap 5.4, Rad only 5.6 & 5.7 Rcap: SHM using phasors (unifor circular otion) Physical pndulu xapl apd haronic oscillations Forcd oscillations and rsonanc. Rsonanc

More information

Hermitian Operators. Eigenvectors of a Hermitian operator. Definition: an operator is said to be Hermitian if it satisfies: A =A

Hermitian Operators. Eigenvectors of a Hermitian operator. Definition: an operator is said to be Hermitian if it satisfies: A =A Heriti Opertors Defiitio: opertor is sid to be Heriti if it stisfies: A A Altertively clled self doit I QM we will see tht ll observble properties st be represeted by Heriti opertors Theore: ll eigevles

More information

December Homework- Week 1

December Homework- Week 1 Dcmbr Hmwrk- Wk 1 Mth Cmmn Cr Stndrds: K.CC.A.1 - Cunt t 100 by ns nd by tns. K.CC.A.2 - Cunt frwrd bginning frm givn numbr within th knwn squnc (instd f hving t bgin t 1). K.CC.B.4.A - Whn cunting bjcts,

More information