Traffic Flow Analysis (2)

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Traffic Flow Analysis (2)"

Transcription

1 Traffic Flow Analysis () Statistical Proprtis. Flow rat distributions. Hadway distributions. Spd distributions by Dr. Gang-Ln Chang, Profssor Dirctor of Traffic safty and Oprations Lab. Univrsity of Maryland, Collg Park

2 Tim Hadway Distribution Distanc st nd 3 rd Gap Occupancy Tim T Givn a tim horizon: T n hadways, th distribution of such hadways dpnds on traffic conditions Givn a fid tim intrval t ( T k t), th numbr of arrivals during ach t is a distribution

3 Traffic counts Numbr of vhicls pr intrval st : T(intrval) n- vhicls (.g. 3) T 0 scs nd : T(intrval) n vhicls (.g. ) 3 rd : T(intrval) n3 vhicls (.g. 0) K-th : T(intrval) nk vhicls (.g. 3) Distribution is rfrrd to arriving vhicls pr intrval: n, n,, nk 3

4 If k80 intrvals (0 sconds pr intrval) Av. vhicls pr intrval /80m No. of Vh/T Obsrvd Frquncy Obs Vhicls > Poisson distribution: Light traffic conditions If T is 30 scs, Thn: m m 3 Comput pr 30 sconds 4

5 Distributions for Traffic Analysis Poisson Distribution: light traffic conditions Total occurrncs m ( av. valu) Total obsrvations of tim σ / m m P( ) m /! 0,,, m t t: slctd tim intrval m P(0).g. P( ) P( ) m m p( m)! p( m) ( )! m P ( ) P( ) m Svral poisson distributions with man valus: m, m, m3, Thn m N m i i Limitations: only for discrt random vnts 5

6 Tst th distribution No. of Vh/T Obs Total Prob Th Fr Frquncy P(0) P() P() P(3) >3 6 0? P ( ) m! P(0) m 0 0! 0 Av. vhicls pr intrval /80m Th probability of having X vhicls arriving at th counting lin during th intrval of 0 sconds 6

7 Th probabilitis that 0,, cars arriv at ach T(0 scs) intrval Can b prssd as: Pn ( ) i 0 i m i! m Pn ( ) i 0 i m i! m For th cas of X or mor Pn ( ) i 0 i m i! m P i y ( ) y i i m i! m 7

8 Poisson Arrival Th numbr of Poisson arrivals occurring in a tim intrval of is: k 0,,, Th probability that thr ar at last k numbr of vhicls arriving during intrval t is: Poisson is only applicabl in light traffic conditions 8 ( t) n t! ) ( ] ) ( [ k t k t M P k t k k t k k t k t M P '! ) ( ] ) ( [

9 Poisson Arrival Intr-arrival Tims hadway Lt Lk tim for occurrnc of th k-th arrival, k,, 3, Th pdf f Lk ()d P[kth arrival occurs in th intrval to +d] P[actly k- arrivals in th intrval [0,] and actly on arrival in [,+d]] L k k th Tim ( ) ( k )! ( d)! k d k ( ) ( k )! d [ d ] k k ( k )! f k ( L ) d 9

10 Poisson Arrival f L k k k ( ) ( k )!, 0; k,, 3, th kth - ordr intrarrival tim distribution for a poisson procss is a kth - ordr Erlang pdf st k (hadway) f ( ) 0 (ngativ ponntial distribution) L Th probability P( h ) d (C.D.F.) 0

11 Poisson Arrival From a Poisson prspctiv: If No vhicl arrivs during th tim lngth a tim hadway P [ M Not: ( ) 0] 0! 0 (sam as th prvious cas) Hadway is a continuous distribution: Arrival rat is a discrt distribution: P( h ) P ( M m) m ( ) m!

12 Distributions for Traffic Analysis Binomial Distribution For congstd traffic flow --- P( ) c P p n n ( ) varianc man P is th probability that on car arrivs Man valu: m np Varianc: s np( 0,,,, n p) P is unknown from th fild, but can b stimatd from th man and varianc of obsrvd vhicls pr intrval <<

13 Binominal distribution m and s can b computd from th fild data (no. Vhicls pr intrval) ^ p ^ n ( m s ) m m/ p m ( m s ) 3

14 Ngativ Binominal Distribution Traffic counts with high varianc tnd ovr both a pak priod and an off-pak priod (.g., a short counting intrval for traffic ovr a cycl, or downstram from a traffic signal P( ) c + k k P k q k 0,,, p ˆ m s m k ˆ s qˆ ( pˆ m ) p (0) k p + k p( ) q p( ) 4

15 Summary Th Poisson distribution rprsnts th random occurrnc of discrt vnts. Poisson distribution fits th vnts of man qual to varianc, spcially undr light traffic. Binomial distribution can b fittd to congstd traffic conditions whr th varianc/man ratio substantially lss than on. Ngativ binomial distribution can b fittd to traffic whr thr is a cyclic variation in th flow and man flow is changing during th counting priod. 5

16 Continuous Distributions Intrval (btwn arriving vhicls) Distribution Ngativ Eponntial Distribution Lt V: hourly volum, V/3600 (cars/sc) P( ) V t ( ) 3600 P(0) Vt / 3600! Vt / 3600 If thr is no vhicl arriv in a particular intrval of lngth t, thr will b a hadway of at last t sc. P(0) th probability of a hadway t sc 6

17 7 H hadway Man hadway T 3600/V T t t h P / ) ( T t t h P / ) ( < Varianc of hadways T 3600 / ) ( Vt t h P

18 Ngativ ponntial frquncy curv Bar indicat obsrvd data takn on sampl siz of 609 8

19 Statistical distributions of traffic charactristics 9

20 Dashd curv applis only to probability scal 0

21 Shiftd Eponntial Distribution P( h t) ( tτ ) /( T τ ) P( h < t) ( tτ ) /( T τ ) P( t) and 0, at t< τ (min. hadway) P( t) p[ ( t τ ) /( τ )] T τ T

22 Shiftd ponntial distribution to rprsnt th probability of hadways lss thn t with a prohibition of hadways lss than τ. (Avrag of obsrvd hadways is T)

23 Eampl of fhiftd ponntial fittd to frway data 3

24 Erlang Distribution P( h t) k t 0 for k for k for k 3 ~ k T / S kt ( ) T i kt / T i! Rducd to th ponntial distribution kt kt / T P( h t) + T kt kt P( h t) + ( ) + ( ) T T! kt / T k: a paramtr dtrmining th shap of th distribution T: man intrval, S : varianc * k, th data appar to b random * k incras, th dgr of nonrandomnss appars to incras 4

25 Composit Hadway Modl Constraind flows (Av. hadway T) Unconstraind fr flows (Av. hadway T) 5 + < ) p( ) p( ) ( ) ( τ τ α α T t T t t h P

26 Slction of Hadway Distribution Gnralizd Poisson distribution (Dns Traffic) or P( ) P( ) k ( + i) j k k i j j! k+ i ( ) ( k + i )! km +/ ( k ) 0,,, 0,,, k, k 3, P (0) + 3 P() +! 3! P(0) + +! 4 5 P() + + 3! 4! 5! 3 6

27 7

28 Distribution Modls for Spds Normal distributions of spds Lognormal modl of spds Gap accptanc distribution modl 8

29 Cumulativ (normal) distributions of spds of four locations 9

30 Sam data as abov figur but with ach distribution normalizd 30

31 Lognormal plot of frway spot spds 3

32 Comparison of obsrvd and thortical distributions of rjctd gaps 3

33 Lag and gap distribution for through movmnts 33

34 Distribution of accptd and rjctd lags and gaps at intrsction lft turns 34

35 Poisson Arrival Congstd Traffic Conditions platoon Distanc st Tim T Two typs of hadways btwn and within platoons during th sam priod T T T +T, ach priod has a diffrnt man hadway and 35

36 Multipl Indpndnt Poisson Procsss Two Poisson procsss: and Th combind procss: N(t) N (t) + N (t) is also a poisson procss pdf for pdf for 0 (tim-priod) 0 (tim-priod) Th two ar indpndnt: What is th probability that an arrival form procss (typ arrival) occurs bfor an arrival from procss (typ arrival)? 36

37 Multipl Indpndnt Poisson Procsss and ar both random variabls 0, 0 Similarly, 37 < 0 ), ( ] [ d d f P, ) ( ) ( ), ( d f f f [ ] P < 0 d d 0 ) ( d u du ] [ + < P

38 Multipl Indpndnt Poisson Procsss and ar both random variabls 0, 0 Similarly, 38 < 0 ), ( ] [ d d f P, ) ( ) ( ), ( d f f f [ ] P < 0 d d 0 ) ( d u du ] [ + < P

39 Multipl Indpndnt Poisson Procsss For th ntir procss: T T + T ( and ) Th probability of a tim-hadway X > is? Total numbr of arrivals during T priod T + T P(X > ) during T priod and T priod and Total arrivals having thir hadways > Total numbr of arrivals T + T (wightd avrag) Gnralization, T P[ X + T k i i > ] k T i i T i i i : arrival rat 39

40 40 Constraind Flow-Platoon Hadway within a platoon ar ponntially distributd with a man arrival rat and minimum hadway z 0, for < z0 (shiftd ponntial distribution) P[ X > ] '( zz0 ), for z z0 Th rlation btwn and Th pctd valu of th shiftd distribution must b qual to th actual man hadway

41 4 Constraind Flow-Platoon Hadway within a platoon ar ponntially distributd with a man arrival rat and minimum hadway z 0, for < z0 (shiftd ponntial distribution) P[ X > ] '( zz0 ), for z z0 Th rlation btwn and Th pctd valu of th shiftd distribution must b qual to th actual man hadway

42 Constraind Flow-Platoon Th arrival rat for such a shiftd distribution ' z z 0 ' z whr 0 / cannot b obsrvd actually obsrvd z P[ X > ] ( )( zz0 ) z 0 4

43 Som Travl Fr, Som Ar in Platoon Combination of two poisson procsss: P[X > ] P[X > occurs in travl fr traffic] + P[X > in platoon traffic] P P P + P T Total numbr of arrivals ( T + T ( )( z z z 0 T T + T 0 ) T : total obsrvd priod during which traffic is not movd in platoon T : total obsrvd priod during which vhicls ar movd in platoon ) 43

Module 7: Discrete State Space Models Lecture Note 3

Module 7: Discrete State Space Models Lecture Note 3 Modul 7: Discrt Stat Spac Modls Lctur Not 3 1 Charactristic Equation, ignvalus and ign vctors For a discrt stat spac modl, th charactristic quation is dfind as zi A 0 Th roots of th charactristic quation

More information

QUANTITATIVE METHODS CLASSES WEEK SEVEN

QUANTITATIVE METHODS CLASSES WEEK SEVEN QUANTITATIVE METHODS CLASSES WEEK SEVEN Th rgrssion modls studid in prvious classs assum that th rspons variabl is quantitativ. Oftn, howvr, w wish to study social procsss that lad to two diffrnt outcoms.

More information

A Derivation of Bill James Pythagorean Won-Loss Formula

A Derivation of Bill James Pythagorean Won-Loss Formula A Drivation of Bill Jams Pythagoran Won-Loss Formula Ths nots wr compild by John Paul Cook from a papr by Dr. Stphn J. Millr, an Assistant Profssor of Mathmatics at Williams Collg, for a talk givn to th

More information

Genetic Drift and Gene Flow Illustration

Genetic Drift and Gene Flow Illustration Gntic Drift and Gn Flow Illustration This is a mor dtaild dscription of Activity Ida 4, Chaptr 3, If Not Rac, How do W Explain Biological Diffrncs? in: How Ral is Rac? A Sourcbook on Rac, Cultur, and Biology.

More information

Question 3: How do you find the relative extrema of a function?

Question 3: How do you find the relative extrema of a function? ustion 3: How do you find th rlativ trma of a function? Th stratgy for tracking th sign of th drivativ is usful for mor than dtrmining whr a function is incrasing or dcrasing. It is also usful for locating

More information

Modelling and Solving Two-Step Equations: ax + b = c

Modelling and Solving Two-Step Equations: ax + b = c Modlling and Solving To-Stp Equations: a + b c Focus on Aftr this lsson, you ill b abl to φ modl problms φ ith to-stp linar quations solv to-stp linar quations and sho ho you ord out th ansr Cali borrod

More information

The example is taken from Sect. 1.2 of Vol. 1 of the CPN book.

The example is taken from Sect. 1.2 of Vol. 1 of the CPN book. Rsourc Allocation Abstract This is a small toy xampl which is wll-suitd as a first introduction to Cnts. Th CN modl is dscribd in grat dtail, xplaining th basic concpts of C-nts. Hnc, it can b rad by popl

More information

Lecture 3: Diffusion: Fick s first law

Lecture 3: Diffusion: Fick s first law Lctur 3: Diffusion: Fick s first law Today s topics What is diffusion? What drivs diffusion to occur? Undrstand why diffusion can surprisingly occur against th concntration gradint? Larn how to dduc th

More information

Poisson Distribution. Poisson Distribution Example

Poisson Distribution. Poisson Distribution Example Poisson Distribution Can b usd to valuat th probability of an isolatd vnt occurring a spcific numbr of tims in a givn tim intrval,.g. # of faults, # of lightning stroks tim intrval Rquirmnts: -Evnts must

More information

Exponential Growth and Decay; Modeling Data

Exponential Growth and Decay; Modeling Data Exponntial Growth and Dcay; Modling Data In this sction, w will study som of th applications of xponntial and logarithmic functions. Logarithms wr invntd by John Napir. Originally, thy wr usd to liminat

More information

L13: Spectrum estimation nonparametric and parametric

L13: Spectrum estimation nonparametric and parametric L13: Spctrum stimation nonparamtric and paramtric Lnnart Svnsson Dpartmnt of Signals and Systms Chalmrs Univrsity of Tchnology Problm formulation Larning objctivs Aftr today s lctur you should b abl to

More information

Category 7: Employee Commuting

Category 7: Employee Commuting 7 Catgory 7: Employ Commuting Catgory dscription This catgory includs missions from th transportation of mploys 4 btwn thir homs and thir worksits. Emissions from mploy commuting may aris from: Automobil

More information

AP Calculus AB 2008 Scoring Guidelines

AP Calculus AB 2008 Scoring Guidelines AP Calculus AB 8 Scoring Guidlins Th Collg Board: Conncting Studnts to Collg Succss Th Collg Board is a not-for-profit mmbrship association whos mission is to connct studnts to collg succss and opportunity.

More information

Modeling Motorcycle Accident on Rural Highway

Modeling Motorcycle Accident on Rural Highway Modling Motorcycl Accidnt on Rural Highway A.K.Sharma, V.S. Landg, and N.V.Dshpand Abstract Motorcyclists ar th most crash-pron road-usr group in many Asian countris including India. Statistics of accidnt

More information

Chi-Square. Hypothesis: There is an equal chance of flipping heads or tails on a coin. Coin A. Expected (e) (o e) (o e) 2 (o e) 2 e

Chi-Square. Hypothesis: There is an equal chance of flipping heads or tails on a coin. Coin A. Expected (e) (o e) (o e) 2 (o e) 2 e Why? Chi-Squar How do you know if your data is th rsult of random chanc or nvironmntal factors? Biologists and othr scintists us rlationships thy hav discovrd in th lab to prdict vnts that might happn

More information

Cloud and Big Data Summer School, Stockholm, Aug., 2015 Jeffrey D. Ullman

Cloud and Big Data Summer School, Stockholm, Aug., 2015 Jeffrey D. Ullman Cloud and Big Data Summr Scool, Stockolm, Aug., 2015 Jffry D. Ullman Givn a st of points, wit a notion of distanc btwn points, group t points into som numbr of clustrs, so tat mmbrs of a clustr ar clos

More information

CHAPTER 88 THE BINOMIAL AND POISSON DISTRIBUTIONS

CHAPTER 88 THE BINOMIAL AND POISSON DISTRIBUTIONS CHAPTER 88 THE BINOMIAL AND POISSON DISTRIBUTIONS EXERCISE Pag 97 1. Concrt blocks ar tstd and it is found that on avrag 7% fail to mt th rquird spcification. For a batch of nin blocks dtrmin th probabilitis

More information

the so-called KOBOS system. 1 with the exception of a very small group of the most active stocks which also trade continuously through

the so-called KOBOS system. 1 with the exception of a very small group of the most active stocks which also trade continuously through Liquidity and Information-Basd Trading on th Ordr Drivn Capital Markt: Th Cas of th Pragu tock Exchang Libor 1ÀPH³HN Cntr for Economic Rsarch and Graduat Education, Charls Univrsity and Th Economic Institut

More information

e = C / electron Q = Ne

e = C / electron Q = Ne Physics 0 Modul 01 Homwork 1. A glass rod that has bn chargd to +15.0 nc touchs a mtal sphr. Aftrword, th rod's charg is +8.00 nc. What kind of chargd particl was transfrrd btwn th rod and th sphr, and

More information

Noble gas configuration. Atoms of other elements seek to attain a noble gas electron configuration. Electron configuration of ions

Noble gas configuration. Atoms of other elements seek to attain a noble gas electron configuration. Electron configuration of ions Valnc lctron configuration dtrmins th charactristics of lmnts in a group Nobl gas configuration Th nobl gass (last column in th priodic tabl) ar charactrizd by compltly filld s and p orbitals this is a

More information

Solutions to Homework 8 chem 344 Sp 2014

Solutions to Homework 8 chem 344 Sp 2014 1. Solutions to Homwork 8 chm 44 Sp 14 .. 4. All diffrnt orbitals mans thy could all b paralll spins 5. Sinc lctrons ar in diffrnt orbitals any combination is possibl paird or unpaird spins 6. Equivalnt

More information

Gas Radiation. MEL 725 Power-Plant Steam Generators (3-0-0) Dr. Prabal Talukdar Assistant Professor Department of Mechanical Engineering IIT Delhi

Gas Radiation. MEL 725 Power-Plant Steam Generators (3-0-0) Dr. Prabal Talukdar Assistant Professor Department of Mechanical Engineering IIT Delhi Gas Radiation ME 725 Powr-Plant Stam Gnrators (3-0-0) Dr. Prabal Talukdar Assistant Profssor Dpartmnt of Mchanical Enginring T Dlhi Radiation in absorbing-mitting mdia Whn a mdium is transparnt to radiation,

More information

(Analytic Formula for the European Normal Black Scholes Formula)

(Analytic Formula for the European Normal Black Scholes Formula) (Analytic Formula for th Europan Normal Black Schols Formula) by Kazuhiro Iwasawa Dcmbr 2, 2001 In this short summary papr, a brif summary of Black Schols typ formula for Normal modl will b givn. Usually

More information

Principles of Humidity Dalton s law

Principles of Humidity Dalton s law Principls of Humidity Dalton s law Air is a mixtur of diffrnt gass. Th main gas componnts ar: Gas componnt volum [%] wight [%] Nitrogn N 2 78,03 75,47 Oxygn O 2 20,99 23,20 Argon Ar 0,93 1,28 Carbon dioxid

More information

Lecture 20: Emitter Follower and Differential Amplifiers

Lecture 20: Emitter Follower and Differential Amplifiers Whits, EE 3 Lctur 0 Pag of 8 Lctur 0: Emittr Followr and Diffrntial Amplifirs Th nxt two amplifir circuits w will discuss ar ry important to lctrical nginring in gnral, and to th NorCal 40A spcifically.

More information

Statistical Machine Translation

Statistical Machine Translation Statistical Machin Translation Sophi Arnoult, Gidon Mailltt d Buy Wnnigr and Andra Schuch Dcmbr 7, 2010 1 Introduction All th IBM modls, and Statistical Machin Translation (SMT) in gnral, modl th problm

More information

New Basis Functions. Section 8. Complex Fourier Series

New Basis Functions. Section 8. Complex Fourier Series Nw Basis Functions Sction 8 Complx Fourir Sris Th complx Fourir sris is prsntd first with priod 2, thn with gnral priod. Th connction with th ral-valud Fourir sris is xplaind and formula ar givn for convrting

More information

CPS 220 Theory of Computation REGULAR LANGUAGES. Regular expressions

CPS 220 Theory of Computation REGULAR LANGUAGES. Regular expressions CPS 22 Thory of Computation REGULAR LANGUAGES Rgular xprssions Lik mathmatical xprssion (5+3) * 4. Rgular xprssion ar built using rgular oprations. (By th way, rgular xprssions show up in various languags:

More information

14.3 Area Between Curves

14.3 Area Between Curves 14. Ara Btwn Curvs Qustion 1: How is th ara btwn two functions calculatd? Qustion : What ar consumrs and producrs surplus? Earlir in this chaptr, w usd dfinit intgrals to find th ara undr a function and

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) 92.222 - Linar Algbra II - Spring 2006 by D. Klain prliminary vrsion Corrctions and commnts ar wlcom! Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial

More information

Adverse Selection and Moral Hazard in a Model With 2 States of the World

Adverse Selection and Moral Hazard in a Model With 2 States of the World Advrs Slction and Moral Hazard in a Modl With 2 Stats of th World A modl of a risky situation with two discrt stats of th world has th advantag that it can b natly rprsntd using indiffrnc curv diagrams,

More information

Econ 371: Answer Key for Problem Set 1 (Chapter 12-13)

Econ 371: Answer Key for Problem Set 1 (Chapter 12-13) con 37: Answr Ky for Problm St (Chaptr 2-3) Instructor: Kanda Naknoi Sptmbr 4, 2005. (2 points) Is it possibl for a country to hav a currnt account dficit at th sam tim and has a surplus in its balanc

More information

by John Donald, Lecturer, School of Accounting, Economics and Finance, Deakin University, Australia

by John Donald, Lecturer, School of Accounting, Economics and Finance, Deakin University, Australia Studnt Nots Cost Volum Profit Analysis by John Donald, Lcturr, School of Accounting, Economics and Financ, Dakin Univrsity, Australia As mntiond in th last st of Studnt Nots, th ability to catgoris costs

More information

Mathematics. Mathematics 3. hsn.uk.net. Higher HSN23000

Mathematics. Mathematics 3. hsn.uk.net. Higher HSN23000 hsn uknt Highr Mathmatics UNIT Mathmatics HSN000 This documnt was producd spcially for th HSNuknt wbsit, and w rquir that any copis or drivativ works attribut th work to Highr Still Nots For mor dtails

More information

Sigmoid Functions and Their Usage in Artificial Neural Networks

Sigmoid Functions and Their Usage in Artificial Neural Networks Sigmoid Functions and Thir Usag in Artificial Nural Ntworks Taskin Kocak School of Elctrical Enginring and Computr Scinc Applications of Calculus II: Invrs Functions Eampl problm Calculus Topic: Invrs

More information

Gateway 125,126,130 Fall 2006 Exam 1 KEY p1

Gateway 125,126,130 Fall 2006 Exam 1 KEY p1 Gatway 125,126,130 Fall 2006 Exam 1 KEY p1 Q16 (1 point ach) Plas plac th corrct lttr/s in th box. 1) How many lctrons can th third principal quantum lvl (n = 3) hold? a. 2 b. 8 c. 16 d. 18. 32 2) Arrang

More information

Notes for Geometry Conic Sections

Notes for Geometry Conic Sections Nots for Gomtry Conic Sctions Th nots is takn from Gomtry, by David A. Brannan, Matthw F. Espln and Jrmy J. Gray, 2nd dition 1 Conic Sctions A conic sction is dfind as th curv of intrsction of a doubl

More information

Production Costing (Chapter 8 of W&W)

Production Costing (Chapter 8 of W&W) Production Costing (Chaptr 8 of W&W).0 Introduction Production costs rfr to th oprational costs associatd with producing lctric nrgy. Th most significant componnt of production costs ar th ful costs ncssary

More information

Math 161 Solutions To Sample Final Exam Problems

Math 161 Solutions To Sample Final Exam Problems Solutions To Sampl Final Eam Problms Mat 6 Mat 6 Solutions To Sampl Final Eam Problms. Find dy in parts a - blow. a y = + b y = c y = arctan d y +lny = y = cos + f y = +ln ln g y = +t3 dt y = g a y = b

More information

Projections - 3D Viewing. Overview Lecture 4. Projection - 3D viewing. Projections. Projections Parallel Perspective

Projections - 3D Viewing. Overview Lecture 4. Projection - 3D viewing. Projections. Projections Parallel Perspective Ovrviw Lctur 4 Projctions - 3D Viwing Projctions Paralll Prspctiv 3D Viw Volum 3D Viwing Transformation Camra Modl - Assignmnt 2 OFF fils 3D mor compl than 2D On mor dimnsion Displa dvic still 2D Analog

More information

Variance Components (VARCOMP)

Variance Components (VARCOMP) Varianc Componnts (VARCOP) Notation Th Varianc Componnts procdur provids stimats for variancs of random ffcts undr a gnral linar modl framwor. Four typs of stimation mthods ar availabl in this procdur.

More information

Odds. Odds Ratio and Logistic Regression. Odds Ratio Review. Odds Ratio Review. Logistic Regression LR - 1

Odds. Odds Ratio and Logistic Regression. Odds Ratio Review. Odds Ratio Review. Logistic Regression LR - 1 Logistic Rgrssion Odds Ratio and Logistic Rgrssion Dr. Thomas Smotzr Odds If th robability of an vnt occurring is thn th robability against its occurrnc is -. Th odds in favor of th vnt ar /( - ) : At

More information

7 Timetable test 1 The Combing Chart

7 Timetable test 1 The Combing Chart 7 Timtabl tst 1 Th Combing Chart 7.1 Introduction 7.2 Tachr tams two workd xampls 7.3 Th Principl of Compatibility 7.4 Choosing tachr tams workd xampl 7.5 Ruls for drawing a Combing Chart 7.6 Th Combing

More information

Deer: Predation or Starvation

Deer: Predation or Starvation : Prdation or Starvation National Scinc Contnt Standards: Lif Scinc: s and cosystms Rgulation and Bhavior Scinc in Prsonal and Social Prspctiv s, rsourcs and nvironmnts Unifying Concpts and Procsss Systms,

More information

FACULTY SALARIES FALL 2004. NKU CUPA Data Compared To Published National Data

FACULTY SALARIES FALL 2004. NKU CUPA Data Compared To Published National Data FACULTY SALARIES FALL 2004 NKU CUPA Data Compard To Publishd National Data May 2005 Fall 2004 NKU Faculty Salaris Compard To Fall 2004 Publishd CUPA Data In th fall 2004 Northrn Kntucky Univrsity was among

More information

Odds Ratio Review. Logistic Regression. Confidence Interval for Odds Ratio: Logistic Regression LR - 1. O p ˆ 1 = = O

Odds Ratio Review. Logistic Regression. Confidence Interval for Odds Ratio: Logistic Regression LR - 1. O p ˆ 1 = = O Logistic Rgrssion Eosd to Risk Factor Odds Ratio Rviw Disas Status Logistic Rgrssion Ys () No () Total Ys () 5 7 No () 3 3 Total 5 5 3 Disas Status Risk Factor Ys () No () Total Ys () 5 7 No () 3 3 Total

More information

Renewable Energy Sources. Solar Cells SJSU-E10 S John Athanasiou

Renewable Energy Sources. Solar Cells SJSU-E10 S John Athanasiou Rnwabl Enrgy Sourcs. Solar Clls SJSU-E10 S-2008 John Athanasiou 1 Rnwabl Enrgy Sourcs Rnwabl: Thy can last indfinitly 1. Wind Turbin: Convrting th wind nrgy into lctricity Wind, Propllr, Elctric Gnrator,

More information

SUBATOMIC PARTICLES AND ANTIPARTICLES AS DIFFERENT STATES OF THE SAME MICROCOSM OBJECT. Eduard N. Klenov* Rostov-on-Don. Russia

SUBATOMIC PARTICLES AND ANTIPARTICLES AS DIFFERENT STATES OF THE SAME MICROCOSM OBJECT. Eduard N. Klenov* Rostov-on-Don. Russia SUBATOMIC PARTICLES AND ANTIPARTICLES AS DIFFERENT STATES OF THE SAME MICROCOSM OBJECT Eduard N. Klnov* Rostov-on-Don. Russia Th distribution law for th valus of pairs of th consrvd additiv quantum numbrs

More information

Non-Homogeneous Systems, Euler s Method, and Exponential Matrix

Non-Homogeneous Systems, Euler s Method, and Exponential Matrix Non-Homognous Systms, Eulr s Mthod, and Exponntial Matrix W carry on nonhomognous first-ordr linar systm of diffrntial quations. W will show how Eulr s mthod gnralizs to systms, giving us a numrical approach

More information

Analysis Of Injection Moulding Process Parameters

Analysis Of Injection Moulding Process Parameters Analysis Of Injction Moulding Procss Paramtrs Mr. M.G. Rathi Assistant Profssor, partmnt of Mchanical Enginring, Govrnmnt Collg of Enginring Aurangabad, (MS), India. Mr. Manoj amodar Salunk Studnt, partmnt

More information

Voice Biometrics: How does it work? Konstantin Simonchik

Voice Biometrics: How does it work? Konstantin Simonchik Voic Biomtrics: How dos it work? Konstantin Simonchik Lappnranta, 4 Octobr 2012 Voicprint Makup Fingrprint Facprint Lik a ingrprint or acprint, a voicprint also has availabl paramtrs that provid uniqu

More information

Use a high-level conceptual data model (ER Model). Identify objects of interest (entities) and relationships between these objects

Use a high-level conceptual data model (ER Model). Identify objects of interest (entities) and relationships between these objects Chaptr 3: Entity Rlationship Modl Databas Dsign Procss Us a high-lvl concptual data modl (ER Modl). Idntify objcts of intrst (ntitis) and rlationships btwn ths objcts Idntify constraints (conditions) End

More information

LABORATORY 1 IDENTIFICATION OF CIRCUIT IN A BLACK-BOX

LABORATORY 1 IDENTIFICATION OF CIRCUIT IN A BLACK-BOX LABOATOY IDENTIFICATION OF CICUIT IN A BLACK-BOX OBJECTIES. To idntify th configuration of an lctrical circuit nclosd in a two-trminal black box.. To dtrmin th valus of ach componnt in th black box circuit.

More information

Basis risk. When speaking about forward or futures contracts, basis risk is the market

Basis risk. When speaking about forward or futures contracts, basis risk is the market Basis risk Whn spaking about forward or futurs contracts, basis risk is th markt risk mismatch btwn a position in th spot asst and th corrsponding futurs contract. Mor broadly spaking, basis risk (also

More information

Meerkats: A Power-Aware, Self-Managing Wireless Camera Network for Wide Area Monitoring

Meerkats: A Power-Aware, Self-Managing Wireless Camera Network for Wide Area Monitoring Mrkats: A Powr-Awar, Slf-Managing Wirlss Camra Ntwork for Wid Ara Monitoring C. B. Margi 1, X. Lu 1, G. Zhang 1, G. Stank 2, R. Manduchi 1, K. Obraczka 1 1 Dpartmnt of Computr Enginring, Univrsity of California,

More information

Making and Using the Hertzsprung - Russell Diagram

Making and Using the Hertzsprung - Russell Diagram Making and Using th Hrtzsprung - Russll Diagram Nam In astronomy th Hrtzsprung-Russll Diagram is on of th main ways that w organiz data dscribing how stars volv, ags of star clustrs, masss of stars tc.

More information

Sharp bounds for Sándor mean in terms of arithmetic, geometric and harmonic means

Sharp bounds for Sándor mean in terms of arithmetic, geometric and harmonic means Qian t al. Journal of Inqualitis and Applications (015) 015:1 DOI 10.1186/s1660-015-0741-1 R E S E A R C H Opn Accss Sharp bounds for Sándor man in trms of arithmtic, gomtric and harmonic mans Wi-Mao Qian

More information

Parallel and Distributed Programming. Performance Metrics

Parallel and Distributed Programming. Performance Metrics Paralll and Distributd Programming Prformanc! wo main goals to b achivd with th dsign of aralll alications ar:! Prformanc: th caacity to rduc th tim to solv th roblm whn th comuting rsourcs incras;! Scalability:

More information

Rural and Remote Broadband Access: Issues and Solutions in Australia

Rural and Remote Broadband Access: Issues and Solutions in Australia Rural and Rmot Broadband Accss: Issus and Solutions in Australia Dr Tony Warrn Group Managr Rgulatory Stratgy Tlstra Corp Pag 1 Tlstra in confidnc Ovrviw Australia s gographical siz and population dnsity

More information

CHAPTER 4c. ROOTS OF EQUATIONS

CHAPTER 4c. ROOTS OF EQUATIONS CHAPTER c. ROOTS OF EQUATIONS A. J. Clark School o Enginring Dpartmnt o Civil and Environmntal Enginring by Dr. Ibrahim A. Aakka Spring 00 ENCE 03 - Computation Mthod in Civil Enginring II Dpartmnt o Civil

More information

An Adaptive Clustering MAP Algorithm to Filter Speckle in Multilook SAR Images

An Adaptive Clustering MAP Algorithm to Filter Speckle in Multilook SAR Images An Adaptiv Clustring MAP Algorithm to Filtr Spckl in Multilook SAR Imags FÁTIMA N. S. MEDEIROS 1,3 NELSON D. A. MASCARENHAS LUCIANO DA F. COSTA 1 1 Cybrntic Vision Group IFSC -Univrsity of São Paulo Caia

More information

Whole Systems Approach to CO 2 Capture, Transport and Storage

Whole Systems Approach to CO 2 Capture, Transport and Storage Whol Systms Approach to CO 2 Captur, Transport and Storag N. Mac Dowll, A. Alhajaj, N. Elahi, Y. Zhao, N. Samsatli and N. Shah UKCCS Mting, July 14th 2011, Nottingham, UK Ovrviw 1 Introduction 2 3 4 Powr

More information

Business rules FATCA V. 02/11/2015

Business rules FATCA V. 02/11/2015 Elmnt Attribut Siz InputTyp Rquirmnt BUSINESS RULES TYPE ERROR ACK Xpath I.Mssag Hadr FATCA_OECD Vrsion xsd: string = Validation WrongVrsion ftc:fatca_oecd/vrsion SndingCompanyIN Unlimit d xsd: string

More information

II. Equipment. Magnetic compass, magnetic dip compass, Helmholtz coils, HP 6212 A power supply, Keithley model 169 multimeter

II. Equipment. Magnetic compass, magnetic dip compass, Helmholtz coils, HP 6212 A power supply, Keithley model 169 multimeter Magntic fild of th arth I. Objctiv: Masur th magntic fild of th arth II. Equipmnt. Magntic compass, magntic dip compass, Hlmholtz s, HP 6212 A powr supply, Kithly modl 169 multimtr III Introduction. IIIa.

More information

Real-Time Evaluation of Email Campaign Performance

Real-Time Evaluation of Email Campaign Performance Singapor Managmnt Univrsity Institutional Knowldg at Singapor Managmnt Univrsity Rsarch Collction L Kong Chian School Of Businss L Kong Chian School of Businss 10-2008 Ral-Tim Evaluation of Email Campaign

More information

Chapter 9 Nuclear Radiation Radioactive Isotopes 9.1 radioactive isotope Natural Radioactivity

Chapter 9 Nuclear Radiation Radioactive Isotopes 9.1 radioactive isotope Natural Radioactivity Chaptr 9 Nuclar Radiation 9. Natural Radioactivity Radioactiv Isotops A radioactiv isotop has an unstabl nuclus. mits radiation to bcom mor stabl. can b on or mor of th isotops of an lmnt 2 Nuclar Radiation

More information

Section 7.4: Exponential Growth and Decay

Section 7.4: Exponential Growth and Decay 1 Sction 7.4: Exponntial Growth and Dcay Practic HW from Stwart Txtbook (not to hand in) p. 532 # 1-17 odd In th nxt two ction, w xamin how population growth can b modld uing diffrntial quation. W tart

More information

EFFECT OF GEOMETRICAL PARAMETERS ON HEAT TRANSFER PERFORMACE OF RECTANGULAR CIRCUMFERENTIAL FINS

EFFECT OF GEOMETRICAL PARAMETERS ON HEAT TRANSFER PERFORMACE OF RECTANGULAR CIRCUMFERENTIAL FINS 25 Vol. 3 () January-March, pp.37-5/tripathi EFFECT OF GEOMETRICAL PARAMETERS ON HEAT TRANSFER PERFORMACE OF RECTANGULAR CIRCUMFERENTIAL FINS *Shilpa Tripathi Dpartmnt of Chmical Enginring, Indor Institut

More information

Fleet vehicles opportunities for carbon management

Fleet vehicles opportunities for carbon management Flt vhicls opportunitis for carbon managmnt Authors: Kith Robrtson 1 Dr. Kristian Stl 2 Dr. Christoph Hamlmann 3 Alksandra Krukar 4 Tdla Mzmir 5 1 Snior Sustainability Consultant & Lad Analyst, Arup 2

More information

A Note on Approximating. the Normal Distribution Function

A Note on Approximating. the Normal Distribution Function Applid Mathmatical Scincs, Vol, 00, no 9, 45-49 A Not on Approimating th Normal Distribution Function K M Aludaat and M T Alodat Dpartmnt of Statistics Yarmouk Univrsity, Jordan Aludaatkm@hotmailcom and

More information

[ ] These are the motor parameters that are needed: Motor voltage constant. J total (lb-in-sec^2)

[ ] These are the motor parameters that are needed: Motor voltage constant. J total (lb-in-sec^2) MEASURING MOOR PARAMEERS Fil: Motor paramtrs hs ar th motor paramtrs that ar ndd: Motor voltag constant (volts-sc/rad Motor torqu constant (lb-in/amp Motor rsistanc R a (ohms Motor inductanc L a (Hnris

More information

Architecture of the proposed standard

Architecture of the proposed standard Architctur of th proposd standard Introduction Th goal of th nw standardisation projct is th dvlopmnt of a standard dscribing building srvics (.g.hvac) product catalogus basd on th xprincs mad with th

More information

Settlement of a Soil Layer. One-dimensional Consolidation and Oedometer Test. What is Consolidation?

Settlement of a Soil Layer. One-dimensional Consolidation and Oedometer Test. What is Consolidation? On-dimnsional Consolidation and Odomtr Tst Lctur No. 12 Octobr 24, 22 Sttlmnt of a Soil Layr Th sttlmnt is dfind as th comprssion of a soil layr du to th loading applid at or nar its top surfac. Th total

More information

CPU. Rasterization. Per Vertex Operations & Primitive Assembly. Polynomial Evaluator. Frame Buffer. Per Fragment. Display List.

CPU. Rasterization. Per Vertex Operations & Primitive Assembly. Polynomial Evaluator. Frame Buffer. Per Fragment. Display List. Elmntary Rndring Elmntary rastr algorithms for fast rndring Gomtric Primitivs Lin procssing Polygon procssing Managing OpnGL Stat OpnGL uffrs OpnGL Gomtric Primitivs ll gomtric primitivs ar spcifid by

More information

Current and Resistance

Current and Resistance Chaptr 6 Currnt and Rsistanc 6.1 Elctric Currnt...6-6.1.1 Currnt Dnsity...6-6. Ohm s Law...6-4 6.3 Elctrical Enrgy and Powr...6-7 6.4 Summary...6-8 6.5 Solvd Problms...6-9 6.5.1 Rsistivity of a Cabl...6-9

More information

International Association of Scientific Innovation and Research (IASIR) (An Association Unifying the Sciences, Engineering, and Applied Research)

International Association of Scientific Innovation and Research (IASIR) (An Association Unifying the Sciences, Engineering, and Applied Research) Intrnational Association of Scintific Innovation and Rsarch (IASIR) (An Association Unifing th Scincs, Enginring, and Applid Rsarch) ISSN (Print): 79-000 ISSN (Onlin): 79-009 Intrnational Journal of Enginring,

More information

Entity-Relationship Model

Entity-Relationship Model Entity-Rlationship Modl Kuang-hua Chn Dpartmnt of Library and Information Scinc National Taiwan Univrsity A Company Databas Kps track of a company s mploys, dpartmnts and projcts Aftr th rquirmnts collction

More information

5.4 Exponential Functions: Differentiation and Integration TOOTLIFTST:

5.4 Exponential Functions: Differentiation and Integration TOOTLIFTST: .4 Eponntial Functions: Diffrntiation an Intgration TOOTLIFTST: Eponntial functions ar of th form f ( ) Ab. W will, in this sction, look at a spcific typ of ponntial function whr th bas, b, is.78.... This

More information

HOMEWORK FOR UNIT 5-1: FORCE AND MOTION

HOMEWORK FOR UNIT 5-1: FORCE AND MOTION Nam Dat Partnrs HOMEWORK FOR UNIT 51: FORCE AND MOTION 1. You ar givn tn idntial springs. Dsrib how you would dvlop a sal of for (i., a mans of produing rpatabl fors of a varity of sizs) using ths springs.

More information

On the moments of the aggregate discounted claims with dependence introduced by a FGM copula

On the moments of the aggregate discounted claims with dependence introduced by a FGM copula On th momnts of th aggrgat discountd claims with dpndnc introducd by a FGM copula - Mathiu BARGES Univrsité Lyon, Laboratoir SAF, Univrsité Laval - Hélèn COSSETTE Ecol Actuariat, Univrsité Laval, Québc,

More information

Foreign Exchange Markets and Exchange Rates

Foreign Exchange Markets and Exchange Rates Microconomics Topic 1: Explain why xchang rats indicat th pric of intrnational currncis and how xchang rats ar dtrmind by supply and dmand for currncis in intrnational markts. Rfrnc: Grgory Mankiw s Principls

More information

10/06/08 1. Aside: The following is an on-line analytical system that portrays the thermodynamic properties of water vapor and many other gases.

10/06/08 1. Aside: The following is an on-line analytical system that portrays the thermodynamic properties of water vapor and many other gases. 10/06/08 1 5. Th watr-air htrognous systm Asid: Th following is an on-lin analytical systm that portrays th thrmodynamic proprtis of watr vapor and many othr gass. http://wbbook.nist.gov/chmistry/fluid/

More information

Singleton Theorem Using Models

Singleton Theorem Using Models Singlton Thorm Using Modls Srivathsan B, Igor Walukiwicz LaBRI Paris, March 2010 Srivathsan B, Igor Walukiwicz (LaBRI) Singlton Thorm Using Modls Paris, March 2010 1 / 17 Introduction Singlton Thorm [Statman

More information

Abstract. Introduction. Statistical Approach for Analyzing Cell Phone Handoff Behavior. Volume 3, Issue 1, 2009

Abstract. Introduction. Statistical Approach for Analyzing Cell Phone Handoff Behavior. Volume 3, Issue 1, 2009 Volum 3, Issu 1, 29 Statistical Approach for Analyzing Cll Phon Handoff Bhavior Shalini Saxna, Florida Atlantic Univrsity, Boca Raton, FL, shalinisaxna1@gmail.com Sad A. Rajput, Farquhar Collg of Arts

More information

1. a) Show why, under the assumptions of the CAPM, if there is a risk-free asset expected returns on each asset must satisfy the condition

1. a) Show why, under the assumptions of the CAPM, if there is a risk-free asset expected returns on each asset must satisfy the condition Introducton to Mathatc nanc Sur 008 Probl st 3. a Show why, undr th assuptons o th CAPM, thr s a rsk-r asst xpctd rturns on ach asst ust satsy th condton / whr s th rturn on th arkt and s th rsk-r rturn.

More information

The Normal Distribution: A derivation from basic principles

The Normal Distribution: A derivation from basic principles Th Normal Distribution: A drivation from basic principls Introduction Dan Tagu Th North Carolina School of Scinc and Mathmatics Studnts in lmntary calculus, statistics, and finit mathmatics classs oftn

More information

SIMULATION OF THE PERFECT COMPETITION AND MONOPOLY MARKET STRUCTURE IN THE COMPANY THEORY

SIMULATION OF THE PERFECT COMPETITION AND MONOPOLY MARKET STRUCTURE IN THE COMPANY THEORY 1 SIMULATION OF THE PERFECT COMPETITION AND MONOPOLY MARKET STRUCTURE IN THE COMPANY THEORY ALEXA Vasil ABSTRACT Th prsnt papr has as targt to crat a programm in th Matlab ara, in ordr to solv, didactically

More information

Ground Fault Current Distribution on Overhead Transmission Lines

Ground Fault Current Distribution on Overhead Transmission Lines FACTA UNIVERSITATIS (NIŠ) SER.: ELEC. ENERG. vol. 19, April 2006, 71-84 Ground Fault Currnt Distribution on Ovrhad Transmission Lins Maria Vintan and Adrian Buta Abstract: Whn a ground fault occurs on

More information

Time to Event Tutorial. Outline. How Not to Understand Time to Event

Time to Event Tutorial. Outline. How Not to Understand Time to Event Holford & Lavill http://www.pag-mting.org/dfault.asp?abstract=8 Rvision Errors corrctd slid 8 Tim to Evnt Tutorial Nick Holford Dpt Pharmacology & Clinical Pharmacology Univrsity of Auckland, Nw Zaland

More information

E X C H A N G E R U L E S A N D C L E A R I N G R U L E S O F N A S D A Q O M X D E R I V A T I V E S M A R K E T S

E X C H A N G E R U L E S A N D C L E A R I N G R U L E S O F N A S D A Q O M X D E R I V A T I V E S M A R K E T S E X C H A N G E R U L E S A N D C L E A R I N G R U L E S O F N A S D A Q O M X D E R I V A T I V E S M A R K E T S Fair Valu 1 Valuation Variabls Tabl 1 blow shows th variabls us in th rspctiv valuation

More information

SPREAD OPTION VALUATION AND THE FAST FOURIER TRANSFORM

SPREAD OPTION VALUATION AND THE FAST FOURIER TRANSFORM RESEARCH PAPERS IN MANAGEMENT STUDIES SPREAD OPTION VALUATION AND THE FAST FOURIER TRANSFORM M.A.H. Dmpstr & S.S.G. Hong WP 26/2000 Th Judg Institut of Managmnt Trumpington Strt Cambridg CB2 1AG Ths paprs

More information

Gold versus stock investment: An econometric analysis

Gold versus stock investment: An econometric analysis Intrnational Journal of Dvlopmnt and Sustainability Onlin ISSN: 268-8662 www.isdsnt.com/ijds Volum Numbr, Jun 202, Pag -7 ISDS Articl ID: IJDS20300 Gold vrsus stock invstmnt: An conomtric analysis Martin

More information

HSBC Bank International Expat Explorer Survey 08

HSBC Bank International Expat Explorer Survey 08 HSBC Bank Intrnational Expat Explorr Survy 08 Rport On: Expat Existnc Th Survy Th Expat Explorr survy qustiond 2,155 xpatriats across four continnts about th opportunitis and challngs thy fac. Th survy

More information

Lecture 10: Depicting Sampling Distributions of a Sample Proportion

Lecture 10: Depicting Sampling Distributions of a Sample Proportion Lecture 10: Depicting Sampling Distributions of a Sample Proportion Chapter 5: Probability and Sampling Distributions 2/10/12 Lecture 10 1 Sample Proportion 1 is assigned to population members having a

More information

CALCULATING MARGINAL PROBABILITIES IN PROC PROBIT Guy Pascale, Memorial Health Alliance

CALCULATING MARGINAL PROBABILITIES IN PROC PROBIT Guy Pascale, Memorial Health Alliance CALCULATING MARGINAL PROBABILITIES IN PROC PROBIT Guy Pascal, Mmorial Halth Allianc Introduction Th PROBIT procdur within th SAS systm provids a simpl mthod for stimating discrt choic variabls (i.. dichotomous

More information

Simulated Radioactive Decay Using Dice Nuclei

Simulated Radioactive Decay Using Dice Nuclei Purpos: In a radioactiv sourc containing a vry larg numbr of radioactiv nucli, it is not possibl to prdict whn any on of th nucli will dcay. Although th dcay tim for any on particular nuclus cannot b prdictd,

More information

Long run: Law of one price Purchasing Power Parity. Short run: Market for foreign exchange Factors affecting the market for foreign exchange

Long run: Law of one price Purchasing Power Parity. Short run: Market for foreign exchange Factors affecting the market for foreign exchange Lctur 6: Th Forign xchang Markt xchang Rats in th long run CON 34 Mony and Banking Profssor Yamin Ahmad xchang Rats in th Short Run Intrst Parity Big Concpts Long run: Law of on pric Purchasing Powr Parity

More information

ME 612 Metal Forming and Theory of Plasticity. 6. Strain

ME 612 Metal Forming and Theory of Plasticity. 6. Strain Mtal Forming and Thory of Plasticity -mail: azsnalp@gyt.du.tr Makin Mühndisliği Bölümü Gbz Yüksk Tknoloji Enstitüsü 6.1. Uniaxial Strain Figur 6.1 Dfinition of th uniaxial strain (a) Tnsil and (b) Comprssiv.

More information

The Neolithic transition, a major episode in human history, is

The Neolithic transition, a major episode in human history, is Synthsis btwn dmic and cultural diffusion in th Nolithic transition in Europ Joaquim Fort 1 Complx Systms Laboratory, Dpartmnt of hysics, Univrsity of Girona, ES-1771 Girona, Catalonia, Spain Editd by

More information

Mark B. Garman and Michael J. Klass 1

Mark B. Garman and Michael J. Klass 1 Mark B. Garman and Michal J. Klass Univrsity of California, Brkly On th Estimation of Scurity Pric Volatility from Historical Data Abstract: Improvd stimators of scurity pric volatility ar formulatd. Ths

More information