Power Means Calculus Product Calculus, Harmonic Mean Calculus, and Quadratic Mean Calculus

Size: px
Start display at page:

Download "Power Means Calculus Product Calculus, Harmonic Mean Calculus, and Quadratic Mean Calculus"

Transcription

1 Gug Istitut Jourl, Volum 4, No 4, Novmbr 008 H. Vic Do Powr Ms Clculus Product Clculus, Hrmoic M Clculus, d Qudrtic M Clculus H. Vic Do Mrch, 008

2 Gug Istitut Jourl, Volum 4, No 4, Novmbr 008 H. Vic Do Ech Powr M of ordr 0 Abstrct r r r r r, ( ) ( r) is ssocitd with Powr M Drivtiv of ordr r, D. W dscrib th Arithmtic M Clculus obtid if r, Gomtric M Clculus obtid if r 0, Hrmoic M Clculus obtid if r, Qudrtic M Clculus obtid if r Kywords Clculus, Powr M, Drivtiv, Itgrl, Product Clculus. Gmm Fuctio, Mthmtics Subjct Clssifictio 6A06, 6B, 33B5, 6A4, 6A4, 46G05,

3 Gug Istitut Jourl, Volum 4, No 4, Novmbr 008 H. Vic Do Cotts Itroductio.. 9. Arithmtic M Clculus.... Th Arithmtic M of f () ovr [ b...,]. M Vlu Thorm for th Arithmtic M....3 Th Arithmtic M of () f ovr [, d] Arithmtic M Drivtiv 3.5 Th Arithmtic M Drivtiv is th Frmt-Nwto-Libit Drivtiv. 3.6 Th Arithmtic M Drivtiv is Additiv Oprtor Th Arithmtic M Drivtiv is ot Multiplictiv Oprtor 4. Th Product Itgrl..5. Growth problms 5. Th Product Itgrl of rt () ovr [,] b Th Product Itgrl of f ( ) ovr [ b...6,].4 Itrmdit Vlu Thorm for th Product Itgrl.7.5 Th Product Itgrl is Multiplictiv Oprtor 8 3. Gomtric M d Gomtric M Drivtiv Th Powr M with r 0 is th Gomtric M Th Gomtric M of f ( ) ovr [ b.....0,] 3.3 M Vlu Thorm for th Gomtric M Th Gomtric M of f ( ) ovr [, + d] Gomtric M Drivtiv 3

4 Gug Istitut Jourl, Volum 4, No 4, Novmbr 008 H. Vic Do (0) Dlog G( ) D G( ).. DG( ) (0) G ( ) D G() Th Gomtric M Drivtiv is o-dditiv oprtor Th Gomtric M Drivtiv is multiplictiv oprtor Gomtric M Drivtiv Ruls Gomtric M Clculus Fudmtl Thorm of th Product Clculus Tbl of Gomtric M Drivtiv, d Product Itgrls Product Diffrtil Equtios Product Diffrtil Equtios...6 dy d 5. Product Clculus Solutio of Py ( ) dy d 5.3 Py ( ) + Q ( ) my ot b solvd by Product Clculus y'' P( ) y' + Q( ) y my ot b solvd by Product Clculus Product Clculus of si Eulr s Product Rprsttio for si Covrsio to Trigoomtric Sris Gomtric M Drivtiv of si 6.4 Scod Gomtric M Drivtiv of si 6.5 Product Itgrtio of si 6.6 Eulr s d Product Rprsttio for si

5 Gug Istitut Jourl, Volum 4, No 4, Novmbr 008 H. Vic Do 6.7 Gomtric M Drivtiv of Eulr s d product for si Product Clculus of si Eulr s Product Rprsttio for si Gomtric M Drivtiv of si Th Wllis Product for π Product Clculus of cos Eulr s Product Rprsttio for cos Gomtric M Drivtiv of cos Product Clculus of t Product Rprsttio for t Gomtric M Drivtiv of t Product Clculus of sih Product Rprsttio of sih Gomtric M Drivtiv of sih Product Clculus of cosh Product Rprsttio of cosh 46. Gomtric M Drivtiv of cosh Product Clculus of th Product Rprsttio for th Gomtric M Drivtiv of th Product Clculus of 3. Product rprsttio of 3. Gomtric M Drivtiv of

6 Gug Istitut Jourl, Volum 4, No 4, Novmbr 008 H. Vic Do 3.3 Gomtric M Drivtiv of 3.4 Gomtric M Drivtiv of k Gomtric M Drivtiv by Epotitio (0) cot D si 5 (0) D Product Clculus of Γ () Eulr s Product Rprsttio for Γ () Gomtric M Drivtiv of Γ () Γ () Γ ( + ) Γ ( ) Product Rflctio Formul for Γ () Γ()( Γ ) π si π Γ () π ( ) 5.8 ( ) Γ Products of Γ () 64 Γ ( + ) 6. Γ ( + w ) Γ ( + w ), whr w + w Γ() Γ ( + i) Γ( i) sih...65 Γ ( + ) Γ ( + ) 6.3 Γ ( + w ) Γ ( + w ) Γ ( + w ) 3 Γ ( + ) Γ ( + )... Γ ( + ) 6.4 Γ ( + w ) Γ ( + w )... Γ ( + w ) k l, whr + w + w + w

7 Gug Istitut Jourl, Volum 4, No 4, Novmbr 008 H. Vic Do 7. Product Clculus of J ( ) ν Product Formul for J () 67 ν 7. Gomtric M Drivtiv of J ().67 ν 8. Product Clculus of Trigoomtric Sris Product Itgrl of Trigoomtric Sris Ifiit Fuctiol Products Gomtric M Drivtiv of Eulr Ifiit Product Pth Product Itgrl Pth Product Itgrl i th Pl Gr s Thorm for th Pth Product Itgrl Pth Product Itgrl i 3 E Stoks Thorm for th Pth Product Itgrl.7. Itrtiv Product Itgrl..73. Itrtiv Product Itgrl of f (,) t..73. Itrtiv Product Itgrl of rtd (, ) Hrmoic M Itgrl.74. Hrmoic M Itgrl Hrmoic M d Hrmoic M Drivtiv Th Hrmoic M of f ( ) ovr [ b...75,] 3. M Vlu Thorm for th Hrmoic M Th Hrmoic M of f ( ) ovr [, d] Hrmoic M Drivtiv 77 7

8 Gug Istitut Jourl, Volum 4, No 4, Novmbr 008 H. Vic Do 3.5 D...77 ( ) H( ) DH( ) 4. Hrmoic M Clculus Th Fudmtl Thorm of th Hrmoic M Clculus Tbl of Hrmoic M Drivtivs d Itgrls Qudrtic M Itgrl Qudrtic M Itgrl Cuchy-Schwrt Iqulity for Qudrtic M Itgrls Holdr Iqulity for Qudrtic M Itgrls 8 6. Qudrtic M d Qudrtic M Drivtiv Qudrtic M of f () ovr [ b...83,] 6. M Vlu Thorm for th Qudrtic M Th Qudrtic M of f () ovr [, + d] Qudrtic M Drivtiv..84 D () Q () D Q () ( ) / 7. Qudrtic M Clculus Th Fudmtl Thorm of th Qudrtic M Clculus Tbl of Qudrtic M Drivtivs d Itgrls..86 Rfrcs 88 8

9 Gug Istitut Jourl, Volum 4, No 4, Novmbr 008 H. Vic Do Itroductio W dscrib grlid clculus tht ws suggstd by Michl Spivy s [Spiv] obsrvtio of th rltio btw th Gomtric M of fuctio ovr itrvl, d its product itgrl. W will s tht ch Powr M of ordr r 0, ( ) r + r +... r r is ssocitd with Powr M Drivtiv of ordr r, ( r) D. Th Frmt/Nwto/Libit Drivtiv () d D D d is ssocitd with th Arithmtic M , which is Powr M of ordr r. Th Gomtric M Drivtiv (0) D is ssocitd with th Gomtric M ( ) /... which is Powr M of ordr r 0 [K]. 9

10 Gug Istitut Jourl, Volum 4, No 4, Novmbr 008 H. Vic Do Product Itgrtio is oprtio ivrs to th Gomtric M Drivtiv. Both r multiplictiv oprtios, tht pply turlly to products, d i prticulr to Γ (), th lytic tsio of th fctoril fuctio Th Hrmoic M Drivtiv ( ) D is ssocitd with th Hrmoic M which is Powr M of ordr r. Th Qudrtic M Drivtiv () D is ssocitd with th Powr M of ordr r, ( ) Th ivrs oprtio, th Qudrtic M Itgrtio trsforms fuctio to its L orm squrd. W procd with th dfiitio of th Arithmtic M Drivtiv.. 0

11 Gug Istitut Jourl, Volum 4, No 4, Novmbr 008 H. Vic Do Arithmtic M Clculus. Th Arithmtic M of f () ovr [ b,] Giv fuctio f () tht is Rim itgrbl ovr th itrvl [,] b, prtitio th itrvl ito sub-itrvls, of qul lgth b Δ, choos i ch subitrvl poit c, d cosidr th Arithmtic M of f (), i f ( c) + f( c) +... f( c ) ( f ( c) + f( c) +... f( c )) Δ b As, th squc of th Arithmtic Ms covrgs to whr b Fb () F () fd ( ) b, b t F ( ) ftdt ( ). t 0 Thrfor, th Arithmtic M of f () ovr [ b,] is dfid by b fd ( ) b

12 Gug Istitut Jourl, Volum 4, No 4, Novmbr 008 H. Vic Do. M Vlu Thorm for th Arithmtic M Proof: Thr is poit < c < b, so tht Sic t t 0 b f ( d ) fc ( ) b. F ( ) ftdt ( ) is cotiuous o [,] b, d diffrtibl i ( b,), by Lgrg Itrmdit Vlu Thorm thr is poit so tht Tht is, < c < b, Fb () F () b b f () c. f ( d ) fc ( ) b..3 Th Arithmtic M of f () ovr [, + d] Th Arithmtic M of f ( ) ovr [, + d] is th Ivrs oprtio to Itgrtio Proof: By., thr is so tht < c < +Δ, t +Δ f () tdt fc () Δ t Lttig Δ 0, th Arithmtic M of f () t, quls f ().

13 Gug Istitut Jourl, Volum 4, No 4, Novmbr 008 H. Vic Do t +Δ lim f ( tdt ) f ( ) Δ 0 Δ t. Thus, th oprtio of fidig th Arithmtic M of f ( ), is ivrs to itgrtio. This lds to th dfiitio of th Arithmtic M Drivtiv..4 Arithmtic M Drivtiv of Th Arithmtic M Drivtiv of t F ( ) ftdt ( ) t t 0 t F ( ) ftdt ( ) t 0 t is dfid s th Arithmtic M of f () ovr [, + d] () Δ 0 Δ t +Δ D F ( ) lim f ( t ) dt t.5 Th Arithmtic M Drivtiv is th Frmt- Nwto-Libit drivtiv () D F( ) df( ) d t + d () Proof: D F( ) Stdrd Prt of f( t) dt d Stdrd Prt of t F ( + d) F ( ) d 3

14 Gug Istitut Jourl, Volum 4, No 4, Novmbr 008 H. Vic Do df( ) d DF( )..6 Th Arithmtic M Drivtiv is Additiv Oprtor ( ) D F( ) + F ( ) DF( ) + DF ( ) Thus, th Arithmtic M Drivtiv pplis ffctivly to ifiit sris..7 Th Arithmtic M Drivtiv is ot multiplictiv oprtor ( ( ) ( )) ( ( )) ( ) + ( )( ( )) D F F DF F F DF Thus, Arithmtic M Drivtiv dos ot pply sily to ifiit products. 4

15 Gug Istitut Jourl, Volum 4, No 4, Novmbr 008 H. Vic Do Th Product Itgrl. Growth Problms Th Arithmtic M Drivtiv is usuitbl wh w r itrstd i th quotit Prst Vlu Ivstd Vlu Similrly, ttutio or mplifictio is msurd by Out-Put Sigl I-Put Sigl Th d for multiplictiv drivtiv oprtor motivtd th crtio of th product itgrtio... Th Product Itgrl of rt () ovr th itrvl [ b,] A mout A compoudd cotiuously t rt rt () ovr tim dt bcoms rtdt () A. Ovr qul sub-itrvls of th tim itrvl [ b,,] Δ t, b w obti th squc of fiit products rt ( ) Δt rt ( ) Δt rt ( ) Δ t [ rt ( ) + rt ( ) rt ( )] Δt A... A. 5

16 Gug Istitut Jourl, Volum 4, No 4, Novmbr 008 H. Vic Do As, th squc covrgs to Th mplifictio fctor t b A t rtdt () is clld t b th product itgrl of t rtdt () rt () ovr th itrvl [ b,] d is dotd t b rtdt (). t Thus, th Product Itgrl of rt () ovr th itrvl [ b,] is t b t b rtdt () rtdt () t t.3 Th Product Itgrl of f ( ) ovr th itrvl [ b,] Giv Rim itgrbl, positiv f ( ) o [ b,,] prtitio th itrvl ito sub-itrvls, of qul lgth b Δ, choos i ch subitrvl poit c, d cosidr th fiit products, i 6

17 Gug Istitut Jourl, Volum 4, No 4, Novmbr 008 H. Vic Do Δ Δ Δ f ( c ) f( c )... f( c ) Δ Δ Δ l[ fc ( ) fc ( )... fc ( ) ] [l f ( c ) + l f( c ) l f( c )] Δ. As, th squc of products covrgs to b ( l ( )) f d > 0. W cll this limit th product itgrl of f ( ) ovr th itrvl [ b,,] d dot it by b d f ( ). Thus, th Product Itgrl of f ( ) ovr th itrvl [ b,] is f ( ) b ( l ( )) b f d d.4 Itrmdit Vlu Thorm for th Product Itgrl Thr is poit < c < b, so tht t Proof: Sic ( ) ( l ( )) t 0 b d ( b ) f ( ) fc ( ) ϕ f t dt is cotiuous o [ b,,] d diffrtibl i ( b,), by Lgrg Itrmdit Vlu Thorm thr is poit 7

18 Gug Istitut Jourl, Volum 4, No 4, Novmbr 008 H. Vic Do so tht Hc, b < c < b, ( ) ϕ ϕ ( ) l f ( ) d ( b) ( ) l f( c) ( b ). b ( l fd ( )) ( ) f () c l fc ( ) ( b ) ( b )..5 Th Product Itgrl is multiplictiv oprtor If < c < b, b c b d d d f ( ) f ( ) f ( ) c Proof: If < c < b, c b ( l f( ) ) d+ ( l f( ) ) d d ( ) c d d f f ( ) f ( ) b c b. c Th ivrs oprtio to product itgrtio is th Gomtric M Drivtiv. 8

19 Gug Istitut Jourl, Volum 4, No 4, Novmbr 008 H. Vic Do 3 Gomtric M d Gomtric M Drivtiv 3. Th Powr M with r 0 is th Gomtric M Proof: Lt r 0 i r r r ( r ) (... 3) r 0 r r r r r r... r r ( ) ( ) + + log... log + +. Th, th pot log( r r... r + + ) log r d by L Hospitl, its limit is r 0 r r r { log( ) log } Dr lim Dr Thrfor, r r 0 r r r r r r ( ) lim l + l +... l ( ) l l... l ( ) l.... ( r r r l(... ) ) r (... ) r 0. is of th form 0 0, 9

20 Gug Istitut Jourl, Volum 4, No 4, Novmbr 008 H. Vic Do 3. Gomtric M of f() ovr [ b,] Giv itgrbl fuctio f () tht is positiv ovr [,] b, prtitio th itrvl, ito sub-itrvls, of qul lgth b Δ, choos i ch subitrvl poit c, d cosidr th Gomtric M of f () ( ( ) ( )... ( ) ) i / ( l f ( c) + l f( c) +...l f( c )) Δ fc fc fc b. As, th squc of Gomtric Ms covrgs to whr Thrfor, b b Gb G ( ) ( l f( ) ) d (), t G ( ) t ( l ( )) f t dt b b ( l ( )) f d is dfid s th Gomtric M of f ( ) ovr [ b.,] 3.3 M Vlu Thorm for th Gomtric M Thr is poit < c < b, so tht b ( l f( ) ) d b f() c 0

21 Gug Istitut Jourl, Volum 4, No 4, Novmbr 008 H. Vic Do Proof: By.3, d Th Gomtric M of f ( ) ovr [, + d] Th Gomtric M of f ( ) ovr [, + d], is th Ivrs Oprtio to Product Itgrtio Proof: By 3.3, thr is so tht < c < +Δ, t +Δ l f( t) dt Δ t f() c. Lttig Δ 0, th Gomtric M of f () t quls f ( ). l f( t) dt Δ lim t f( ) Δ 0 t +Δ Thus, th oprtio of fidig th Gomtric M of f ( ) ovr [, + d], is ivrs to product itgrtio ovr [, + d]. This lds to th dfiitio of th Gomtric M Drivtiv 3.5 Gomtric M Drivtiv Th Gomtric M Drivtiv of t G ( ) t ( l ( )) f t dt t is dfid s th Gomtric M of f ( ) ovr [, + d]

22 Gug Istitut Jourl, Volum 4, No 4, Novmbr 008 H. Vic Do (0) D G( ) lim Δ 0 t +Δ ( ) l f( t) dt Δ t 3.6 Proof: (0) (0) log ( ) D G D G( ) D G( ) lim Δ 0 t +Δ ( ) l f ( t) dt Δ t t +Δ 0 Δ Δ t ( ) lim l f ( t ) dt Stdrd prt of t + d ( ) l f ( t) dt d t ( ) ( + ) Stdrd Prt of G d d G ( ) log ( ) log ( ) + Stdrd Prt of d G d G Dlog G( ). 3.7 DG( ) (0) G ( ) D G( ) 3.8 Th Gomtric M Drivtiv is o- dditiv oprtor Proof: (0) ( ( ) + ( )) G( ) + G( ) +. D ( G G )( ) DG G

23 Gug Istitut Jourl, Volum 4, No 4, Novmbr 008 H. Vic Do 3.9 Th Gomtric M Drivtiv is multiplictiv oprtor (0) Proof: D G ( ) G( ) Dlog[ G ( ) G ( )] DG ( ) ( ) ( DG + G ( ) G ( ) ) DG( ) DG( ) G( ) G( ) ( D (0) G )( (0) ( ) D G( ) ). 3.0 Gomtric M Drivtiv Ruls ( ) (0) (0) Dl G( ) D l G( ) D G() D ( ) (0) D l G( ) D G( ) ( ) (0) g ( ) Dg ( ) gd ( ) l f ( ) D f( ) f( ) df dg dg d (0) ( ( )) D f(()) g f g 3

24 Gug Istitut Jourl, Volum 4, No 4, Novmbr 008 H. Vic Do 4 Gomtric M Clculus 4. Th Fudmtl Thorm of th Product Clculus t (0) dt D f() t f( ) t Proof: t D f t D ( l ( )) t f t dt (0) dt (0) () t t t t ( l f( t) ) dt t t D ( l f( t) ) dt t ( l f( t) ) dt t t D l f( t) dt t t t ( l f( t) ) ( ) dt t ( l ( )) D f t dt t f (). 4. Tbl of Gomtric M Drivtivs d itgrls 4

25 Gug Istitut Jourl, Volum 4, No 4, Novmbr 008 H. Vic Do W list som gomtric M Drivtivs, d Product Itgrls. Som of ths r giv i [Spiv]. f f f (0) (0) () D () I f( ) () / (l ) / (l ) / (l ) / (l ) / log l( ld ) l / (l /)/ + /( ) + si cot cos t t /si l(si d ) l(cos d ) l(t d ) si cos cos cos si si 4 5

26 Gug Istitut Jourl, Volum 4, No 4, Novmbr 008 H. Vic Do 5 Product Diffrtil Equtios 5. Product Diffrtil Equtios A Product Diffrtil Equtio ivolvs powrs of th Gomtric M Drivtiv oprtor d o sums, oly products. (0) D, A ordiry diffrtil qutios ivolvs sums of powrs of th Arithmtic M Drivtiv oprtor D. Such qutio is ot suitbl to th pplictio of product diffrtil qutio. (0) D, d dos ot covrt sily ito [Doll] ttmpts to writ th solutios to ordiry diffrtil qutios i trms of product itgrl, but big uwr of th Gomtric M Drivtiv, it fils to produc o product diffrtil qutio. [Doll] dmostrts tht products itgrls r ot turl solutios for ordiry diffrtil qutios. Th ttmpt md i [Doll] to itrprt Summtio Clculus i trms of th Product Itgrl lo, big oblivious to th product Clculus drivtiv, dos ot ld to bttr udrstdig of diffrtil qutios, or to y w rsults. 6

27 Gug Istitut Jourl, Volum 4, No 4, Novmbr 008 H. Vic Do Oly th bsic qutio dy Py ( ) d my b covrtd to product diffrtil qutio, d b solvd s such. dy 5. Product Clculus Solutio of Py ( ) d. Dividig both sids by y (), y ' P ( ) y. y ' y P ( ) (0) ( ) D y P y ( ) t Ptdt () Ptdt () t 0. t 0 t dy 5.3 Py ( ) + Q ( ) my ot b solvd by Product Clculus d Proof: W do t kow of Product Clculus mthod to solv th qutio dy Py ( ) Q ( ) d +. 7

28 Gug Istitut Jourl, Volum 4, No 4, Novmbr 008 H. Vic Do I Arithmtic M Clculus, w multiply both sids by t 0 Th, t t t y ' + yp ( ) Q ( ) P() t dt P() t dt P() t dt t 0 t 0 t 0 t Ptdt (). t t d ( y ) Q ( ) d Ptdt () Ptdt () t 0 t 0 y t t u Ptdt () u Ptdt () t 0 t 0 u 0 Q( u) Writig this s y u Ptdt () u 0 Qu ( ) t t 0 t u t 0 Ptdt () y u t Qu ( ) u 0 t t 0 t 0 Ptdt () Ptdt () dmostrts why th qutio cot b covrtd ito product diffrtil qutio, d cot b solvd s such: I product Clculus w d to hv pur products. No summtios. 8

29 Gug Istitut Jourl, Volum 4, No 4, Novmbr 008 H. Vic Do 5.4 y'' P( ) y' + Q( ) y my ot b solvd by Product Clculus Proof: W my writ s first ordr systm y'' P( ) y' + Q( ) y y' ' P( ) + Q( ) y Thus, i mtri form, d y 0 y d Q( ) P( ). But w d th mthods of summtio Clculus, to obti two idpdt solutios y (), d y () tht sp th solutio spc for th qutio. 9

30 Gug Istitut Jourl, Volum 4, No 4, Novmbr 008 H. Vic Do 6 Product Clculus of si 6. Eulr s Product Rprsttio for si si For y compl umbr, cos cos cos Proof: si cos si cos cos si 4 4 cos cos cos si cos cos cos... cos si 4 8 ( ) si cos cos cos...cos. 4 8 Thrfor, for y compl umbr 0, si si cos cos cos...cos 4 8 Lttig, si cos cos cos This holds lso for 0. Hc, it holds for y compl umbr. 6. Covrsio to Trigoomtric Sris 30

31 Gug Istitut Jourl, Volum 4, No 4, Novmbr 008 H. Vic Do Products of Cosis c b covrtd ito summtios, d th ifiit product my b covrtd ito Trigoomtric Sris. For istc, ( ) cos αcos βcos γ cos( α + β) + cos( α β) cos γ cos( α + β)cos γ + cos( α β)cos γ cos( α + β + γ) + cos( α + β γ) cos( α β + γ) + cos( α β γ) Gomtric M Drivtiv of si cos t t t si Proof: Gomtric M Diffrtitig both sids of 6., (0) si (0) (0) (0) D ( D cos )( D cos 4)( D cos 8)... si cos cos D cos D D D 3 si cos cos cos 3... Tht is, t t cos t si 3 3 cos t t t si 3

32 Gug Istitut Jourl, Volum 4, No 4, Novmbr 008 H. Vic Do 6.4 Scod Gomtric M Drivtiv of si + si cos cos cos Proof: Scod Gomtric M Diffrtitio of 6. givs cos si ( ) ( t t ) D D D (0) (0) (0)... + si ( ) cos cos cos Tht is, +... si 4 6 cos cos cos 3 Th lst sris c b obtid by trm by trm srisdiffrtitio of Product Itgrtio of si si B 3 B4 5 B6 7 B8 9 log d ( ) + ( ) ( ) + ( ) ! 8 5! 7! 6 9! Whr th B, B4, B6,... r th Broulli Numbrs. 3

33 Gug Istitut Jourl, Volum 4, No 4, Novmbr 008 H. Vic Do Proof: Product itgrtig 6., si log d logcosd logcosd logcosd By [Grob, p.3, 8b], for < π, up to costt, si log d log si d log d B 3 B4 5 B6 7 B8 9 ( ) + ( ) ( ) + ( )..., 4 3! 8 5! 7! 6 9! whr th B, B4, B6,... r th Broulli Numbrs. By [Grob, p.3, 9b], for < π, up to costt, log cos d log cos d 4 6 ( ) B 3 ( ) B4 5 ( ) B 6 7 ( ) ( ) ( ) ! 8 5! 7! log cos d 4 log cos d ( ) B 3 ( ) B4 5 ( ) B6 7 4 ( ) ( ) ( ) ! 8 5! 7!.. Comprig th cofficits of 3, 5, 7,... o both sids, dos ot yild y w rsult. 33

34 Gug Istitut Jourl, Volum 4, No 4, Novmbr 008 H. Vic Do 6.6 Eulr s d Product for si For y compl umbr si cos 4cos 4cos Proof: Usig th tripl gl formul, [Zid, p.57], w writ si 3 si 4 si ( ) si 3 4[ cos ] 3 3 ( 4cos ) si 3 3 ( )( ) si 3 3 si 4 si, 4cos 4cos si ( ) ( ) 4cos... 4cos si cos 4cos si Thrfor, for y compl umbr 0, Lttig, si si si 4cos cos 4cos 4cos

35 Gug Istitut Jourl, Volum 4, No 4, Novmbr 008 H. Vic Do Sic this holds lso for 0, it holds for y compl umbr icludig Gomtric M Drivtiv of Eulr s d Product Prsttio for si 4si 4 si 4 si cos si 3(4 cos ) 3 (4 cos ) 3 (4 cos ) Proof: Gomtric M Diffrtitig 6.6, 4cos (0) si (0) 3 (0) 3 4cos D D D D 4cos 4cos si 4 cos 4 cos 4 cos D D D si 4cos si 4si 4si (4cos ) 33(4cos ) cos 3(4cos ) si ( ) si 4si 4si cos si 3(4cos ) 3 (4cos ) 3 (4cos )

36 Gug Istitut Jourl, Volum 4, No 4, Novmbr 008 H. Vic Do 7 Product Clculus of si 7. Eulr s Product Rprsttio for si For y compl umbr, si... π ( π) (3 π) Th product covrgs bsolutly i y disk < R. Proof: si si cos ( ) si cos si + π 4 4 ( π π ) ( ) si si + si π π π ( ) ( ) ( ) si si + si + cos π + π π ( ) ( ) ( ) si si si cos + π + π π π ( ) ( ) ( ) si si si si + + π + π π ( ) ( ) ( ) si si si si + π + π π ( ) ( ) ( ) si si si si + π ( ) ( π + π3 ) ( ) ( 3 π ) si si si si

37 Gug Istitut Jourl, Volum 4, No 4, Novmbr 008 H. Vic Do Now, + π + π π si si si si + π ( ) ( π + 3π ) ( ) ( 3 π ) si si si si... + ( ) π ( ) π... si si ( + + )( + + ) + π π π π + + π π si si si cos si cos + π ( si cosπ )( siπ + π cos ) ( si si π )( si π si ) + Ad, π si si Thrfor, + π π π si si si si si si cos ( si π si ) Tht is, ( ) ( ( ) si π si... si π si ) si π ( ) si ( ) si π si... si π si cos si si Lttig 0, ( ) ( ) 37

38 Gug Istitut Jourl, Volum 4, No 4, Novmbr 008 H. Vic Do π π ( ) π si si... si Dividig by this lst qutio, si si cos.. si si si si π si π ( ) π si si si si si cos.. si π si π ( ) π si Lttig, for y fid turl umbr m w hv si m π mπ si mπ mπ mπ si si ( ) ( ) Cosqutly, th ifiit product Covrgs to si.... π ( π) (3 π) Th covrgc is bsolut i y disk < R, bcus th ifiit sris π ( π) (3 π) covrgs bsolutly i y disk < R. 38

39 Gug Istitut Jourl, Volum 4, No 4, Novmbr 008 H. Vic Do Idd, i < R, π ( π) (3 π) π 3 π π 6 < 6 R. 7. Gomtric M Drivtiv of si cot... π ( π) (3 π) Proof: (0) (0) (0) (0) (0) D si D D D D... π ( π) (3 π) Thus, cos ( ) (3 ) si π π π... cot... π ( π) (3 π) 7.3 Th Wllis Product for π π

40 Gug Istitut Jourl, Volum 4, No 4, Novmbr 008 H. Vic Do Proof: Wllis product for π follows from th product formul for si π, [Brt, p. 44]. si π π π π

41 Gug Istitut Jourl, Volum 4, No 4, Novmbr 008 H. Vic Do 8 Product Clculus of cos 8. Eulr s Product Rprsttio for cos, For y compl umbr, cos... π 3π 5π Th covrgc is bsolut i y disk < R. Proof: cos si si... π π 3π 4π 5π... π π 3π 4π 5π... π 3π 5π 8. Gomtric M Drivtiv of cos t π ( ) (3 π) ( ) (5 π) ( ) 4

42 Gug Istitut Jourl, Volum 4, No 4, Novmbr 008 H. Vic Do Proof: cos... π 3π 5π (0) (0) (0) (0) D D D D Thus, si cos π ( ) (3 π) ( ) (5 π) ( ) t π ( ) (3 π) ( ) (5 π) ( ) 4

43 Gug Istitut Jourl, Volum 4, No 4, Novmbr 008 H. Vic Do 9 Product Clculus of t 9. Product Rprsttio for t For y compl umbr, t... π ( π) (3 π)... π 3π 5π Th covrgc is bsolut i y disk < R. Proof: 7. d Gomtric M Drivtiv of t 8 + si π π ( ) 8 + ( π) (3 π) ( ) (3 π) (5 π) ( ) Proof: 43

44 Gug Istitut Jourl, Volum 4, No 4, Novmbr 008 H. Vic Do D (0) t (0) (0) (0) (0) D D D D... π π 3π (0) (0) (0 D D ) D π 3 π... 5 π Thus, si ( ) (3 ) π π π π ( ) (3 π) ( ) (5 π) ( ) 8 + si π π ( ) 8 + ( π) (3 π) ( ) (3 π) (5 π) ( ) 44

45 Gug Istitut Jourl, Volum 4, No 4, Novmbr 008 H. Vic Do 0 Product Clculus of sih 0. Product Rprsttio of sih sih π ( π) (3 π) Th covrgc is bsolut i y disk < R. Proof: sih isii, d us Gomtric M Drivtiv of sih coth... + π + + ( π) + + (3 π) + + Proof: (0) (0) (0) (0) (0) D sih D D + D + D +... π ( π) (3 π) Thus, Dsih ( ) (3 ) sih π + π + π +... coth... + π + + ( π) + + (3 π)

46 Gug Istitut Jourl, Volum 4, No 4, Novmbr 008 H. Vic Do Product Clculus of cosh. Product Rprsttio of cosh cosh π 3π 5π Th covrgc is bsolut i y disk < R. Proof: cosh cosi, d pply 8.. Gomtric M Drivtiv of cosh th π + ( ) (3 π) + ( ) (5 π) + ( ) Proof: (0) (0) (0) (0) D cosh D + D + D +... π 3π 5π Thus, Dcosh ( ) (3 ) ( ) (5 ) ( ) cosh π + π + π th π + ( ) (3 π) + ( ) (5 π) + ( ) 46

47 Gug Istitut Jourl, Volum 4, No 4, Novmbr 008 H. Vic Do Product Clculus of th. Product Rprsttio for th For y compl umbr, th π ( π) (3 π) π 3π 5π Th covrgc is bsolut i y disk < R. Proof: 0. d.. Gomtric M Drivtiv of th 8 + sih π + π + ( ) 8 + ( π) + (3 π) + ( ) (3 π) + (5 π) + ( ) Proof: 47

48 Gug Istitut Jourl, Volum 4, No 4, Novmbr 008 H. Vic Do Now, D (0) th (0) (0) (0) (0)... D D + D + D +... π π 3π (0) (0) (0) D + D + D + π 3π 5π Thrfor, cosh sih Dth cosh. th sih sih cosh sih cosh Thus, sih π+ ( π) + (3 π) π+ ( ) (3 π) + ( ) (5 π) + ( ) sih π + π + ( ) 8 + ( π) + (3 π) + ( ) (3 π) + (5 π) + ( ) 48

49 Gug Istitut Jourl, Volum 4, No 4, Novmbr 008 H. Vic Do 3 Product Clculus of 3. Product rprsttio of + 3. Gomtric M Drivtiv of (0) D Proof: D (0) (0) + D + ( D + ) Thus, (0) D. 49

50 Gug Istitut Jourl, Volum 4, No 4, Novmbr 008 H. Vic Do 3.3 Gomtric M Drivtiv of (0) D (0) (0) Proof: D + D + D( + ) (0) Thus, D. 3.4 Gomtric M Drivtiv of k k k (0) k D 50

51 Gug Istitut Jourl, Volum 4, No 4, Novmbr 008 H. Vic Do 5 Proof: (0) (0) k k D D + + ( ) k k D + + k k k + k k k + k k Thus, (0) k k k D.

52 Gug Istitut Jourl, Volum 4, No 4, Novmbr 008 H. Vic Do 4 Gomtric M Drivtiv by Epotitio Gomtric M Drivtiv c b obtid by usig th Product Clculus of th potil fuctio. W dmostrt this mthod by mpls. 4. (0) cot D si Proof: Sic log si log si si lim ( + ), w pply th Gomtric M Drivtiv to log si ( + ). D (0) log si log si fctors (0) log si (0) log si D +... D + fctors 5

53 Gug Istitut Jourl, Volum 4, No 4, Novmbr 008 H. Vic Do log si D( + ) log si + cot log si + cot logsi / + cot. Thus, (0) cot D si. 4. Proof: Sic (0) D w pply D (0) D to log log lim ( ) +, log ( + ). (0) log (0) log + D + 53

54 Gug Istitut Jourl, Volum 4, No 4, Novmbr 008 H. Vic Do log D( + ) log + + log log + + log log + + log Thus, (0) D. 54

55 Gug Istitut Jourl, Volum 4, No 4, Novmbr 008 H. Vic Do 5 Product Clculus of Γ ( ) O th hlf li > 0, Eulr dfid th rl vlud Gmm fuctio by t t 0 t Γ ( ) t dt. I th hlf pl R > 0, th compl vlud itgrl t t 0 t t dt covrgs, d is diffrtibl with t t t t t 0 t 0. D t dt t ltdt Thus, th compl vlud itgrl tds th Eulr itgrl ito lytic fuctio i th hlf pl R > 0. It is dotd by Γ (). This fuctio c b furthr tdd to product rprsttio tht is lytic for y, cpt for simpl pols tht it hs t 0,,, 3,... Th fuctio / Γ ( ), tht is giv by th ivrs product, is lytic for y, with simpl ros t 0,,, 3,... 55

56 Gug Istitut Jourl, Volum 4, No 4, Novmbr 008 H. Vic Do Thrfor, th turl clculus for Γ () d for / Γ ( ) i th compl pl is th product Clculus. 5. Eulr s Product Rprsttio for Γ () Γ () ( + ) ( + ) ( + ) 3 ( + )( + )( + ) Proof: t t Γ () t dt t 0 t t lim t 0 t dt Uiform covrgc llows ordr chg of limit, d itgrtio t t lim t 0 t dt Th chg of vribl, u t /, du dt /, givs u u 0 ( ) lim u u du c b writt s product ( + ) ( + ) ( ) ( ) ( )...( ) 3 ( + )

57 Gug Istitut Jourl, Volum 4, No 4, Novmbr 008 H. Vic Do Itgrtig by prts with rspct to u, kpig, d fid u u u u u du u d ( ) ( ) u 0 u 0 u u u u ( u) d( u) u u 0 u 0 u 0 u( u) du u + u ( u) d + u 0 u + u ( u) d + + u 0 u u ( u) d u 0. u + ( ) u... ( u) d u 0 + ( ) u u u 0 57

58 Gug Istitut Jourl, Volum 4, No 4, Novmbr 008 H. Vic Do ( ) ( ) ( + ) ( + ) ( + ) ( + ) Thrfor, u u 0 ( ) lim u u du lim {( ) ( ) ( )...( ) 3 ( + ) ( + ) ( + ) ( + ) ( + ) lim ( + ) ( + ) ( + )...( + ) 3 ( + )( + )... ( + )( + ) ( + ) ( + ) ( + ) 3 ( + )( + )( + ) Gomtric M Drivtiv of Γ () Γ '( ) lim log... Γ ( )

59 Gug Istitut Jourl, Volum 4, No 4, Novmbr 008 H. Vic Do Proof: D ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) (0) (0) (0) D D D (0) 3 Γ ( ) (0) (0) (0) (0) D D D D D D(3/) D(4/3) (3/) (4/3) lim ( + )... lim lim log lim log Sic Γ'( ) (0) Γ( ) D Γ (), 59

60 Gug Istitut Jourl, Volum 4, No 4, Novmbr 008 H. Vic Do Γ '( ) lim log... Γ ( ) Γ () Proof: ( + )( + )( + )... 3 Γ () ( )( )( ) Γ ( + ) Γ ( ) Proof: Γ ( + ) ( + ) ( + ) ( + ) ( + )( + )( + ) ( + ) ( ) ( + ) ( + )( + )( + )( + )... 3 ( + ) ( + ) ( + ) ( ) ( ) ( ) ( ) ( + ) ( + ) ( + )... 3 ( )( )( )( ) Γ ()

61 Gug Istitut Jourl, Volum 4, No 4, Novmbr 008 H. Vic Do 5.5 Product Rflctio Formul for Γ () Γ()( Γ ) ( )( )( )... 3 Proof: Γ()( Γ ) ( ) ( ) ( ) ( )( )( ) ( ) ( ) ( ) ( )( )( )( ) ( + )( + )( + )... 3 ( + )( )( + ) ( ) ( ) ( ) ( ) ( + )( + )( + ) ( )( )( )( ) ( + )( )( + )( )( + )( ) ( )( )( ) Γ()( Γ ) π si π Proof: By 5.5, Γ()( Γ ) ( )( )( )

62 Gug Istitut Jourl, Volum 4, No 4, Novmbr 008 H. Vic Do π π ( π) ( ( π) )( ( π) )( ).. π ( π) (3 π) π. si π Γ () π 5.7 ( ) Proof: Substitutig π i Γ()( Γ ), w obti si π Tht is, ( ) ( π Γ Γ ). si π () Γ π. This c b obtid dirctly through th Wllis Product for π. 5.8 ( ) Proof: By 5.5, ( ) Γ Γ

63 Gug Istitut Jourl, Volum 4, No 4, Novmbr 008 H. Vic Do Wllis Formul of 7.3, follows from 5.7, d

64 Gug Istitut Jourl, Volum 4, No 4, Novmbr 008 H. Vic Do 6 Products of Γ () Γ ( + ) 6. Γ ( + w ) Γ ( + w ), whr w + w ( )( ) ( ) ( )( ) ( ) w w w w Γ ( + ) ( + w)( + w) ( w ( ) ) ( w) 3... Γ + Γ Proof: Γ ( + ) Γ ( + w ) Γ ( + w ) ( + ) ( + ) ( + ) ( + )( + )( + )( + ) 3 + w + w + w ( + w )( + )( + )( + )... 3 ( + ) ( + ) ( + ) + w + w + w w + w + w ( + w )( + )( + )( + ) ( + ) ( + ) ( + ) + w + w + w... 3 ( + ) ( + ) ( + ) ( + )( + )( + )( + )

65 Gug Istitut Jourl, Volum 4, No 4, Novmbr 008 H. Vic Do w w w ( + w )( + )( + )( + ) ( + ) ( + ) ( + ) w w w... 3 w w w ( + w )( + )( + )( + ) ( + ) ( + ) ( + ) w w w... 3 w w w w ( + w)( + )( + ) ( + w 3 )( + )( + 3 ) ( + )( + )( + )( + ) ( + w)( + w) ( ) ( )( ) ( ) ( )( ) ( ) w w w w Γ() Γ ( + i) Γ( i) sih Proof: Γ() Γ ( + i) Γ( i) ( i )( i i i i i )( )( )( )( ) ( )( )( ) sih. Similrly, w obti 65

66 Gug Istitut Jourl, Volum 4, No 4, Novmbr 008 H. Vic Do Γ ( + ) Γ ( + ) 6.3 Γ ( + w ) Γ ( + w ) Γ ( + w ) 3, whr + w + w + w3. Γ ( + ) Γ ( + ) Γ ( + w ) Γ ( + w ) Γ ( + w ) 3 ( + w)( + w)( + w3) ( )( ) w w w3 ( + )( + )( + ) ( )( ) w w w3 ( + )( )( + 3 ) ( + )( + ) Mor grlly, 6.4 If w + w w, k l Γ ( + ) Γ ( + )... Γ ( + ) Γ ( + w ) Γ ( + w )... Γ ( + w ) k l my b simplifid A wkr rsult tht rquirs tht k 0], d i [Ri, p. 49]. l, is sttd i [Ml, p. 66

67 Gug Istitut Jourl, Volum 4, No 4, Novmbr 008 H. Vic Do 7 Product Clculus of Jν () For compl umbr ν, th Bssl fuctio Jν () solvs Bssl s diffrtil qutio dw dw ν + + ( ) w 0. d d For ν rl, Jν () hs ifiitly my rl ros, ll simpl with th possibl cptio of 0. For ν 0, th positiv ros j ν,k r mootoic icrsig squc ν, < ν, < ν,3 <... j j j 7. Product Formul for Jν () [Abrm, p.370] J ν ν ()... Γ ( ν + ) j j j ν, ν, ν,3 7. Gomtric M Drivtiv of J () DJ () ν... J j j j ν ν( ) ν, ν, ν,3 ν 67

68 Gug Istitut Jourl, Volum 4, No 4, Novmbr 008 H. Vic Do D J D D ν (0) (0) (0) Proof: ν () ν Γ ( ν + ) D D D... (0) (0) (0) j ν, j ν, jν,3 D D j ν, D jν, D j ν ν,3 / j ν ν, / jν, / jν,3 ( / ) ( / ) ( / ) 0... ν j j j ν, ν, ν,3... Thus, ν j ν, jν, jν,... DJ ( ) ν... J j j j ν ν( ) ν, ν, ν,3 68

69 Gug Istitut Jourl, Volum 4, No 4, Novmbr 008 H. Vic Do 8 Product Clculus of Trigoomtric Sris If π π f ( ) 0 + cos + b si L L th Gomtric M Drivtiv c b pplid to π π π π f( ) 0 cos + bsi cos + bsi L L L L Product Itgrl of Trigoomtric Sris o [0, π ], Thrfor, si si si 3 π π si si 3 si Product Itgrtig both sids, Hc, cos cos 3 π cos 3... cos cos 3 π cos

Important result on the first passage time and its integral functional for a certain diffusion process

Important result on the first passage time and its integral functional for a certain diffusion process Lcturs Mtmátics Volumn 22 (21), págins 5 9 Importnt rsult on th first pssg tim nd its intgrl functionl for crtin diffusion procss Yousf AL-Zlzlh nd Bsl M. AL-Eidh Kuwit Univrsity, Kuwit Abstrct. In this

More information

Sharp bounds for Sándor mean in terms of arithmetic, geometric and harmonic means

Sharp bounds for Sándor mean in terms of arithmetic, geometric and harmonic means Qian t al. Journal of Inqualitis and Applications (015) 015:1 DOI 10.1186/s1660-015-0741-1 R E S E A R C H Opn Accss Sharp bounds for Sándor man in trms of arithmtic, gomtric and harmonic mans Wi-Mao Qian

More information

AREA OF A SURFACE OF REVOLUTION

AREA OF A SURFACE OF REVOLUTION AREA OF A SURFACE OF REVOLUTION h cut r πr h A surfce of revolution is formed when curve is rotted bout line. Such surfce is the lterl boundr of solid of revolution of the tpe discussed in Sections 7.

More information

15.6. The mean value and the root-mean-square value of a function. Introduction. Prerequisites. Learning Outcomes. Learning Style

15.6. The mean value and the root-mean-square value of a function. Introduction. Prerequisites. Learning Outcomes. Learning Style The men vlue nd the root-men-squre vlue of function 5.6 Introduction Currents nd voltges often vry with time nd engineers my wish to know the verge vlue of such current or voltge over some prticulr time

More information

SCO TT G LEA SO N D EM O Z G EB R E-

SCO TT G LEA SO N D EM O Z G EB R E- SCO TT G LEA SO N D EM O Z G EB R E- EG Z IA B H ER e d it o r s N ) LICA TIO N S A N D M ETH O D S t DVD N CLUDED C o n t e n Ls Pr e fa c e x v G l o b a l N a v i g a t i o n Sa t e llit e S y s t e

More information

Asymptotic Growth of Functions

Asymptotic Growth of Functions CMPS Itroductio to Aalysis of Algorithms Fall 3 Asymptotic Growth of Fuctios We itroduce several types of asymptotic otatio which are used to compare the performace ad efficiecy of algorithms As we ll

More information

EFFECT OF GEOMETRICAL PARAMETERS ON HEAT TRANSFER PERFORMACE OF RECTANGULAR CIRCUMFERENTIAL FINS

EFFECT OF GEOMETRICAL PARAMETERS ON HEAT TRANSFER PERFORMACE OF RECTANGULAR CIRCUMFERENTIAL FINS 25 Vol. 3 () January-March, pp.37-5/tripathi EFFECT OF GEOMETRICAL PARAMETERS ON HEAT TRANSFER PERFORMACE OF RECTANGULAR CIRCUMFERENTIAL FINS *Shilpa Tripathi Dpartmnt of Chmical Enginring, Indor Institut

More information

CHAPTER 3 THE TIME VALUE OF MONEY

CHAPTER 3 THE TIME VALUE OF MONEY CHAPTER 3 THE TIME VALUE OF MONEY OVERVIEW A dollar i the had today is worth more tha a dollar to be received i the future because, if you had it ow, you could ivest that dollar ad ear iterest. Of all

More information

Reasoning to Solve Equations and Inequalities

Reasoning to Solve Equations and Inequalities Lesson4 Resoning to Solve Equtions nd Inequlities In erlier work in this unit, you modeled situtions with severl vriles nd equtions. For exmple, suppose you were given usiness plns for concert showing

More information

ME 612 Metal Forming and Theory of Plasticity. 6. Strain

ME 612 Metal Forming and Theory of Plasticity. 6. Strain Mtal Forming and Thory of Plasticity -mail: azsnalp@gyt.du.tr Makin Mühndisliği Bölümü Gbz Yüksk Tknoloji Enstitüsü 6.1. Uniaxial Strain Figur 6.1 Dfinition of th uniaxial strain (a) Tnsil and (b) Comprssiv.

More information

Online school frequency and time service of high precision clock based on the generalized regression model of GPS

Online school frequency and time service of high precision clock based on the generalized regression model of GPS COMPUER MODELLING & NEW ECHNOLOGIES 2014 18(12C) 710-714 Oli school frqucy ad tim srvic of high prcisio cloc basd o th gralizd rgrssio modl of GPS Abstract Jiazhu Zhg, Yhmi Gao Najig Forstry Uivrsity,

More information

GCE Further Mathematics (6360) Further Pure Unit 2 (MFP2) Textbook. Version: 1.4

GCE Further Mathematics (6360) Further Pure Unit 2 (MFP2) Textbook. Version: 1.4 GCE Further Mathematics (660) Further Pure Uit (MFP) Tetbook Versio: 4 MFP Tetbook A-level Further Mathematics 660 Further Pure : Cotets Chapter : Comple umbers 4 Itroductio 5 The geeral comple umber 5

More information

Chapter 5 Unit 1. IET 350 Engineering Economics. Learning Objectives Chapter 5. Learning Objectives Unit 1. Annual Amount and Gradient Functions

Chapter 5 Unit 1. IET 350 Engineering Economics. Learning Objectives Chapter 5. Learning Objectives Unit 1. Annual Amount and Gradient Functions Chapter 5 Uit Aual Amout ad Gradiet Fuctios IET 350 Egieerig Ecoomics Learig Objectives Chapter 5 Upo completio of this chapter you should uderstad: Calculatig future values from aual amouts. Calculatig

More information

Chapter 4. Adaptive Filter Theory and Applications

Chapter 4. Adaptive Filter Theory and Applications Chaptr 4 Adaptiv Filtr hory ad Applicatios frcs: B.Widro ad M..Hoff, Adaptiv sitchig circuits, Proc. Of WSCON Cov. c., part 4, pp.96-4, 96 B.Widro ad S.D.Stars, Adaptiv Sigal Procssig, Prtic-Hall, 985

More information

ON AN INTEGRAL OPERATOR WHICH PRESERVE THE UNIVALENCE

ON AN INTEGRAL OPERATOR WHICH PRESERVE THE UNIVALENCE Proceedigs of the Iteratioal Coferece o Theory ad Applicatios of Mathematics ad Iformatics ICTAMI 3, Alba Iulia ON AN INTEGRAL OPERATOR WHICH PRESERVE THE UNIVALENCE by Maria E Gageoea ad Silvia Moldoveau

More information

Ne l'aria in questi di fatt'ho un si forte Castel,

Ne l'aria in questi di fatt'ho un si forte Castel, 10 19 29 37 46 54 62 70 N l' in qu ftt'ho un si Csl, oginl ky C l sl N l' su in qu ch, Cn poiv' l ftt' houn si Cipno d Ror v nr, nr l vn, poiv' fossin V n v prcuo ft.. mr, L'r, ch tr'l trui fol lr pugnr

More information

I. Why is there a time value to money (TVM)?

I. Why is there a time value to money (TVM)? Itroductio to the Time Value of Moey Lecture Outlie I. Why is there the cocept of time value? II. Sigle cash flows over multiple periods III. Groups of cash flows IV. Warigs o doig time value calculatios

More information

SPREAD OPTION VALUATION AND THE FAST FOURIER TRANSFORM

SPREAD OPTION VALUATION AND THE FAST FOURIER TRANSFORM RESEARCH PAPERS IN MANAGEMENT STUDIES SPREAD OPTION VALUATION AND THE FAST FOURIER TRANSFORM M.A.H. Dmpstr & S.S.G. Hong WP 26/2000 Th Judg Institut of Managmnt Trumpington Strt Cambridg CB2 1AG Ths paprs

More information

Campus Sustainability Assessment and Related Literature

Campus Sustainability Assessment and Related Literature Campus Sustainability Assessment and Related Literature An Annotated Bibliography and Resource Guide Andrew Nixon February 2002 Campus Sustainability Assessment Review Project Telephone: (616) 387-5626

More information

Approximating Area under a curve with rectangles. To find the area under a curve we approximate the area using rectangles and then use limits to find

Approximating Area under a curve with rectangles. To find the area under a curve we approximate the area using rectangles and then use limits to find 1.8 Approximatig Area uder a curve with rectagles 1.6 To fid the area uder a curve we approximate the area usig rectagles ad the use limits to fid 1.4 the area. Example 1 Suppose we wat to estimate 1.

More information

Ordinal Classification Method for the Evaluation Of Thai Non-life Insurance Companies

Ordinal Classification Method for the Evaluation Of Thai Non-life Insurance Companies www.ijcsi.org 362 Ordil Method for the Evlutio Of Thi No-life Isurce Compies Phiboo Jhopit, Sukree Sithupiyo 2 d Thitivdee Chiywt 3 Techopreeurship d Iovtio Mgemet Progrm Grdute School, Chullogkor Uiversity,

More information

Introduction to Integration Part 2: The Definite Integral

Introduction to Integration Part 2: The Definite Integral Mthemtics Lerning Centre Introduction to Integrtion Prt : The Definite Integrl Mr Brnes c 999 Universit of Sdne Contents Introduction. Objectives...... Finding Ares 3 Ares Under Curves 4 3. Wht is the

More information

The Constrained Ski-Rental Problem and its Application to Online Cloud Cost Optimization

The Constrained Ski-Rental Problem and its Application to Online Cloud Cost Optimization 3 Procdings IEEE INFOCOM Th Constraind Ski-Rntal Problm and its Application to Onlin Cloud Cost Optimization Ali Khanafr, Murali Kodialam, and Krishna P. N. Puttaswam Coordinatd Scinc Laborator, Univrsit

More information

STRONGEST IRELAND SERIOUS ILLNESS PLAN. The. LifeProtect. Market Comparison. 19% more Heart Attack and 17% more Stroke claims.

STRONGEST IRELAND SERIOUS ILLNESS PLAN. The. LifeProtect. Market Comparison. 19% more Heart Attack and 17% more Stroke claims. LifProtct Markt Compariso Th STRONGEST SERIOUS ILLNESS PLAN IN IRELAND simplifid dfiitios will rsult i us payig out up to 19% mor Hart Attack ad 17% mor Strok claims. Sourc: Risurr Rsarch, Ju 2014 For

More information

CLOUD COMPUTING BUSINESS MODELS

CLOUD COMPUTING BUSINESS MODELS da MODLS Atlir d l iova CLOUD COMPUTING MODLS Chair coomi d l iova - Mourad Zroukhi C d chrch Écoomi t Maagmt Uivrsité d Chair coomi d l iova - da MODLS AGNDA Cloud Computig : What is it? Cloud Dploymt

More information

Move on! aki a. customers. refer your brand. abildiniz. Would you like be in an interactive communicationrtawith your customers?

Move on! aki a. customers. refer your brand. abildiniz. Would you like be in an interactive communicationrtawith your customers? Mv! ö l z A. l uuz p uuz? B u l blbg plu ugu b lc cva v? z fllw b u ulw Au ç l?? l l f hgl z cu f h pw l z ç? S b uzluhw ull lgl u l g h z u ç çl? p v 4001 vb. cl S? 1 cl O IS, 1 O 900 ç ç l f u b GMP,

More information

ECG590I Asset Pricing. Lecture 2: Present Value 1

ECG590I Asset Pricing. Lecture 2: Present Value 1 ECG59I Asset Pricing. Lecture 2: Present Value 1 2 Present Value If you have to decide between receiving 1$ now or 1$ one year from now, then you would rather have your money now. If you have to decide

More information

MATH 150 HOMEWORK 4 SOLUTIONS

MATH 150 HOMEWORK 4 SOLUTIONS MATH 150 HOMEWORK 4 SOLUTIONS Section 1.8 Show tht the product of two of the numbers 65 1000 8 2001 + 3 177, 79 1212 9 2399 + 2 2001, nd 24 4493 5 8192 + 7 1777 is nonnegtive. Is your proof constructive

More information

at 10 knots to avoid the hurricane, what could be the maximum CPA? 59 miles - 54 nm STEP 1 Ship s Speed Radius (e-r) 10 k - 1.0 nm every 6 minutes

at 10 knots to avoid the hurricane, what could be the maximum CPA? 59 miles - 54 nm STEP 1 Ship s Speed Radius (e-r) 10 k - 1.0 nm every 6 minutes :1 Navigatio :1 Gal 1 1 1 Rf: P, Huica You a udway o cous T ad you axiu spd is 1 kots. Th y of a huica bas 1 T, ils fo you positio. Th huica is ovig towads T at 1 kots. If you auv at 1 kots to avoid th

More information

> Success in a New Age of Teaching > Seasonal Safety Tips. Steve Monahan President and CEO INSIDE. Meemic Insurance Company.

> Success in a New Age of Teaching > Seasonal Safety Tips. Steve Monahan President and CEO INSIDE. Meemic Insurance Company. I ip & f p xlivl vi dil i v 64 Fll 2014 Sv M Pid d CEO di f i d d i fll k-i i bi pp d k A f i l l, f, i lik i bk ld i i, i i. I M i fil. S. v M ll f bi p f, l p k C i, l Mi I i i d l, l di d f i O k i

More information

Dormend'un giorno, Canto

Dormend'un giorno, Canto 12 21 31 42 51 60 6 75 1 2 3 4 5 sn c l' om cr b b t t mnd'un gior, Cn Phipp Vrlot (c. 140 c. 1530) l'r br' l' nt', pi qul l f mnd' un v'l mur mur c n n giorn' l Nimph' gl' s n c 2012 Srpnt Pubcons 1 Printd

More information

SKILL TEST IR(H) HELICOPTER SE ME Application and report form A. Udfyldes af ansøgeren/to be filled out by the applicant:

SKILL TEST IR(H) HELICOPTER SE ME Application and report form A. Udfyldes af ansøgeren/to be filled out by the applicant: SKILL TEST IR(H) HELICOPTER SE ME Applition n rport orm A. Uyls nsørn/to ill out y th pplint: CPR-nr./Dt o Birth: Crtiikt nr./lin no.: (I ny) Ustn Stt/Stt o Lin Issu: Fornvn/First nm(s): Etrnvn/Lst nm:

More information

How to set up your GMC Online account

How to set up your GMC Online account How to set up your GMC Olie accout Mai title Itroductio GMC Olie is a secure part of our website that allows you to maage your registratio with us. Over 100,000 doctors already use GMC Olie. We wat every

More information

i n g S e c u r it y 3 1B# ; u r w e b a p p li c a tio n s f r o m ha c ke r s w ith t his å ] í d : L : g u id e Scanned by CamScanner

i n g S e c u r it y 3 1B# ; u r w e b a p p li c a tio n s f r o m ha c ke r s w ith t his å ] í d : L : g u id e Scanned by CamScanner í d : r ' " B o m m 1 E x p e r i e n c e L : i i n g S e c u r it y. 1-1B# ; u r w e b a p p li c a tio n s f r o m ha c ke r s w ith t his g u id e å ] - ew i c h P e t e r M u la e n PACKT ' TAÞ$Æo

More information

Escola Federal de Engenharia de Itajubá

Escola Federal de Engenharia de Itajubá Escola Federal de Egeharia de Itajubá Departameto de Egeharia Mecâica Pós-Graduação em Egeharia Mecâica MPF04 ANÁLISE DE SINAIS E AQUISÇÃO DE DADOS SINAIS E SISTEMAS Trabalho 02 (MATLAB) Prof. Dr. José

More information

Sverige (Sweden): Trusted List

Sverige (Sweden): Trusted List Svrig (Swd): Trustd List PTS (Post- och tlstyrls) Sch nformation TSL Vrsion 3 dtifir TSL Squc 7 Numbr TSL Typ http://uri.tsi.org/trstsvc/sigdir-1999-93-ec-trustdlist/tsltyp/grictrustdlist/tsltyp/gric Sch

More information

Abstract. Introduction. Statistical Approach for Analyzing Cell Phone Handoff Behavior. Volume 3, Issue 1, 2009

Abstract. Introduction. Statistical Approach for Analyzing Cell Phone Handoff Behavior. Volume 3, Issue 1, 2009 Volum 3, Issu 1, 29 Statistical Approach for Analyzing Cll Phon Handoff Bhavior Shalini Saxna, Florida Atlantic Univrsity, Boca Raton, FL, shalinisaxna1@gmail.com Sad A. Rajput, Farquhar Collg of Arts

More information

PROVIDER APPLICATION FOR MEDICAL LIEN PORTFOLIO PURCHASE

PROVIDER APPLICATION FOR MEDICAL LIEN PORTFOLIO PURCHASE G CA HNOW F OYOUM D CA N C F d g f d gp fm d ( OP ) g p y w U W b p d gf g f p f f 10y W yb q dbyp b mp y d b p b Y dw gf y d k f py m by gy m d f d g p yf mp Wp d d w p ya p f f mub dm d p d W pf p z

More information

CaNoRock. Canadian Norwegian Student Exchange & Sounding Rocket Program. Kolbjørn Blix Dahle Head of Marketing Andøya Rocket Range Norway

CaNoRock. Canadian Norwegian Student Exchange & Sounding Rocket Program. Kolbjørn Blix Dahle Head of Marketing Andøya Rocket Range Norway CNRc Cd Nw Sud Exch & Sud Rc P Klbjø Blx Dhl Hd f M Adøy Rc R Nwy Bcud Tlc Scc W 2008 Ow: Cd Spc Acy qu Adøy Rc R (ARR) d ud c duc ARR pd Dc. 2008 Bcud Whp 2009 ARR d Uvy f Ol (UO) whp Uv. f Schw d Uv.

More information

Systems of First Order Linear Differential Equations

Systems of First Order Linear Differential Equations Sysms of Firs Ordr Linr Diffrnil Equions W will now urn our nion o solving sysms of simulnous homognous firs ordr linr diffrnil quions Th soluions of such sysms rquir much linr lgbr (Mh Bu sinc i is no

More information

Elementary Theory of Russian Roulette

Elementary Theory of Russian Roulette Elemetary Theory of Russia Roulette -iterestig patters of fractios- Satoshi Hashiba Daisuke Miematsu Ryohei Miyadera Itroductio. Today we are goig to study mathematical theory of Russia roulette. If some

More information

Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method. Version 2 CE IIT, Kharagpur

Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method. Version 2 CE IIT, Kharagpur Module Anlysis of Stticlly Indeterminte Structures by the Mtrix Force Method Version CE IIT, Khrgpur esson 9 The Force Method of Anlysis: Bems (Continued) Version CE IIT, Khrgpur Instructionl Objectives

More information

Optimization design of structures subjected to transient loads using first and second derivatives of dynamic displacement and stress

Optimization design of structures subjected to transient loads using first and second derivatives of dynamic displacement and stress Shock and Vibration 9 (202) 445 46 445 DOI 0.3233/SAV-202-0685 IOS Prss Optimization dsign of structurs subjctd to transint loads using first and scond drivativs of dynamic displacmnt and strss Qimao Liu

More information

Present Value Factor To bring one dollar in the future back to present, one uses the Present Value Factor (PVF): Concept 9: Present Value

Present Value Factor To bring one dollar in the future back to present, one uses the Present Value Factor (PVF): Concept 9: Present Value Cocept 9: Preset Value Is the value of a dollar received today the same as received a year from today? A dollar today is worth more tha a dollar tomorrow because of iflatio, opportuity cost, ad risk Brigig

More information

ENGINEERING COMPUTATION BY ARTIFICIAL NEURAL NETWORKS. Explaining Neural Networks

ENGINEERING COMPUTATION BY ARTIFICIAL NEURAL NETWORKS. Explaining Neural Networks SRK oaz Poltcha Pozaa Ittut Mcha Stooa ul. Potroo 3, 6-965 Poza EGIEERIG COMPUAIO BY ARIFICIA EURA EWORKS Eplag ural tor ural tor ar copod o pl lt opratg paralll. h lt ar prd b bologcal rvou t. A atur,

More information

Current and Resistance

Current and Resistance Chaptr 6 Currnt and Rsistanc 6.1 Elctric Currnt...6-6.1.1 Currnt Dnsity...6-6. Ohm s Law...6-4 6.3 Elctrical Enrgy and Powr...6-7 6.4 Summary...6-8 6.5 Solvd Problms...6-9 6.5.1 Rsistivity of a Cabl...6-9

More information

Category 11: Use of Sold Products

Category 11: Use of Sold Products 11 Catgory 11: Us of Sold Products Catgory dscription T his catgory includs missions from th us of goods and srvics sold by th rporting company in th rporting yar. A rporting company s scop 3 missions

More information

Unit 29: Inference for Two-Way Tables

Unit 29: Inference for Two-Way Tables Unit 29: Inference for Two-Wy Tbles Prerequisites Unit 13, Two-Wy Tbles is prerequisite for this unit. In ddition, students need some bckground in significnce tests, which ws introduced in Unit 25. Additionl

More information

Payment streams and variable interest rates

Payment streams and variable interest rates Chapter 4 Payment streams and variable interest rates In this chapter we consider two extensions of the theory Firstly, we look at payment streams A payment stream is a payment that occurs continuously,

More information

Epidemiology of Adverse Events in Air Medical Transport. Russell D. MacDonald, MD, MPH, Brie Ann Banks, BSc, MD, Merideth Morrison

Epidemiology of Adverse Events in Air Medical Transport. Russell D. MacDonald, MD, MPH, Brie Ann Banks, BSc, MD, Merideth Morrison Egy Av Ev A M T R D. MD, MD, MPH, B A Bk, BS, MD, Mh M A Ojv: Th v y qy - v v gy g y. Mh: R y g y w vw g h w h y v- v- v v. Tw vw y v v gz h g h xy. Dv w v v, wh qy,000 gh,000 h w. R: Bw Jy, 2002, J 30,

More information

New exact solutions for the combined sinh-cosh-gordon equation

New exact solutions for the combined sinh-cosh-gordon equation Sociedad Colobiaa de Mateáticas XV Cogreso Nacioal de Mateáticas 2005 Aputes Lecturas Mateáticas Volue Especial (2006), págias 87 93 New exact solutios for the cobied sih-cosh-gordo equatio César A. Góez

More information

Conversion Instructions:

Conversion Instructions: Coversio Istructios: QMS magicolor 2 DeskLaser to QMS magicolor 2 CX 1800502-001A Trademarks QMS, the QMS logo, ad magicolor are registered trademarks of QMS, Ic., registered i the Uited States Patet ad

More information

Small Business Networking

Small Business Networking Why network is n essentil productivity tool for ny smll business Effective technology is essentil for smll businesses looking to increse the productivity of their people nd business. Introducing technology

More information

Ostrowski Type Inequalities and Applications in Numerical Integration. Edited By: Sever S. Dragomir. and. Themistocles M. Rassias

Ostrowski Type Inequalities and Applications in Numerical Integration. Edited By: Sever S. Dragomir. and. Themistocles M. Rassias Ostrowski Type Inequlities nd Applictions in Numericl Integrtion Edited By: Sever S Drgomir nd Themistocles M Rssis SS Drgomir) School nd Communictions nd Informtics, Victori University of Technology,

More information

Small Business Networking

Small Business Networking Why network is n essentil productivity tool for ny smll business Effective technology is essentil for smll businesses looking to increse the productivity of their people nd processes. Introducing technology

More information

International Association of Scientific Innovation and Research (IASIR) (An Association Unifying the Sciences, Engineering, and Applied Research)

International Association of Scientific Innovation and Research (IASIR) (An Association Unifying the Sciences, Engineering, and Applied Research) Intrnational Association of Scintific Innovation and Rsarch (IASIR) (An Association Unifing th Scincs, Enginring, and Applid Rsarch) ISSN (Print): 79-000 ISSN (Onlin): 79-009 Intrnational Journal of Enginring,

More information

Noise Power Ratio (NPR) A 65-Year Old Telephone System Specification Finds New Life in Modern Wireless Applications.

Noise Power Ratio (NPR) A 65-Year Old Telephone System Specification Finds New Life in Modern Wireless Applications. TUTORIL ois Powr Ratio (PR) 65-Yar Old Tlphon Systm Spcification Finds w Lif in Modrn Wirlss pplications ITRODUTIO by Walt Kstr Th concpt of ois Powr Ratio (PR) has bn around sinc th arly days of frquncy

More information

What parents or other loved ones have to say

What parents or other loved ones have to say i s i l i Fm io t i i S N TRA A ut h o Y s s of Tr t r for P d i u G c Rsour Estblishd i 1983, Prid & Prjudic ws th first progrm to offr cousllig d support to lsbi, gy, bisxul, trssxul d trsgdr (LGBTT)

More information

BLADE 12th Generation. Rafał Olszewski. Łukasz Matras

BLADE 12th Generation. Rafał Olszewski. Łukasz Matras BLADE 12th Generation Rafał Olszewski Łukasz Matras Jugowice, 15-11-2012 Gl o b a l M a r k e t i n g Dell PowerEdge M-Series Blade Server Portfolio M-Series Blades couple powerful computing capabilities

More information

Chapter 11 Current Programmed Control

Chapter 11 Current Programmed Control Chapter 11 Current Programmed Control Buck converter v g i s Q 1 D 1 L i L C v R The peak transistor current replaces the duty cycle as the converter control input. Measure switch current R f i s Clock

More information

Annuities Under Random Rates of Interest II By Abraham Zaks. Technion I.I.T. Haifa ISRAEL and Haifa University Haifa ISRAEL.

Annuities Under Random Rates of Interest II By Abraham Zaks. Technion I.I.T. Haifa ISRAEL and Haifa University Haifa ISRAEL. Auities Uder Radom Rates of Iterest II By Abraham Zas Techio I.I.T. Haifa ISRAEL ad Haifa Uiversity Haifa ISRAEL Departmet of Mathematics, Techio - Israel Istitute of Techology, 3000, Haifa, Israel I memory

More information

Practice Final Math 122 Spring 12 Instructor: Jeff Lang

Practice Final Math 122 Spring 12 Instructor: Jeff Lang Practice Final Math Spring Instructor: Jeff Lang. Find the limit of the sequence a n = ln (n 5) ln (3n + 8). A) ln ( ) 3 B) ln C) ln ( ) 3 D) does not exist. Find the limit of the sequence a n = (ln n)6

More information

16. Mean Square Estimation

16. Mean Square Estimation 6 Me Sque stmto Gve some fomto tht s elted to uow qutty of teest the poblem s to obt good estmte fo the uow tems of the obseved dt Suppose epeset sequece of dom vbles bout whom oe set of obsevtos e vlble

More information

Lecture note on Solid State Physics de Haas-van Alphen effect

Lecture note on Solid State Physics de Haas-van Alphen effect Ltur not on Solid Stt Phsis d Hs-vn Alphn fft Mstsugu Suzuki nd Itsuko S. Suzuki Stt Univrsit of Nw York t Binghmton Binghmton Nw York 39-6 (April 6 6) ABSTRACT Hr th phsis on th d Hs-vn Alphn (dhva) fft

More information

Engineer-to-Engineer Note

Engineer-to-Engineer Note Engineer-to-Engineer Note EE-280 Technicl notes on using Anlog Devices DSPs, processors nd development tools Visit our Web resources http://www.nlog.com/ee-notes nd http://www.nlog.com/processors or e-mil

More information

E S T A D O D O C E A R Á P R E F E I T U R A M U N I C I P A L D E C R U Z C Â M A R A M U N I C I P A L D E C R U Z

E S T A D O D O C E A R Á P R E F E I T U R A M U N I C I P A L D E C R U Z C Â M A R A M U N I C I P A L D E C R U Z C O N C U R S O P Ú B L I C O E D I T A L N º 0 0 1 / 2 0 1 2 D i s p õ e s o b r e C o n c u r s o P ú b l i c o p a r a p r o v i m e n t o c a r g o s e v a g a s d a P r e f e i t u r a M u n i c i

More information

Redistributing the Gains from Trade through Non-linear. Lump-sum Transfers

Redistributing the Gains from Trade through Non-linear. Lump-sum Transfers Redistributing the Gins from Trde through Non-liner Lump-sum Trnsfers Ysukzu Ichino Fculty of Economics, Konn University April 21, 214 Abstrct I exmine lump-sum trnsfer rules to redistribute the gins from

More information

Health insurance exchanges What to expect in 2014

Health insurance exchanges What to expect in 2014 Helth insurnce exchnges Wht to expect in 2014 33096CAEENABC 02/13 The bsics of exchnges As prt of the Affordble Cre Act (ACA or helth cre reform lw), strting in 2014 ALL Americns must hve minimum mount

More information

Allocating Redundancy to Critical Information Technology Functions for Disaster Recovery

Allocating Redundancy to Critical Information Technology Functions for Disaster Recovery IT isastr Rcovry Allocatig Rdudacy to ritical Iforatio Tchology Fuctios for isastr Rcovry Bja B.. Shao W. P. ary School of Busiss Arizoa Stat Uivrsity B.Shao@asu.du ABSTRAT I th prst twork cooy, busisss

More information

Small Business Networking

Small Business Networking Why network is n essentil productivity tool for ny smll business Effective technology is essentil for smll businesses looking to increse the productivity of their people nd business. Introducing technology

More information

Incremental calculation of weighted mean and variance

Incremental calculation of weighted mean and variance Icremetal calculatio of weighted mea ad variace Toy Fich faf@cam.ac.uk dot@dotat.at Uiversity of Cambridge Computig Service February 009 Abstract I these otes I eplai how to derive formulae for umerically

More information

Auburn University Style Guide & Identification Standards Manual

Auburn University Style Guide & Identification Standards Manual y E k H PM 28 C 9 C MY M y K v B 10 k 0% : 60 64 % % x 11 C M MY Y K v 6 97 1% : % P PM 17 C 2 M MY Y K v 6 88 6% : % P PM 15 8 PM 17 2 B R G ID E & PM ID P E 15 8 T IC IF T IO PM 17 2 D T R D M L 0 0

More information

Applications: Lifting eyes are screwed or welded on a load or a machine to be used as lifting points.

Applications: Lifting eyes are screwed or welded on a load or a machine to be used as lifting points. Liin ys Applicions: Liin ys r scrw or wl on or mchin o us s liin poins. Rn: Vn Bs ors wi rn o liin poins in lloy sl: ix, ricul, pivoin n/or roin. Fix liin poin: Ey nu, yp EL - mric vrsion Ey ol, yp AL

More information

A note on the boundary behavior for a modified Green function in the upper-half space

A note on the boundary behavior for a modified Green function in the upper-half space Zhag ad Pisarev Boudary Value Problems (015) 015:114 DOI 10.1186/s13661-015-0363-z RESEARCH Ope Access A ote o the boudary behavior for a modified Gree fuctio i the upper-half space Yulia Zhag1 ad Valery

More information

Health insurance marketplace What to expect in 2014

Health insurance marketplace What to expect in 2014 Helth insurnce mrketplce Wht to expect in 2014 33096VAEENBVA 06/13 The bsics of the mrketplce As prt of the Affordble Cre Act (ACA or helth cre reform lw), strting in 2014 ALL Americns must hve minimum

More information

Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi

Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi Journal of Enginring and Natural Scincs Mühndisli v Fn Bilimlri Drgisi Sigma 4/ Invitd Rviw Par OPTIMAL DESIGN OF NONLINEAR MAGNETIC SYSTEMS USING FINITE ELEMENTS Lvnt OVACIK * Istanbul Tchnical Univrsity,

More information

Small Business Networking

Small Business Networking Why network is n essentil productivity tool for ny smll business Effective technology is essentil for smll businesses looking to increse the productivity of their people nd processes. Introducing technology

More information

Phonics. ee y ie ea. Variant Correspondences P.017. Objective The student will identify variant correspondences in words.

Phonics. ee y ie ea. Variant Correspondences P.017. Objective The student will identify variant correspondences in words. Variant Correspondences P.017 Objective The student will identify variant correspondences in words. Materials Vowel pattern reference cards (Activity Master P.017.AM1a - P.017.AM1c) This serves as a spelling

More information

A Two-Stage Approach for Estimating a Statewide Truck Trip Table

A Two-Stage Approach for Estimating a Statewide Truck Trip Table MPC 14-269 Srwt Jsuw, Seugkyu Ryu, Athoy Che, d Kevi Heslip MAY 2014 A Two-Stge Approch for Estimtig Sttewide Truck Trip Tble A Uiveity Trsporttio Ceter sposored by the U.S. Deprtmet of Trsporttio servig

More information

Project 6 Aircraft static stability and control

Project 6 Aircraft static stability and control Project 6 Aircrft sttic stbility nd control The min objective of the project No. 6 is to compute the chrcteristics of the ircrft sttic stbility nd control chrcteristics in the pitch nd roll chnnel. The

More information

Medicaid Eligibility in Michigan: 40 Ways

Medicaid Eligibility in Michigan: 40 Ways C E N T E R F O R H E A LT H C A R E R E S E A R C H & T R A N S F O R M AT I O N Policy Papr July 2012 Mdicaid Eligibility i Michiga: 40 Ways 503 id 1 U Pla F irst! hil d k Wor aivr Childr s W N wb to

More information

SOME GEOMETRY IN HIGH-DIMENSIONAL SPACES

SOME GEOMETRY IN HIGH-DIMENSIONAL SPACES SOME GEOMETRY IN HIGH-DIMENSIONAL SPACES MATH 57A. Itroductio Our geometric ituitio is derived from three-dimesioal space. Three coordiates suffice. May objects of iterest i aalysis, however, require far

More information

A Theoretical Model of Public Response to the Homeland Security Advisory System

A Theoretical Model of Public Response to the Homeland Security Advisory System A Thortical Modl of Public Rspons to th Homland Scurity Advisory Systm Amy (Wnxuan) Ding Dpartmnt of Information and Dcision Scincs Univrsity of Illinois Chicago, IL 60607 wxding@uicdu Using a diffrntial

More information

IMPROVING PRODUCTIVITY OF MANUFACTURING DIVISION USING LEAN CONCEPTS AND DEVELOPMENT OF MATERIAL GRAVITY FEEDER A CASE STUDY

IMPROVING PRODUCTIVITY OF MANUFACTURING DIVISION USING LEAN CONCEPTS AND DEVELOPMENT OF MATERIAL GRAVITY FEEDER A CASE STUDY T m3 D T g jmpg: www. g.m/ j MPONG PODUCTTY OF MNUFCTUNG DON UNG N CONCPT ND DOPMNT OF MT GTY FD C TUDY K.Hmd Dpm M gg PG Cg TgyC 64 4 d. D.mv Dpm M gg PG Cg TgyC 64 4 d..cd j* G.dj Dpm M gg PG Cg TgyC

More information

1754 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 6, NO. 5, MAY 2007

1754 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 6, NO. 5, MAY 2007 1754 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 6, NO. 5, MAY 007 On th Fasibility of Distributd Bamforming in Wirlss Ntworks R. Mudumbai, Studnt Mmbr, IEEE, G. Barriac, Mmbr, IEEE, and U. Madhow,

More information

A new continuous dependence result for impulsive retarded functional differential equations

A new continuous dependence result for impulsive retarded functional differential equations CADERNOS DE MATEMÁTICA 11, 37 47 May (2010) ARTIGO NÚMERO SMA#324 A new continuous dependence result for impulsive retarded functional differential equations M. Federson * Instituto de Ciências Matemáticas

More information

On the Valuation of Power-Reverse Duals and Equity-Rates Hybrids

On the Valuation of Power-Reverse Duals and Equity-Rates Hybrids On the Valuation of Power-Reverse Duals and Equity-Rates Hybrids Oliver Caps oliver.caps@dkib.com RMT Model Validation Rates Dresdner Bank Examples of Hybrid Products Pricing of Hybrid Products using a

More information

ITS HISTORY AND APPLICATIONS

ITS HISTORY AND APPLICATIONS NEČAS CENTER FOR MATHEMATICAL MODELING, Volume 1 HISTORY OF MATHEMATICS, Volume 29 PRODUCT INTEGRATION, ITS HISTORY AND APPLICATIONS Antonín Slvík (I+ A(x)dx)=I+ b A(x)dx+ b x2 A(x 2 )A(x 1 )dx 1 dx 2

More information

Excel Invoice Format. SupplierWebsite - Excel Invoice Upload. Data Element Definition UCLA Supplier website (Rev. July 9, 2013)

Excel Invoice Format. SupplierWebsite - Excel Invoice Upload. Data Element Definition UCLA Supplier website (Rev. July 9, 2013) Excel Invoice Format Excel Column Name Cell Format Notes Campus* Supplier Number* Invoice Number* Order Number* Invoice Date* Total Invoice Amount* Total Sales Tax Amount* Discount Amount Discount Percent

More information

Enhancing Downlink Performance in Wireless Networks by Simultaneous Multiple Packet Transmission

Enhancing Downlink Performance in Wireless Networks by Simultaneous Multiple Packet Transmission Enhning Downlink Prormn in Wirlss Ntworks y Simultnous Multipl Pkt Trnsmission Zhngho Zhng n Yunyun Yng Dprtmnt o Eltril n Computr Enginring, Stt Univrsity o Nw York, Stony Brook, NY 11794, USA Astrt In

More information

4. Life Insurance. 4.1 Survival Distribution And Life Tables. Introduction. X, Age-at-death. T (x), time-until-death

4. Life Insurance. 4.1 Survival Distribution And Life Tables. Introduction. X, Age-at-death. T (x), time-until-death 4. Life Insurance 4.1 Survival Distribution And Life Tables Introduction X, Age-at-death T (x), time-until-death Life Table Engineers use life tables to study the reliability of complex mechanical and

More information

5 Boolean Decision Trees (February 11)

5 Boolean Decision Trees (February 11) 5 Boolea Decisio Trees (February 11) 5.1 Graph Coectivity Suppose we are give a udirected graph G, represeted as a boolea adjacecy matrix = (a ij ), where a ij = 1 if ad oly if vertices i ad j are coected

More information

Learning objectives. Duc K. Nguyen - Corporate Finance 21/10/2014

Learning objectives. Duc K. Nguyen - Corporate Finance 21/10/2014 1 Lecture 3 Time Value of Moey ad Project Valuatio The timelie Three rules of time travels NPV of a stream of cash flows Perpetuities, auities ad other special cases Learig objectives 2 Uderstad the time-value

More information

Online Load Balancing and Correlated Randomness

Online Load Balancing and Correlated Randomness Onln Load Balancng and Corrlatd Randomnss Sharayu Moharr, Sujay Sanghav Wrlss Ntworng and Communcatons Group (WNCG) Dpartmnt of Elctrcal & Computr Engnrng Th Unvrsty of Txas at Austn Austn, TX 787, USA

More information

body.allow-sidebar OR.no-sidebar.home-page (if this is the home page).has-custom-banner OR.nocustom-banner .IR OR.no-IR

body.allow-sidebar OR.no-sidebar.home-page (if this is the home page).has-custom-banner OR.nocustom-banner .IR OR.no-IR body.llow-sidebr OR.no-sidebr.home-pge (if this is the home pge).hs-custom-bnner OR.nocustom-bnner.IR OR.no-IR #IDENTIFIER_FOR_THIS_SITE div#pge-continer.depends_on_page_ty PE llow-sidebr mens tht there

More information

Applying Survival Analysis Techniques to Loan Terminations for HUD s Reverse Mortgage Insurance Program - HECM

Applying Survival Analysis Techniques to Loan Terminations for HUD s Reverse Mortgage Insurance Program - HECM Applying Survival Analysis Techniques to Loan Terminations for HUD s Reverse Mortgage Insurance Program - HECM Ming H. Chow, Edward J. Szymanoski, Theresa R. DiVenti 1 I. Introduction "Survival Analysis"

More information

IMPROVE CUSTOMERS LOYALTY IN ONLINE GAMING: AN EMPIRICAL STUDY Fan Zhao

IMPROVE CUSTOMERS LOYALTY IN ONLINE GAMING: AN EMPIRICAL STUDY Fan Zhao Fan Zhao ABSTRACT In th past dcad, onlin gams hav bcom an important lctronic commrc application A good undrstanding of customr onlin gam bhaviors is critical for both rsarchrs and practitionrs, such as

More information

EE247 Lecture 4. For simplicity, will start with all pole ladder type filters. Convert to integrator based form- example shown

EE247 Lecture 4. For simplicity, will start with all pole ladder type filters. Convert to integrator based form- example shown EE247 Lecture 4 Ldder type filters For simplicity, will strt with ll pole ldder type filters Convert to integrtor bsed form exmple shown Then will ttend to high order ldder type filters incorporting zeros

More information

WHICH MEAN DO YOU MEAN? AN EXPOSITION ON MEANS

WHICH MEAN DO YOU MEAN? AN EXPOSITION ON MEANS WHICH MEAN DO YOU MEAN? AN EXPOSITION ON MEANS A Thesis Submitted to the Graduate Faculty of the Louisiaa State Uiversity ad Agricultural ad Mechaical College i partial fulfillmet of the requiremets for

More information

PROOFS BY DESCENT KEITH CONRAD

PROOFS BY DESCENT KEITH CONRAD PROOFS BY DESCENT KEITH CONRAD As ordinary methods, such as are found in the books, are inadequate to proving such difficult propositions, I discovered at last a most singular method... that I called the

More information