# Lecture L17 - Orbit Transfers and Interplanetary Trajectories

 To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
Save this PDF as:

Size: px
Start display at page:

## Transcription

1 S. Widnall, J. Peraire Dynamics Fall 008 Version.0 Lecture L17 - Orbit Transfers and Interplanetary Trajectories In this lecture, we will consider how to transfer from one orbit, to another or to construct an interplanetary trajectory. One of the assumptions that we shall make is that the velocity changes of the spacecraft, due to the propulsive effects, occur instantaneously. Although it obviously takes some time for the spacecraft to accelerate to the velocity of the new orbit, this assumption is reasonable when the burn time of the rocket is much smaller than the period of the orbit. In such cases, the Δv required to do the maneuver is simply the difference between the velocity of the final orbit minus the velocity of the initial orbit. When the initial and final orbits intersect, the transfer can be accomplished with a single impulse. For more general cases, multiple impulses and intermediate transfer orbits may be required. Given initial and final orbits, the objective is generally to perform the transfer with a minimum Δv. In some situations, however, the time needed to complete the transfer may also be an important consideration. Most orbit transfers will require a change in the orbit s total specific energy, E. Let us consider the change in total energy obtained by an instantaneous impulse Δv. If v i is the initial velocity, the final velocity, v f, will simply be, v f = v i + Δv. If we now look at the magnitude of these vectors, we have, v f = v i + Δv + v i Δv cos β, where β is the angle between v i and Δv. The energy change will be 1 ΔE = Δv + v i Δv cos β. From this expression, we conclude that, for a given Δv, the change in energy will be largest when: - v i and Δv are co-linear (β = 0), and, - v i is maximum. 1

2 For example, to transfer a satellite on an elliptical orbit to an escape trajectory, the most energy efficient impulse would be co-linear with the velocity and applied at the instant when the satellite is at the elliptical orbit s perigee, since at that point, the velocity is maximum. Of course, for many required maneuvers, the applied impulses are such that they cannot satisfy one or both of the above conditions. For instance, firing at the perigee in the previous example may cause the satellite to escape in a particular direction which may not be the required one. Hohmann Transfer A Hohmann Transfer is a two-impulse elliptical transfer between two co-planar circular orbits. The transfer itself consists of an elliptical orbit with a perigee at the inner orbit and an apogee at the outer orbit. The fundamental assumption behind the Hohmann transfer, is that there is only one body which exerts a gravitational force on the body of interest, such as a satellite. This is a good model for transferring an earth-based satellite from a low orbit to say a geosynchronous orbit. Inherent in the model is that there is no additional body sharing the orbit which could induce a gravitational attraction on the body of interest. Thus, as we shall discuss, the Hohmann transfer is a good model for the outer trajectory of an earth-mars transfer, but we must pay some attention to escaping the earth s gravitational field before we re on our way. It turns out that this transfer is usually optimal, as it requires the minimum Δv T = Δv π + Δv α to perform a transfer between two circular orbits. The exception for which Hohmann transfers are not optimal is for very large ratios of r /r 1, as discussed below. The transfer orbit has a semi-major axis, a, which is r 1 + r a =.

3 Hence, the energy of the transfer orbit is greater than the energy of the inner orbit (a = r 1 ), and smaller than the energy of the outer orbit (a = r ). The velocities of the transfer orbit at perigee and apogee are given, from the conservation of energy equation, as v π = µ (1) r1 r1 + r = µ. () r r1 + r v α The velocities of the circular orbits are v c1 = µ/r 1 and v c = µ/r. Hence, the required impulses at perigee and apogee are, µ r Δv π = v π v c1 = 1 r 1 r 1 + r µ r 1 Δv α = v c v α = 1. r r 1 + r If the initial orbit has a radius larger than the final orbit, the same strategy can be followed but in this case, negative impulses will be required, first at apogee and then at perigee, to decelerate the satellite. Example Hohmann transfer [1] A communication satellite was carried by the Space Shuttle into low earth orbit (LEO) at an altitude of 3 km and is to be transferred to a geostationary orbit (GEO) at 35, 860 km using a Hohmann transfer. The characteristics of the transfer ellipse and the total Δv required, Δv T, can be determined as follows: For the inner orbit, we have, r 1 = R + d 1 = = m µ gr v c1 = = = 7713 m/s r 1 r 1 E 1 = Similarly, for the outer circular orbit, µ = gr = m /s (J/kg). r1 r 1 r = R + d = m v c = 307 m/s E = m /s (J/kg). For the transfer trajectory, a = r 1 + r = m µ E = a = m /s (J/kg), 3

4 which shows that E 1 < E < E. The velocity of the elliptical transfer orbit at the perigee and apogee can be determined from equations 3 and 4, as, v π = 10, 130 m/s, v α = 1, 067 m/s. Since the velocity at the perigee is orthogonal to the position vector, the specific angular momentum of the transfer orbit is, h = r 1 v π = m /s, and the eccentricity can be determined as, Eh e = 1 + = µ Finally, the impulses required are, Δv π = v π v c1 = 10, = 414 m/s Δv α = v c v α = = 1465 m/s, The sign of the Δv s indicates the direction of thrusting (whether the energy is to be increased or decreased) and the total Δv is the sum of the magnitudes. Thus, Δv T = Δv π + Δv α = = 388 m/s. Since the transfer trajectory is one half of an ellipse, the time of flight (TOF) is simply half of the period, ( T OF = π 6 ) 3 = 19, 050 s = 5.9 h In order to illustrate the optimal nature of the Hohmann transfer, we consider now an alternative transfer in which we arbitrarily double the value of the semi-major axis of the Hohmann transfer ellipse, and find the characteristics and Δv T of the resulting fast transfer. The semi-major axis of the transfer ellipse will be a = m, and E = µ/(a) = m /s (J/kg). The velocity of the transfer orbit at departure will be and, The specific angular momentum is, v π = = m/s, Δv π = 10, = 817 m/s. h = 10, 530 ( ) = m /s, and the orbit s eccentricity, e, is

5 We can now calculate, from the energy conservation equation, the velocity of the transfer orbit at the point of interception with the outer orbit, v int, v 14 int = = 377 m/s Since the angular momentum, h, is conserved, we can determine the component of v int in the circumferential direction and the elevation angle, φ, is thus, Finally, from geometrical considerations, which yields Δv int = 314 m/s, so that h (v int ) θ = = 1670 m/s r φ = cos 1 (v int) θ = o v int Δv int = v c + v int v c v int cos φ, Δv T = = 5959 m/s. Comparing to the value of the Hohmann transfer Δv T of 3875 m/s, we see that the fast transfer requires a Δv T which is 54% higher. The analysis of elliptical trajectories which intersect the circular orbits at an angle is referred to as Lambert s problem. These trajectories can have faster transit times but at a greater cost in energy. It can be shown that when the separation between the inner and outer orbits is very large (r > 11.9r 1 ) (a situation which rarely occurs), a three impulse transfer comprising of two ellipses can be more energy efficient than a two-impulse Hohmann transfer. This transfer is illustrated in the picture below. Notice that the distance from the origin at which the two transfer ellipses intersect is a free parameter, which can be determined to minimize the total Δv. Notice also that the final impulse is a Δv which opposes direction of motion, in order to decelerate from the large energy ellipse to the final circular orbit. Although this transfer 5

6 may be more energy efficient relative to the two-impulse Hohmann transfer, it often involves much larger travel times. Try it! Interplanetary Transfers The ideas of Hohmann transfer can be applied to interplanetary transfers with some modification. The Hohmann transfer for satellite orbits assumes the satellite is in a circular orbit about a central body and desires to transfer to another circular and coplanar orbit about the central body. It also assumes that no other gravitational influence is nearby. When more than one planet is involved, such as a satellite in earth orbit which desires to transfer via a Hohmann orbit about the sun to an orbit about another planet, such as done in a mission to Mars. In this case, the problem is no longer a two-body problem. Nevertheless, it is common (at least to get a good approximation) to decompose the problem into a series of two body problems. Consider, for example, an interplanetary transfer in the solar system. For each planet we define the sphere of influence (SOI). Essentially, this is the region where the gravitational attraction due to the planet is larger than that of the sun. In order to be on our way to the destination planet, we must climb out of the potential well of the originating planet. We will use a hyperbolic escape orbit to accomplish this. Alternatively, we could do a direct calculation including the position of all of the bodies: the sun, earth and Mars. However, because the time scale and length scales are so different for the different phases of the mission, it requires special attention to the details of the numerical method to attain good accuracy. The method of patched conics is a good place to start our analysis. 6

7 The mission is broken into phases that are connected by patches where each patch is the solution of a two body problem. This is called the patched conic approach. Consider, for instance, a mission to Mars. The first phase will consist of a geocentric hyperbola as the spacecraft escapes from earth SOI, attaining a velocity v 1 in a direction θ beyond the earth s SOI. The second phase would start at the edge of the earth s SOI, and would be an elliptical trajectory around the sun while the spacecraft travels to Mars. This orbit could be part of a Hohmann transfer sequence; in this case, v 1 would be the Hohmann transfer velocity after the ΔV has been applied. The third phase would start at the edge of Mars SOI, and would be a hyperbolic approach capture trajectory with the gravitational field of Mars as the attracting force. This third phase can be thought of as a combination of a Hohmann transfer and a hyperbolic capture by the planet. The time scales and length scales for the various phases of the mission are quite different. The time for a transfer to another planet is measured in months or years; the time scale for escape for a planet is measured in days or hours. The length scale for planetary trajectories is measured in AU units where AU is the distance from the earth to the sun; the length scale for hyperbolic escape from a planet is measure in distances typical of planetary radii and orbits. This can be a challenge for an orbit calculation program since the step size must change dramatically near a planet. We will examine this problem analytically using the method of matched conics to get an approximate result. This approach does not work well for trajectories from earth to moon since the moon is in the SOI of the earth. In turns out that a Hohmann transfer orbit with hyperbolic escape and capture trajectories can be shown to be the minimum energy trajectory for a planetary mission just as the Hohmann transfer itself is an optimum solution for a specified satellite change of orbit. Of course a successful mission requires that the time of launch be selected so that the desired destination planet is at the destination when the spacecraft arrives. We assume that the proper launch time has been selected. 7

8 Hyperbolic Escape We now consider a hyperbolic escape from a planetary orbit of a planet in orbit about the sun into an elliptical orbit about the sun determined by a Hohmann transfer to the desired planet combined with a hyperbolic capture into a planetary orbit about the destination planet in orbit about the sun for a complete interplanetary transfer. This sequence is appropriate for travel to an outer planet such as Mars. We first consider the Hohmann transfer from a circular orbit about the sun coincident with the original planetary orbit to a circular coplanar orbit coincident with the destination planet s orbit about the sun. We neglect the gravitational fields of the two planets in this calculations. From Equations (1-4) we have v π and v α for the elliptical connecting orbit and v π v α = µ (3) r1 r1 + r = µ (4) r r1 + r and for the circular planetary orbits at r 1 and r (Note that we have used the symbol µ without designation. Obviously, the choice of µ in a particular calculation depends upon the celestial body supporting the orbit.) v 1 = µ/r 1 and v = µ/r for the initial and final circular orbits about the sun. This determines the Δv π and Δv α for the Hohmann interplanetary transfer. It also determines the initial and final conditions for a hyperbolic escape trajectory. Consider conditions at the departure planet, denoted by subscript 1. The planet moves with the circular orbit velocity v 1. The hyperbolic trajectory is defined in a coordinate system relative to the moving planet, and the escape trajectory must end with the velocity appropriate for the Hohmann transfer ellipse in inertial space, v π or v π v 1 relative to the planet. The hyperbolic escape velocity v then equals exactly the Δv π for a traditional Hohmann transfer. The only remaining unknown is the condition of the spacecraft when it decides to escape. 8

9 The geometry of a hyperbolic escape comes directly from the general geometry of a hyperbolic orbit. In this case we desired to depart on a vertical trajectory ending with a velocity v = v π v 1. If the spacecraft is in orbit around the earth at a velocity v orbit and a radius r 1, this requires a Δv escape = v 1p v orbit where v 1p is the velocity of the hyperbolic escape orbit at the periapsis r p = r 1. Since energy is constant, v1 p µ = v 1. (5) r 1p The parameters of the hyperbolic escape orbit follow from these conditions. The eccentricity is given by and the angular change from periapsis to infinity, δ 1 /, is given by 1 = 1 + r 1pv 1 (6) µ 1 δ 1 / = sin 1 (7) 1 For the orbit geometry sketched below, this means that the launch from a circular orbit into a hyperbolic orbit with a final vertical direction as sketched occurs at an angle δ 1 / as shown in the figure. The trajectory shown is a counterclockwise escape trajectory. A clockwise escape trajectory is also possible but, because of the counterclockwise rotation of the earth, counterclockwise is preferred. One might worry about the sidewise displacement Δ 1 of the trajectory from the centerline of the planet orbit. However, this distance is very small compared to the interplanetary distances defined by the distance to the sun and is typical of the small errors inherent in the method of patched conics. Therefore, the hyperbolic escape trajectory has been defined as shown below. This enables the determination of the Δv 1 for this portion of the mission. The hyperbolic escape trajectory is shown below. 9

10 Hyperbolic Capture Also shown below is the hyperbolic capture trajectory at the final planetary destination. Both these trajectories are shown for the case of travel to an outer planet such as Mars. For travel to an inner planet such as Venus, the roles of escape and capture would be reversed. We now consider the hyperbolic capture trajectory. From the Hohmann transfer calculation, we obtain the result that an additional Δv in the flight direction is required to circularize the orbit of the space craft into the destination planetary orbit, subscript. This means that the velocity v α of the elliptical Hohmann transfer orbit is less that the velocity of the planet in its circular orbit. Thus the planet will overtake the spacecraft resulting in a hyperbolic capture orbit. The velocity v as seen by the planet is v α v and is directed towards the planet; this quantity plays the role of v in the hyperbolic capture orbit. We desire to capture the planet into an orbit of radius r p and inquire what conditions are require to achieve this. This will determine Δ and v p. From conservation of energy, we have v p / µ/r p = v ; = 1 + r p v /µ; and sinδ / = 1/. Of course some mid-course correction may be required to set Δ to achieve this capture. This will be ignored. The final step in the interplanetary mission would be to insert the spacecraft into a circular orbit of radius r p. We have chosen to capture the spacecraft in a planetary orbit proceeding in the direction of the planet s rotation about its axis. If we only intend to stay in orbit, this doesn t matter. However, if we intend to descend and later return to orbit, these maneuvers should be designed with the planet s rotation in mind, jus as orbits from earth take advantage of the direction of the earth s rotation to save energy. We can easily determine the Δv required to convert the hyperbolic capture orbit into an orbit about the capturing planet. 10

11 This mission analysis is a bit arbitrary; the spacecraft could also descend to the planet surface or flyby to another destination. But if we desire to calculate the energy requirements for an earth to Mars mission, this is a reasonable formulation and allows a comparison between several options including the more complex trajectories using solutions to Lambert s problem. We can also complete a round-trip mission by remaining in orbit for a specified time and then retracing the process to return to earth. The Δv s required to descend to and depart from the planet surface could also be included. These combined Hohmann, escape and capture trajectories are minimum energy trajectories for a given mission and serve as useful benchmarks. When the orbits of the two planets are no longer co-planar, even by a small angle such as the 1.8 o of Mars/earth orbits, the Hohmann transfer is no longer optimum, or even practical, since the plane containing the sun and the two planets at departure and arrival for a Hohmann transfer is substantially tipped with respect to the planetary orbits. For missions designed to visit several planets, the situation can become very complex as one often tries to take advantage of the gravitational fields of the planets encountered on the way, by entering into their SOI s with the objective of either changing direction or gaining additional impulse. This technique is often referred to as gravity assist or flyby. References [1] F.J. Hale, Introduction to Space Flight, Prentice-Hall, [] M.H. Kaplan, Modern Spacecraft Dynamics and Control, John Wiley and Sons,

### Astrodynamics (AERO0024)

Astrodynamics (AERO0024) 6. Interplanetary Trajectories Gaëtan Kerschen Space Structures & Systems Lab (S3L) Course Outline THEMATIC UNIT 1: ORBITAL DYNAMICS Lecture 02: The Two-Body Problem Lecture 03:

### Orbital Mechanics. Angular Momentum

Orbital Mechanics The objects that orbit earth have only a few forces acting on them, the largest being the gravitational pull from the earth. The trajectories that satellites or rockets follow are largely

### Penn State University Physics 211 ORBITAL MECHANICS 1

ORBITAL MECHANICS 1 PURPOSE The purpose of this laboratory project is to calculate, verify and then simulate various satellite orbit scenarios for an artificial satellite orbiting the earth. First, there

### 2. Orbits. FER-Zagreb, Satellite communication systems 2011/12

2. Orbits Topics Orbit types Kepler and Newton laws Coverage area Influence of Earth 1 Orbit types According to inclination angle Equatorial Polar Inclinational orbit According to shape Circular orbit

### Halliday, Resnick & Walker Chapter 13. Gravitation. Physics 1A PHYS1121 Professor Michael Burton

Halliday, Resnick & Walker Chapter 13 Gravitation Physics 1A PHYS1121 Professor Michael Burton II_A2: Planetary Orbits in the Solar System + Galaxy Interactions (You Tube) 21 seconds 13-1 Newton's Law

### Orbital Mechanics. Orbital Mechanics. Principles of Space Systems Design. 2001 David L. Akin - All rights reserved

Energy and velocity in orbit Elliptical orbit parameters Orbital elements Coplanar orbital transfers Noncoplanar transfers Time and flight path angle as a function of orbital position Relative orbital

### Section 4: The Basics of Satellite Orbits

Section 4: The Basics of Satellite Orbits MOTION IN SPACE VS. MOTION IN THE ATMOSPHERE The motion of objects in the atmosphere differs in three important ways from the motion of objects in space. First,

### Chapter 2. Mission Analysis. 2.1 Mission Geometry

Chapter 2 Mission Analysis As noted in Chapter 1, orbital and attitude dynamics must be considered as coupled. That is to say, the orbital motion of a spacecraft affects the attitude motion, and the attitude

### Orbital Mechanics and Space Geometry

Orbital Mechanics and Space Geometry AERO4701 Space Engineering 3 Week 2 Overview First Hour Co-ordinate Systems and Frames of Reference (Review) Kepler s equations, Orbital Elements Second Hour Orbit

### G U I D E T O A P P L I E D O R B I T A L M E C H A N I C S F O R K E R B A L S P A C E P R O G R A M

G U I D E T O A P P L I E D O R B I T A L M E C H A N I C S F O R K E R B A L S P A C E P R O G R A M CONTENTS Foreword... 2 Forces... 3 Circular Orbits... 8 Energy... 10 Angular Momentum... 13 FOREWORD

### ADVANCED TOPICS IN ASTRODYNAMICS GRAVITATIONAL ASSISTED TRAJECTORIES

ADVANCED TOPICS IN ASTRODYNAMICS SUMMER COURSE BARCELONA, JULY 2004 NOTES FOR THE GRAVITATIONAL ASSISTED TRAJECTORIES LECTURES E. Barrabés, G. Gómez and J. Rodríguez-Canabal Contents 1 Introduction 3 1.1

### 4.1.6. Interplanetary Travel. Outline. In This Section You ll Learn to...

Interplanetary Travel 4.1.6 In This Section You ll Learn to... Describe the basic steps involved in getting from one planet in the solar system to another Explain how we can use the gravitational pull

### Name: Earth 110 Exploration of the Solar System Assignment 1: Celestial Motions and Forces Due in class Tuesday, Jan. 20, 2015

Name: Earth 110 Exploration of the Solar System Assignment 1: Celestial Motions and Forces Due in class Tuesday, Jan. 20, 2015 Why are celestial motions and forces important? They explain the world around

### Spacecraft Dynamics and Control. An Introduction

Brochure More information from http://www.researchandmarkets.com/reports/2328050/ Spacecraft Dynamics and Control. An Introduction Description: Provides the basics of spacecraft orbital dynamics plus attitude

### C B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N

Three boxes are connected by massless strings and are resting on a frictionless table. Each box has a mass of 15 kg, and the tension T 1 in the right string is accelerating the boxes to the right at a

### Quasi-Synchronous Orbits

Quasi-Synchronous Orbits and Preliminary Mission Analysis for Phobos Observation and Access Orbits Paulo J. S. Gil Instituto Superior Técnico Simpósio Espaço 50 anos do 1º Voo Espacial Tripulado 12 de

### Orbital Dynamics: Formulary

Orbital Dynamics: Formulary 1 Introduction Prof. Dr. D. Stoffer Department of Mathematics, ETH Zurich Newton s law of motion: The net force on an object is equal to the mass of the object multiplied by

### Trajectory design for the Solar Orbiter mission

Monografías de la Real Academia de Ciencias de Zaragoza. 25: 177 218, (2004). Trajectory design for the Solar Orbiter mission G. Janin European Space Operations Centre. European Space Agency. 64293 Darmstadt,

### Orbital Dynamics with Maple (sll --- v1.0, February 2012)

Orbital Dynamics with Maple (sll --- v1.0, February 2012) Kepler s Laws of Orbital Motion Orbital theory is one of the great triumphs mathematical astronomy. The first understanding of orbits was published

### State Newton's second law of motion for a particle, defining carefully each term used.

5 Question 1. [Marks 20] An unmarked police car P is, travelling at the legal speed limit, v P, on a straight section of highway. At time t = 0, the police car is overtaken by a car C, which is speeding

### Exam 1 Review Questions PHY 2425 - Exam 1

Exam 1 Review Questions PHY 2425 - Exam 1 Exam 1H Rev Ques.doc - 1 - Section: 1 7 Topic: General Properties of Vectors Type: Conceptual 1 Given vector A, the vector 3 A A) has a magnitude 3 times that

### EN4 Dynamics and Vibrations. Design Project. Orbital Design for a Lunar Impact Mission. Synopsis

EN4 Dynamics and Vibrations Design Project Orbital Design for a Lunar Impact Mission Synopsis NASA has identified a need for a low-cost mission to launch a satellite that will impact the moon. You will

### Artificial Satellites Earth & Sky

Artificial Satellites Earth & Sky Name: Introduction In this lab, you will have the opportunity to find out when satellites may be visible from the RPI campus, and if any are visible during the activity,

### Lecture 13. Gravity in the Solar System

Lecture 13 Gravity in the Solar System Guiding Questions 1. How was the heliocentric model established? What are monumental steps in the history of the heliocentric model? 2. How do Kepler s three laws

### Dynamics of Iain M. Banks Orbitals. Richard Kennaway. 12 October 2005

Dynamics of Iain M. Banks Orbitals Richard Kennaway 12 October 2005 Note This is a draft in progress, and as such may contain errors. Please do not cite this without permission. 1 The problem An Orbital

### KINEMATICS OF PARTICLES RELATIVE MOTION WITH RESPECT TO TRANSLATING AXES

KINEMTICS OF PRTICLES RELTIVE MOTION WITH RESPECT TO TRNSLTING XES In the previous articles, we have described particle motion using coordinates with respect to fixed reference axes. The displacements,

### Satellites and Space Stations

Satellites and Space Stations A satellite is an object or a body that revolves around another object, which is usually much larger in mass. Natural satellites include the planets, which revolve around

### Can Hubble be Moved to the International Space Station? 1

Can Hubble be Moved to the International Space Station? 1 On January 16, NASA Administrator Sean O Keefe informed scientists and engineers at the Goddard Space Flight Center (GSFC) that plans to service

### 8.012 Physics I: Classical Mechanics Fall 2008

MIT OpenCourseWare http://ocw.mit.edu 8.012 Physics I: Classical Mechanics Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. MASSACHUSETTS INSTITUTE

### Physics Competitions Vol 13 No 2 2011 & Vol.14 No 1 2012. A few good orbits. 400 088. # Corresponding author: anikets@hbcse.tifr.res.

A few good orbits Chiraag Juvekar 1, Mehul Jain 1 and Aniket Sule 2,# 1 Indian Institute of Technology (Bombay), Mumbai, Maharashtra, India - 400 076. 2 Homi Bhabha Centre for Science Education (HBCSE).

### USING MS EXCEL FOR DATA ANALYSIS AND SIMULATION

USING MS EXCEL FOR DATA ANALYSIS AND SIMULATION Ian Cooper School of Physics The University of Sydney i.cooper@physics.usyd.edu.au Introduction The numerical calculations performed by scientists and engineers

### Spacecraft orbits and missions

General Astrophysics and Space Research Course 210142, Space Physics Module Spring 2009, Joachim Vogt Spacecraft orbits and missions Topics of this lecture Basics of celestial mechanics Geocentric orbits

### 1.3. DOT PRODUCT 19. 6. If θ is the angle (between 0 and π) between two non-zero vectors u and v,

1.3. DOT PRODUCT 19 1.3 Dot Product 1.3.1 Definitions and Properties The dot product is the first way to multiply two vectors. The definition we will give below may appear arbitrary. But it is not. It

### Flight and Orbital Mechanics

Flight and Orbital Mechanics Lecture slides Challenge the future 1 Material for exam: this presentation (i.e., no material from text book). Sun-synchronous orbit: used for a variety of earth-observing

### Mechanics lecture 7 Moment of a force, torque, equilibrium of a body

G.1 EE1.el3 (EEE1023): Electronics III Mechanics lecture 7 Moment of a force, torque, equilibrium of a body Dr Philip Jackson http://www.ee.surrey.ac.uk/teaching/courses/ee1.el3/ G.2 Moments, torque and

### Fluid Mechanics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Fluid Mechanics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture - 20 Conservation Equations in Fluid Flow Part VIII Good morning. I welcome you all

### Midterm Solutions. mvr = ω f (I wheel + I bullet ) = ω f 2 MR2 + mr 2 ) ω f = v R. 1 + M 2m

Midterm Solutions I) A bullet of mass m moving at horizontal velocity v strikes and sticks to the rim of a wheel a solid disc) of mass M, radius R, anchored at its center but free to rotate i) Which of

### PHY121 #8 Midterm I 3.06.2013

PHY11 #8 Midterm I 3.06.013 AP Physics- Newton s Laws AP Exam Multiple Choice Questions #1 #4 1. When the frictionless system shown above is accelerated by an applied force of magnitude F, the tension

### VELOCITY, ACCELERATION, FORCE

VELOCITY, ACCELERATION, FORCE velocity Velocity v is a vector, with units of meters per second ( m s ). Velocity indicates the rate of change of the object s position ( r ); i.e., velocity tells you how

### Solar System. 1. The diagram below represents a simple geocentric model. Which object is represented by the letter X?

Solar System 1. The diagram below represents a simple geocentric model. Which object is represented by the letter X? A) Earth B) Sun C) Moon D) Polaris 2. Which object orbits Earth in both the Earth-centered

### 1. The orbit of each planet is an ellipse with the Sun at one focus. 2. The line joining the planet to the Sun sweeps out equal areas in equal times.

Appendix A Orbits As discussed in the Introduction, a good first approximation for satellite motion is obtained by assuming the spacecraft is a point mass or spherical body moving in the gravitational

### Chapter 5: Circular Motion, the Planets, and Gravity

Chapter 5: Circular Motion, the Planets, and Gravity 1. Earth s gravity attracts a person with a force of 120 lbs. The force with which the Earth is attracted towards the person is A. Zero. B. Small but

### 1 of 7 9/5/2009 6:12 PM

1 of 7 9/5/2009 6:12 PM Chapter 2 Homework Due: 9:00am on Tuesday, September 8, 2009 Note: To understand how points are awarded, read your instructor's Grading Policy. [Return to Standard Assignment View]

### DIRECT ORBITAL DYNAMICS: USING INDEPENDENT ORBITAL TERMS TO TREAT BODIES AS ORBITING EACH OTHER DIRECTLY WHILE IN MOTION

1 DIRECT ORBITAL DYNAMICS: USING INDEPENDENT ORBITAL TERMS TO TREAT BODIES AS ORBITING EACH OTHER DIRECTLY WHILE IN MOTION Daniel S. Orton email: dsorton1@gmail.com Abstract: There are many longstanding

### Mobile Communications Chapter 5: Satellite Systems

Mobile Communications Chapter 5: Satellite Systems History Basics Localization Handover Routing Systems History of satellite communication 1945 Arthur C. Clarke publishes an essay about Extra Terrestrial

### Development of an automated satellite network management system

Development of an automated satellite network management system Iasonas Kytros Christos Porios Nikitas Terzoudis Varvara Chatzipavlou Coach: Sitsanlis Ilias February 2013 Abstract In this paper we present

### Physics of the Atmosphere I

Physics of the Atmosphere I WS 2008/09 Ulrich Platt Institut f. Umweltphysik R. 424 Ulrich.Platt@iup.uni-heidelberg.de heidelberg.de Last week The conservation of mass implies the continuity equation:

### Section 2. Satellite Orbits

Section 2. Satellite Orbits References Kidder and Vonder Haar: chapter 2 Stephens: chapter 1, pp. 25-30 Rees: chapter 9, pp. 174-192 In order to understand satellites and the remote sounding data obtained

### Module 8 Lesson 4: Applications of Vectors

Module 8 Lesson 4: Applications of Vectors So now that you have learned the basic skills necessary to understand and operate with vectors, in this lesson, we will look at how to solve real world problems

### Understanding Orbital Mechanics Through a Step-by-Step Examination of the Space-Based Infrared System (SBIRS)

Understanding Orbital Mechanics Through a Step-by-Step Examination of the Space-Based Infrared System (SBIRS) Denny Sissom Elmco, Inc. May 2003 Pg 1 of 27 SSMD-1102-366 [1] The Ground-Based Midcourse Defense

### The Layout of the Solar System

The Layout of the Solar System Planets fall into two main categories Terrestrial (i.e. Earth-like) Jovian (i.e. Jupiter-like or gaseous) [~5000 kg/m 3 ] [~1300 kg/m 3 ] What is density? Average density

### Solution Derivations for Capa #11

Solution Derivations for Capa #11 1) A horizontal circular platform (M = 128.1 kg, r = 3.11 m) rotates about a frictionless vertical axle. A student (m = 68.3 kg) walks slowly from the rim of the platform

### Angular Velocity vs. Linear Velocity

MATH 7 Angular Velocity vs. Linear Velocity Dr. Neal, WKU Given an object with a fixed speed that is moving in a circle with a fixed ius, we can define the angular velocity of the object. That is, we can

### RS platforms. Fabio Dell Acqua - Gruppo di Telerilevamento

RS platforms Platform vs. instrument Sensor Platform Instrument The remote sensor can be ideally represented as an instrument carried by a platform Platforms Remote Sensing: Ground-based air-borne space-borne

### Lecture 07: Work and Kinetic Energy. Physics 2210 Fall Semester 2014

Lecture 07: Work and Kinetic Energy Physics 2210 Fall Semester 2014 Announcements Schedule next few weeks: 9/08 Unit 3 9/10 Unit 4 9/15 Unit 5 (guest lecturer) 9/17 Unit 6 (guest lecturer) 9/22 Unit 7,

### State Newton's second law of motion for a particle, defining carefully each term used.

5 Question 1. [Marks 28] An unmarked police car P is, travelling at the legal speed limit, v P, on a straight section of highway. At time t = 0, the police car is overtaken by a car C, which is speeding

### Introduction to Aerospace Engineering

Introduction to Aerospace Engineering Lecture slides Challenge the future 1 Introduction to Aerospace Engineering AE1-10 Dept. Space Engineering Astrodynamics & Space Missions (AS) Prof. ir. B.A.C. Ambrosius

### IAC-10.C1.7.5 DIRECT TRANSCRIPTION OF LOW-THRUST TRAJECTORIES WITH FINITE TRAJECTORY ELEMENTS

IAC-1.C1.7.5 DIRECT TRANSCRIPTION OF LOW-THRUST TRAJECTORIES WITH FINITE TRAJECTORY ELEMENTS Federico Zuiani PhD Candidate, Department of Aerospace Engineering, University of Glasgow, UK, fzuiani@eng.gla.ac.uk

### Orbital Mechanics Course Notes. David J. Westpfahl Professor of Astrophysics, New Mexico Institute of Mining and Technology

Orbital Mechanics Course Notes David J. Westpfahl Professor of Astrophysics, New Mexico Institute of Mining and Technology March 31, 2011 2 These are notes for a course in orbital mechanics catalogued

### Orbital Mechanics and Feedback Control

Orbital Mechanics and Feedback Control A thesis submitted for the degree of Master of Science by Kristin Johansson Trondheim, June 15, 2005 Norwegian University of Science and Technology Department of

### Some Comments on the Derivative of a Vector with applications to angular momentum and curvature. E. L. Lady (October 18, 2000)

Some Comments on the Derivative of a Vector with applications to angular momentum and curvature E. L. Lady (October 18, 2000) Finding the formula in polar coordinates for the angular momentum of a moving

### Coverage Characteristics of Earth Satellites

Coverage Characteristics of Earth Satellites This document describes two MATLAB scripts that can be used to determine coverage characteristics of single satellites, and Walker and user-defined satellite

### Vocabulary - Understanding Revolution in. our Solar System

Vocabulary - Understanding Revolution in Universe Galaxy Solar system Planet Moon Comet Asteroid Meteor(ite) Heliocentric Geocentric Satellite Terrestrial planets Jovian (gas) planets Gravity our Solar

### Solar System Fundamentals. What is a Planet? Planetary orbits Planetary temperatures Planetary Atmospheres Origin of the Solar System

Solar System Fundamentals What is a Planet? Planetary orbits Planetary temperatures Planetary Atmospheres Origin of the Solar System Properties of Planets What is a planet? Defined finally in August 2006!

### Solution of the Gaussian Transfer Orbit Equations of Motion

Mechanics and Mechanical Engineering Vol. 15, No. 1 (011) 39 46 c Technical University of Lodz Solution of the Gaussian Transfer Orbit Equations of Motion Osman M. Kamel Astronomy and Space Science Dept.

### 11. Rotation Translational Motion: Rotational Motion:

11. Rotation Translational Motion: Motion of the center of mass of an object from one position to another. All the motion discussed so far belongs to this category, except uniform circular motion. Rotational

### 8. As a cart travels around a horizontal circular track, the cart must undergo a change in (1) velocity (3) speed (2) inertia (4) weight

1. What is the average speed of an object that travels 6.00 meters north in 2.00 seconds and then travels 3.00 meters east in 1.00 second? 9.00 m/s 3.00 m/s 0.333 m/s 4.24 m/s 2. What is the distance traveled

### Gravity Field and Dynamics of the Earth

Milan Bursa Karel Pec Gravity Field and Dynamics of the Earth With 89 Figures Springer-Verlag Berlin Heidelberg New York London Paris Tokyo HongKong Barcelona Budapest Preface v Introduction 1 1 Fundamentals

### Math 259 Winter 2009. Recitation Handout 1: Finding Formulas for Parametric Curves

Math 259 Winter 2009 Recitation Handout 1: Finding Formulas for Parametric Curves 1. The diagram given below shows an ellipse in the -plane. -5-1 -1-3 (a) Find equations for (t) and (t) that will describe

### Eðlisfræði 2, vor 2007

[ Assignment View ] [ Pri Eðlisfræði 2, vor 2007 28. Sources of Magnetic Field Assignment is due at 2:00am on Wednesday, March 7, 2007 Credit for problems submitted late will decrease to 0% after the deadline

### Objectives After completing this section, you should be able to:

Chapter 5 Section 1 Lesson Angle Measure Objectives After completing this section, you should be able to: Use the most common conventions to position and measure angles on the plane. Demonstrate an understanding

### Physics Kinematics Model

Physics Kinematics Model I. Overview Active Physics introduces the concept of average velocity and average acceleration. This unit supplements Active Physics by addressing the concept of instantaneous

### PHYSICS 151 Notes for Online Lecture #6

PHYSICS 151 Notes for Online Lecture #6 Vectors - A vector is basically an arrow. The length of the arrow represents the magnitude (value) and the arrow points in the direction. Many different quantities

### CHAPTER 2 ORBITAL DYNAMICS

14 CHAPTER 2 ORBITAL DYNAMICS 2.1 INTRODUCTION This chapter presents definitions of coordinate systems that are used in the satellite, brief description about satellite equations of motion and relative

### Interaction of Energy and Matter Gravity Measurement: Using Doppler Shifts to Measure Mass Concentration TEACHER GUIDE

Interaction of Energy and Matter Gravity Measurement: Using Doppler Shifts to Measure Mass Concentration TEACHER GUIDE EMR and the Dawn Mission Electromagnetic radiation (EMR) will play a major role in

### Solutions to old Exam 1 problems

Solutions to old Exam 1 problems Hi students! I am putting this old version of my review for the first midterm review, place and time to be announced. Check for updates on the web site as to which sections

### Lecture 6. Weight. Tension. Normal Force. Static Friction. Cutnell+Johnson: 4.8-4.12, second half of section 4.7

Lecture 6 Weight Tension Normal Force Static Friction Cutnell+Johnson: 4.8-4.12, second half of section 4.7 In this lecture, I m going to discuss four different kinds of forces: weight, tension, the normal

### The orbit of Halley s Comet

The orbit of Halley s Comet Given this information Orbital period = 76 yrs Aphelion distance = 35.3 AU Observed comet in 1682 and predicted return 1758 Questions: How close does HC approach the Sun? What

### Fundamental Mechanics: Supplementary Exercises

Phys 131 Fall 2015 Fundamental Mechanics: Supplementary Exercises 1 Motion diagrams: horizontal motion A car moves to the right. For an initial period it slows down and after that it speeds up. Which of

### Exam # 1 Thu 10/06/2010 Astronomy 100/190Y Exploring the Universe Fall 11 Instructor: Daniela Calzetti

Exam # 1 Thu 10/06/2010 Astronomy 100/190Y Exploring the Universe Fall 11 Instructor: Daniela Calzetti INSTRUCTIONS: Please, use the `bubble sheet and a pencil # 2 to answer the exam questions, by marking

### Monash University Clayton s School of Information Technology CSE3313 Computer Graphics Sample Exam Questions 2007

Monash University Clayton s School of Information Technology CSE3313 Computer Graphics Questions 2007 INSTRUCTIONS: Answer all questions. Spend approximately 1 minute per mark. Question 1 30 Marks Total

### Satellite Communications

Satellite Communications Department of Electrical Engineering Faculty of Engineering Chiangmai University Origin of Satellite Communications Arthur C. Clark (1945) British Science fiction writer propose

### Analysis on the Long-term Orbital Evolution and Maintenance of KOMPSAT-2

Analysis on the Long-term Orbital Evolution and Maintenance of KOMPSAT-2 Ok-Chul Jung 1 Korea Aerospace Research Institute (KARI), 45 Eoeun-dong, Daejeon, South Korea, 305-333 Jung-Hoon Shin 2 Korea Advanced

### Physics 53. Kinematics 2. Our nature consists in movement; absolute rest is death. Pascal

Phsics 53 Kinematics 2 Our nature consists in movement; absolute rest is death. Pascal Velocit and Acceleration in 3-D We have defined the velocit and acceleration of a particle as the first and second

### Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives

Physics 9e/Cutnell correlated to the College Board AP Physics 1 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring

### Linear algebra and the geometry of quadratic equations. Similarity transformations and orthogonal matrices

MATH 30 Differential Equations Spring 006 Linear algebra and the geometry of quadratic equations Similarity transformations and orthogonal matrices First, some things to recall from linear algebra Two

### Chapter 11 Equilibrium

11.1 The First Condition of Equilibrium The first condition of equilibrium deals with the forces that cause possible translations of a body. The simplest way to define the translational equilibrium of

### Chapter 3.8 & 6 Solutions

Chapter 3.8 & 6 Solutions P3.37. Prepare: We are asked to find period, speed and acceleration. Period and frequency are inverses according to Equation 3.26. To find speed we need to know the distance traveled

### Shaft. Application of full spectrum to rotating machinery diagnostics. Centerlines. Paul Goldman, Ph.D. and Agnes Muszynska, Ph.D.

Shaft Centerlines Application of full spectrum to rotating machinery diagnostics Benefits of full spectrum plots Before we answer these questions, we d like to start with the following observation: The

### Orbits. Chapter 17. Dynamics of many-body systems.

Chapter 7 Orbits Dynamics of many-body systems. Many mathematical models involve the dynamics of objects under the influence of both their mutual interaction and the surrounding environment. The objects

### = = GM. v 1 = Ωa 1 sin i.

1 Binary Stars Consider a binary composed of two stars of masses M 1 and We define M = M 1 + and µ = M 1 /M If a 1 and a 2 are the mean distances of the stars from the center of mass, then M 1 a 1 = a

### Origins of the Unusual Space Shuttle Quaternion Definition

47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition 5-8 January 2009, Orlando, Florida AIAA 2009-43 Origins of the Unusual Space Shuttle Quaternion Definition

### VASIMR Human Mission to Mars

VASIMR Human Mission to Mars Andrew V. Ilin, Leonard D. Cassady, Tim W. Glover, Franklin R. Chang Diaz Ad Astra Rocket Company 141 W. Bay Area Blvd., Webster, TX 77598 281-526-0500, Andrew.Ilin@AdAstraRocket.com

### Mobile Communications: Satellite Systems

Mobile Communications: Satellite Systems Mobile Communication: Satellite Systems - Jochen Schiller http://www.jochenschiller.de 1 History of satellite communication 1945 Arthur C. Clarke publishes an essay

### How Rockets Work Newton s Laws of Motion

How Rockets Work Whether flying a small model rocket or launching a giant cargo rocket to Mars, the principles of how rockets work are exactly the same. Understanding and applying these principles means

### SPACE BASED SOLAR POWER IS FOR MARS

SPACE BASED SOLAR POWER IS FOR MARS Dr. Matthew L. Dalton IAC, October, 2015 Space Based Solar Power (SBSP) First proposed by Isaac Asimov in 1941 and has been under active research since the 1970 s. No