3.2 Matrix Multiplication


 Mariah Porter
 2 years ago
 Views:
Transcription
1 3.2 Matrix Multiplication Question : How do you multiply two matrices? Question 2: How do you interpret the entries in a product of two matrices? When you add or subtract two matrices, you add or subtract the entries in two matrices of the same size. You might try to multiply two matrices by following a similar strategy. However, matrix multiplication is not carried out by multiplying the corresponding entries of two matrices of the same size. Instead, matrix multiplication is carried out by multiplying the entries in the rows of a matrix by the entries in the columns of the other matrix. This might not seem to be a productive process. However, this process is very useful in many areas of business, economics, and science. In this section you ll learn how to carry out this process and apply it to several problems at Ed Magazine.
2 Question : How do you multiply two matrices? The process of multiplying matrices is different from scalar multiplication or the other matrix operations in the previous section. Instead of multiplying corresponding entries, in matrix multiplication we multiply the rows in one matrix by the columns in the another matrix. This process can be demonstrated by multiplying a row matrix times a column matrix. Suppose we have a x k matrix, A a a a 2 n and a k x matrix, b b 2 B bn In each matrix, the dots help to indicate the arbitrary number of rows or columns in each matrix. Although this number k is arbitrary, the number of columns in A must match the number of rows in B. Otherwise it is not possible to carry out the multiplication process. To find the product these matrices, we must multiply the entries in the row matrix by the entries in the column matrix and add the resulting products: AB a a 2 a n b b 2 bn a b a b a b 2 2 n n Notice that each product comes from corresponding columns and rows. In other words, the first product is formed from the first column in the first matrix and the first row in the second matrix, the second product is formed from the second column in the first matrix and the second column in the second matrix, and so on. 2
3 Let s try the following product: To help identify the factors in the products, let s color code each corresponding factor and carry out the sum: The key to carrying out the process is to correspond the factors in each product correctly. This process is carried out several times when matrices with more than one row or column are multiplied. However, the number of columns in the first matrix must match the number of rows in the second matrix. How to Multiply Two Matrices. Make sure the number of columns in the first matrix matches the number of rows in the second column. If they do not match, the product is not possible. 2. The size of the products is the number of rows in the first matrix by the number of columns in the second matrix. The product of m x k matrix and a k x n matrix is an m x n matrix. Form a matrix of the proper size with blank spaces for each entry. 3
4 3. For each entry in the product, form the corresponding factors and sums. The entry in the i th row and j th column of the product is found by corresponding and multiplying the i th row in the first matrix with the j th column in the second matrix. Example Multiply Two Matrices Let 0 A 2 3 and B Find the products indicated in each part. a. A B Solution To be able to compute this product, the number of columns in A must equal the number of rows in B. Since A has 3 columns and B has 2 rows, A B, Not Equal it is not possible to compute this product. b. B A Solution For this product, the number of columns in B is equal to the number of row in A, B A Equal 4
5 This means the product can be computed. The size of the resulting product is determined by the number of rows in B, 2, and the number of columns in A,3: B A Product is 2 x 3 Now that the size of the product is known, we can find the entries in the product. Start with blank entries in a 2 x 3 matrix: We can find the value of any entry in the product by corresponding the proper row and column in the factors. For instance, the entry in the second row, first column is computed from the second row of the first matrix and the first column of the second matrix: BA This entry is placed in the product matrix, 5 The entry in the first row, third column is computed from the first row of the first matrix and the third column of second column: 5
6 2 4 0 BA Adding this entry to the product matrix yields 5 2 We can compute the other four entries in the product matrix similarly BA Example 2 Multiply Two Matrices The table below gives the number of expiring subscriptions for Ed Magazine. First Time Subscribers Continuing Subscribers Quarter Ending 3/ Quarter Ending 6/ Quarter Ending 9/ Quarter Ending 2/ This information is summarized in the matrix 6
7 E The different categories of subscribers renew their subscriptions at different rates. Twenty five percent of the first time subscribers renew their subscriptions and fifty percent of the existing subscribers renew their subscriptions. a. Use matrix multiplication to find a matrix describing the total number of renewed subscribers by quarter. Solution To see how matrix multiplication can be used to calculate the total number of renewed subscribers, watch the video, let s look at the quarter ending 3/3. In that quarter, 6000 first time subscribers and 5000 continuing subscribers have their subscriptions expiring. We know that 25% of the first time subscribers will renew and 50% of the continuing subscribers will renew. The total number of renewed subscriptions in the first quarter is Total Number of Renewed Subscriptions in First Quarter 25% of FirstTime Subscribers 50% of Continuing Subscribers We can also calculate the total number of renewed subscriptions in other quarters using this same strategy. Total Number of Renewed Subscriptions in Second Quarter Total Number of Renewed Subscriptions in Third Quarter Total Number of Renewed Subscriptions in Fourth Quarter 7
8 Notice that each number is the sum of two products. The product of two matrices creates a new matrix where each entry is a sum of products. This suggests that we define a matrix Renewal Rate P First Time Subscribers Continuing Subscribers of the renewal rates for the subscribers groups. The product EP x 2 2 x can be carried out since E has 2 columns and P has 2 rows EP The resulting product is a 4 x matrix: Notice that each entry matches the totals found earlier. Using matrices we are able to compute the total number of renewals by quarter efficiently. Additionally, if more quarters are included in E the process can still be carried out by adding more rows to E. 8
9 b. A renewing subscriber pays $8 per year for a subscription. Find a matrix R 2 that gives the cash receipts from renewed subscriptions by quarter. Solution The product EP gives the total number of renewed subscriptions by quarter. To find the cash receipts from these subscriptions, we must multiply each entry in the product by 8. Multiplying the product EP by the scalar 8 gives R2 8EP Replace EP with the product from part a Multiply each entry by 8 c. The matrix R gives the cash receipts from new subscriptions by quarter. Find the matrix R that gives the total cash receipts from new and existing subscriptions. Solution The total cash receipts R is the sum of cash receipts from new subscriptions R and cash receipts from existing subscriptions R 2, 9
10 R R R2 Combine R and R 2 to yield R Replace R and R 2 with matrices Add corresponding entries in each matrix 0
11 Question 2: How do you interpret the entries in a product of two matrices? Before attempting to compute or interpret what the product tells you, it is instructive to determine the size of the product. As indicated earlier, the product of an m x k matrix and a k x n matrix is an m x n matrix. Once we know the size of the product, we can compute each of the entries in the product. The entries in the product are formed by corresponding the rows and columns in the factors, multiplying the entries, and summing the results. This operation is often very useful in computing various quantities in business. However, it is often not obvious exactly what the product tells you. In a typical application, we can use the labels on the number of rows m in the first matrix to label the rows of the product. To label the columns in the product, write out the calculation for the first entry with the units on each factor. By analyzing the units, we can deduce what that entry tells us. The other entries will have a similar interpretation to the first entry. Example 3 Interpret the Product of Two Matrices The number of new subscriptions by quarter is given by the matrix Service Magazine N Quarter Ending 3/3 Quarter Ending 6/30 Quarter Ending 9/30 Quarter Ending 2/3 New subscriptions may come from a subscription service or may come from the magazine s marketing. The columns of N indicate the number of subscriptions from each source. Find and interpret the product
12 Solution In this product we are multiplying a 4 x 2 matrix times a 2 x matrix. Since the number of columns (2) in the first matrix matches the number of rows in the second matrix (2), we can carry out the matrix multiplication. The resulting product will be a 4 x matrix: Notice that each entry in the product is simply the sum of the entries on the same row in the first matrix. Since these values are the number of new subscriptions in that quarter, the sum in the product corresponds to the total number of new subscriptions in that quarter. For instance, in the first quarter a total of 5200 new subscriptions were received from the subscription service and the magazine s marketing efforts, 2800 subscriptions 2400 subscriptions 5200 subscriptions The numbers in the second matrix have no units. The effect of multiplying by the matrix matrix N. is to add the entries in each row of the 2
13 Example 4 Interpret the Product of Two Matrices The new subscriptions described by the matrix Service Magazine N Quarter Ending 3/3 Quarter Ending 6/30 Quarter Ending 9/30 Quarter Ending 2/3 contribute different amounts of cash to Ed Magazine. Subscriptions enlisted by the subscription service pay $0 for a subscription, but only $2 goes to the magazine. Subscriptions developed through the magazine s marketing campaigns pay $2 and all of this cash goes to the magazine. We can summarize this information in the matrix Dollars per subscription 2 S 2 Service Magazine Find and interpret NS Solution Let s check the size of each matrix to insure that the matrix multiplication is possible. 3
14 NS quarters x categories of number of new subscriptions categories of number of new subscriptions x price (4 x 2) (2 x ) The number of columns in N representing the number of new subscriptions and the number of rows in S representing the cash from subscriptions are both equal to 2 so the multiplication can be carried out to give a 4 x product. We can form the entries in the product by corresponding the rows in N with the column in S: NS The four rows in the product correspond to the four quarters, but what do the entries tell us about those quarters? To answer this question, let s look at the first entry in detail: dollars 2800 subscriptions subscriptions 2 subscription Each term has units of dollars and indicates the amount of cash subs received from the sales of subscriptions to new subscribers of each type (from the subscription service and from the magazine s dollars cription 4
15 promotions). So the sum, dollars, represents the total amount of cash received from both types of subscribers together. Other entries can be analyzed similarly to show the total cash received from new subscribers in the other three quarters. 5
Here are some examples of combining elements and the operations used:
MATRIX OPERATIONS Summary of article: What is an operation? Addition of two matrices. Multiplication of a Matrix by a scalar. Subtraction of two matrices: two ways to do it. Combinations of Addition, Subtraction,
More informationLinear Dependence Tests
Linear Dependence Tests The book omits a few key tests for checking the linear dependence of vectors. These short notes discuss these tests, as well as the reasoning behind them. Our first test checks
More informationA Brief Primer on Matrix Algebra
A Brief Primer on Matrix Algebra A matrix is a rectangular array of numbers whose individual entries are called elements. Each horizontal array of elements is called a row, while each vertical array is
More informationMatrix Operations How Much Wood Would You Need?
Matrix Operations ACTIVITY 1.6 SUGGESTED LEARNING STRATEGIES: Marking the Text, Graphic Organizer, Vocabulary Organizer, Create Representations Monique and Shondra have created their own afterschool business
More informationFurther Maths Matrix Summary
Further Maths Matrix Summary A matrix is a rectangular array of numbers arranged in rows and columns. The numbers in a matrix are called the elements of the matrix. The order of a matrix is the number
More informationrow row row 4
13 Matrices The following notes came from Foundation mathematics (MATH 123) Although matrices are not part of what would normally be considered foundation mathematics, they are one of the first topics
More informationMATH 304 Linear Algebra Lecture 4: Matrix multiplication. Diagonal matrices. Inverse matrix.
MATH 304 Linear Algebra Lecture 4: Matrix multiplication. Diagonal matrices. Inverse matrix. Matrices Definition. An mbyn matrix is a rectangular array of numbers that has m rows and n columns: a 11
More informationLecture 2 Mathcad basics and Matrix Operations
Lecture 2 Mathcad basics and Matrix Operations Announcements No class or lab Wednesday, 8/29/01 I will be posting a lab worksheet on the web site on Tuesday for you to work through on your own. Operators
More informationMatrix Algebra in R A Minimal Introduction
A Minimal Introduction James H. Steiger Department of Psychology and Human Development Vanderbilt University Regression Modeling, 2009 1 Defining a Matrix in R Entering by Columns Entering by Rows Entering
More informationMultiple regression  Matrices
Multiple regression  Matrices This handout will present various matrices which are substantively interesting and/or provide useful means of summarizing the data for analytical purposes. As we will see,
More informationDecember 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS
December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B KITCHENS The equation 1 Lines in twodimensional space (1) 2x y = 3 describes a line in twodimensional space The coefficients of x and y in the equation
More informationa 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2.
Chapter 1 LINEAR EQUATIONS 1.1 Introduction to linear equations A linear equation in n unknowns x 1, x,, x n is an equation of the form a 1 x 1 + a x + + a n x n = b, where a 1, a,..., a n, b are given
More informationA vector is a directed line segment used to represent a vector quantity.
Chapters and 6 Introduction to Vectors A vector quantity has direction and magnitude. There are many examples of vector quantities in the natural world, such as force, velocity, and acceleration. A vector
More informationQuestion 2: How do you solve a matrix equation using the matrix inverse?
Question : How do you solve a matrix equation using the matrix inverse? In the previous question, we wrote systems of equations as a matrix equation AX B. In this format, the matrix A contains the coefficients
More informationNotes on Matrix Multiplication and the Transitive Closure
ICS 6D Due: Wednesday, February 25, 2015 Instructor: Sandy Irani Notes on Matrix Multiplication and the Transitive Closure An n m matrix over a set S is an array of elements from S with n rows and m columns.
More informationSolving Systems of Linear Equations. Substitution
Solving Systems of Linear Equations There are two basic methods we will use to solve systems of linear equations: Substitution Elimination We will describe each for a system of two equations in two unknowns,
More informationU.S. Presidential Election Forecasts: Through the Lense of Linear Algebra. Cassia S. Wagner
U.S. Presidential Election Forecasts: Through the Lense of Linear Algebra Cassia S. Wagner May 11, 2012 Abstract Markov Chains use multiplication of a transformation matrix and a probability vector to
More informationLab 7. Addition and Subtraction of Fractional Numbers
Lab 7 Addition and Subtraction of Fractional Numbers Objectives: 1. The teacher will understand how to create single unit models (models for 1) that can be used to model more than one fraction at a time.
More informationHelpsheet. Giblin Eunson Library MATRIX ALGEBRA. library.unimelb.edu.au/libraries/bee. Use this sheet to help you:
Helpsheet Giblin Eunson Library ATRIX ALGEBRA Use this sheet to help you: Understand the basic concepts and definitions of matrix algebra Express a set of linear equations in matrix notation Evaluate determinants
More informationMATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m
MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS 1. SYSTEMS OF EQUATIONS AND MATRICES 1.1. Representation of a linear system. The general system of m equations in n unknowns can be written a 11 x 1 + a 12 x 2 +
More informationWe can represent the eigenstates for angular momentum of a spin1/2 particle along each of the three spatial axes with column vectors: 1 +y =
Chapter 0 Pauli Spin Matrices We can represent the eigenstates for angular momentum of a spin/ particle along each of the three spatial axes with column vectors: +z z [ ] 0 [ ] 0 +y y [ ] / i/ [ ] i/
More informationMATRIX ALGEBRA AND SYSTEMS OF EQUATIONS
MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS Systems of Equations and Matrices Representation of a linear system The general system of m equations in n unknowns can be written a x + a 2 x 2 + + a n x n b a
More informationInverses and powers: Rules of Matrix Arithmetic
Contents 1 Inverses and powers: Rules of Matrix Arithmetic 1.1 What about division of matrices? 1.2 Properties of the Inverse of a Matrix 1.2.1 Theorem (Uniqueness of Inverse) 1.2.2 Inverse Test 1.2.3
More information2. Perform elementary row operations to get zeros below the diagonal.
Gaussian Elimination We list the basic steps of Gaussian Elimination, a method to solve a system of linear equations. Except for certain special cases, Gaussian Elimination is still state of the art. After
More informationSolution to Homework 2
Solution to Homework 2 Olena Bormashenko September 23, 2011 Section 1.4: 1(a)(b)(i)(k), 4, 5, 14; Section 1.5: 1(a)(b)(c)(d)(e)(n), 2(a)(c), 13, 16, 17, 18, 27 Section 1.4 1. Compute the following, if
More informationSolving a System of Equations
11 Solving a System of Equations 111 Introduction The previous chapter has shown how to solve an algebraic equation with one variable. However, sometimes there is more than one unknown that must be determined
More informationSYSTEMS OF EQUATIONS AND MATRICES WITH THE TI89. by Joseph Collison
SYSTEMS OF EQUATIONS AND MATRICES WITH THE TI89 by Joseph Collison Copyright 2000 by Joseph Collison All rights reserved Reproduction or translation of any part of this work beyond that permitted by Sections
More informationMath 018 Review Sheet v.3
Math 018 Review Sheet v.3 Tyrone Crisp Spring 007 1.1  Slopes and Equations of Lines Slopes: Find slopes of lines using the slope formula m y y 1 x x 1. Positive slope the line slopes up to the right.
More informationPROVING STATEMENTS IN LINEAR ALGEBRA
Mathematics V2010y Linear Algebra Spring 2007 PROVING STATEMENTS IN LINEAR ALGEBRA Linear algebra is different from calculus: you cannot understand it properly without some simple proofs. Knowing statements
More informationRow and column operations
Row and column operations It is often very useful to apply row and column operations to a matrix. Let us list what operations we re going to be using. 3 We ll illustrate these using the example matrix
More informationExam. Name. Solve the system of equations by graphing. 1) 2x y 5 3x y 6. Solve the system of equations by substitution.
Exam Name Solve the system of equations by graphing. 1) 2x y 5 3x y 6 10 y 1) 510 5 5 10 x 510 Var: 50 Objective: (4.1) Solve Systems of Linear Equations by Graphing Solve the system of equations by
More informationMatrices: 2.3 The Inverse of Matrices
September 4 Goals Define inverse of a matrix. Point out that not every matrix A has an inverse. Discuss uniqueness of inverse of a matrix A. Discuss methods of computing inverses, particularly by row operations.
More information4. MATRICES Matrices
4. MATRICES 170 4. Matrices 4.1. Definitions. Definition 4.1.1. A matrix is a rectangular array of numbers. A matrix with m rows and n columns is said to have dimension m n and may be represented as follows:
More informationMixing Ethanol Blends
Example 1 Mixing Ethanol Blends Flex fuel vehicles are designed to operate on a gasolineethanol mixture. This gasolineethanol mixture is called E85 and is 85% ethanol and 15% gasoline. Flex fuel vehicles
More informationLabVIEW Day 3: Arrays and Clusters
LabVIEW Day 3: Arrays and Clusters Vern Lindberg By now you should be getting used to LabVIEW. You should know how to Create a Constant, Control, or Indicator. I will assume you know how to create a new
More information21.2 Geometric Growth and Compound Interest
21.2 Geometric Growth and Compound Interest What you may have expected with the first example in the last section was that after you earned the $100 and it was added to your balance, then the next time
More informationMODULAR ARITHMETIC. a smallest member. It is equivalent to the Principle of Mathematical Induction.
MODULAR ARITHMETIC 1 Working With Integers The usual arithmetic operations of addition, subtraction and multiplication can be performed on integers, and the result is always another integer Division, on
More informationMATH 105: Finite Mathematics 26: The Inverse of a Matrix
MATH 05: Finite Mathematics 26: The Inverse of a Matrix Prof. Jonathan Duncan Walla Walla College Winter Quarter, 2006 Outline Solving a Matrix Equation 2 The Inverse of a Matrix 3 Solving Systems of
More informationThe Sealed Bid Auction Experiment:
The Sealed Bid Auction Experiment: This is an experiment in the economics of decision making. The instructions are simple, and if you follow them carefully and make good decisions, you may earn a considerable
More informationLecture Notes 2: Matrices as Systems of Linear Equations
2: Matrices as Systems of Linear Equations 33A Linear Algebra, Puck Rombach Last updated: April 13, 2016 Systems of Linear Equations Systems of linear equations can represent many things You have probably
More information1 Gaussian Elimination
Contents 1 Gaussian Elimination 1.1 Elementary Row Operations 1.2 Some matrices whose associated system of equations are easy to solve 1.3 Gaussian Elimination 1.4 GaussJordan reduction and the Reduced
More informationDefinition A square matrix M is invertible (or nonsingular) if there exists a matrix M 1 such that
0. Inverse Matrix Definition A square matrix M is invertible (or nonsingular) if there exists a matrix M such that M M = I = M M. Inverse of a 2 2 Matrix Let M and N be the matrices: a b d b M =, N = c
More information= 1, or how to convince your parents that your math prof is crazy. We want to introduce a new number system where the only numbers are
MATH 13150: Freshman Seminar Unit 11 1. Modular arithmetic In this chapter, we discuss a new number system, where the only numbers are 0,1,2,3 and 4. The idea is to add and multiply them the way we would
More informationUnit 6 Number and Operations in Base Ten: Decimals
Unit 6 Number and Operations in Base Ten: Decimals Introduction Students will extend the place value system to decimals. They will apply their understanding of models for decimals and decimal notation,
More information2.1: MATRIX OPERATIONS
.: MATRIX OPERATIONS What are diagonal entries and the main diagonal of a matrix? What is a diagonal matrix? When are matrices equal? Scalar Multiplication 45 Matrix Addition Theorem (pg 0) Let A, B, and
More informationMatrix Algebra and Applications
Matrix Algebra and Applications Dudley Cooke Trinity College Dublin Dudley Cooke (Trinity College Dublin) Matrix Algebra and Applications 1 / 49 EC2040 Topic 2  Matrices and Matrix Algebra Reading 1 Chapters
More information( % . This matrix consists of $ 4 5 " 5' the coefficients of the variables as they appear in the original system. The augmented 3 " 2 2 # 2 " 3 4&
Matrices define matrix We will use matrices to help us solve systems of equations. A matrix is a rectangular array of numbers enclosed in parentheses or brackets. In linear algebra, matrices are important
More informationMathematics 23  Applied Matrix Algebra Supplement 1. Application: Production Planning
Mathematics  Applied Matrix Algebra Supplement Application: Production Planning A manufacturer makes three different types of chemical products: A, B, and C. Each product must go through two processing
More informationROUND(cell or formula, 2)
There are many ways to set up an amortization table. This document shows how to set up five columns for the payment number, payment, interest, payment applied to the outstanding balance, and the outstanding
More information5.1 Simple and Compound Interest
5.1 Simple and Compound Interest Question 1: What is simple interest? Question 2: What is compound interest? Question 3: What is an effective interest rate? Question 4: What is continuous compound interest?
More informationLecture 10: Invertible matrices. Finding the inverse of a matrix
Lecture 10: Invertible matrices. Finding the inverse of a matrix Danny W. Crytser April 11, 2014 Today s lecture Today we will Today s lecture Today we will 1 Single out a class of especially nice matrices
More informationPreCalculus II Factoring and Operations on Polynomials
Factoring... 1 Polynomials...1 Addition of Polynomials... 1 Subtraction of Polynomials...1 Multiplication of Polynomials... Multiplying a monomial by a monomial... Multiplying a monomial by a polynomial...
More informationIn order to master the techniques explained here it is vital that you undertake plenty of practice exercises so that they become second nature.
Indices or Powers A knowledge of powers, or indices as they are often called, is essential for an understanding of most algebraic processes. In this section of text you will learn about powers and rules
More informationLecture 2 Matrix Operations
Lecture 2 Matrix Operations transpose, sum & difference, scalar multiplication matrix multiplication, matrixvector product matrix inverse 2 1 Matrix transpose transpose of m n matrix A, denoted A T or
More informationIntroduction to Matrix Algebra
Psychology 7291: Multivariate Statistics (Carey) 8/27/98 Matrix Algebra  1 Introduction to Matrix Algebra Definitions: A matrix is a collection of numbers ordered by rows and columns. It is customary
More informationOverview. Essential Questions. Precalculus, Quarter 3, Unit 3.4 Arithmetic Operations With Matrices
Arithmetic Operations With Matrices Overview Number of instruction days: 6 8 (1 day = 53 minutes) Content to Be Learned Use matrices to represent and manipulate data. Perform arithmetic operations with
More informationPigeonhole Principle Solutions
Pigeonhole Principle Solutions 1. Show that if we take n + 1 numbers from the set {1, 2,..., 2n}, then some pair of numbers will have no factors in common. Solution: Note that consecutive numbers (such
More informationDECIMAL REVIEW. 2. Change to a fraction Notice that =.791 The zero in front of the decimal place is not needed.
DECIMAL REVIEW A. INTRODUCTION TO THE DECIMAL SYSTEM The Decimal System is another way of expressing a part of a whole number. A decimal is simply a fraction with a denominator of 10, 100, 1 000 or 10
More informationIntroduction to Matrix Algebra I
Appendix A Introduction to Matrix Algebra I Today we will begin the course with a discussion of matrix algebra. Why are we studying this? We will use matrix algebra to derive the linear regression model
More information4 Solving Systems of Equations by Reducing Matrices
Math 15 Sec S0601/S060 4 Solving Systems of Equations by Reducing Matrices 4.1 Introduction One of the main applications of matrix methods is the solution of systems of linear equations. Consider for example
More informationChapter 19. General Matrices. An n m matrix is an array. a 11 a 12 a 1m a 21 a 22 a 2m A = a n1 a n2 a nm. The matrix A has n row vectors
Chapter 9. General Matrices An n m matrix is an array a a a m a a a m... = [a ij]. a n a n a nm The matrix A has n row vectors and m column vectors row i (A) = [a i, a i,..., a im ] R m a j a j a nj col
More information9 Matrices, determinants, inverse matrix, Cramer s Rule
AAC  Business Mathematics I Lecture #9, December 15, 2007 Katarína Kálovcová 9 Matrices, determinants, inverse matrix, Cramer s Rule Basic properties of matrices: Example: Addition properties: Associative:
More informationMatrix Calculations: Kernels & Images, Matrix Multiplication
Matrix Calculations: Kernels & Images, Matrix Multiplication A. Kissinger (and H. Geuvers) Institute for Computing and Information Sciences Intelligent Systems Version: spring 2016 A. Kissinger Version:
More informationLECTURE 1 I. Inverse matrices We return now to the problem of solving linear equations. Recall that we are trying to find x such that IA = A
LECTURE I. Inverse matrices We return now to the problem of solving linear equations. Recall that we are trying to find such that A = y. Recall: there is a matri I such that for all R n. It follows that
More informationUnit 18 Determinants
Unit 18 Determinants Every square matrix has a number associated with it, called its determinant. In this section, we determine how to calculate this number, and also look at some of the properties of
More informationRecall that two vectors in are perpendicular or orthogonal provided that their dot
Orthogonal Complements and Projections Recall that two vectors in are perpendicular or orthogonal provided that their dot product vanishes That is, if and only if Example 1 The vectors in are orthogonal
More informationDiagonal, Symmetric and Triangular Matrices
Contents 1 Diagonal, Symmetric Triangular Matrices 2 Diagonal Matrices 2.1 Products, Powers Inverses of Diagonal Matrices 2.1.1 Theorem (Powers of Matrices) 2.2 Multiplying Matrices on the Left Right by
More informationMatrices Worksheet. Adding the results together, using the matrices, gives
Matrices Worksheet This worksheet is designed to help you increase your confidence in handling MATRICES. This worksheet contains both theory and exercises which cover. Introduction. Order, Addition and
More informationJust the Factors, Ma am
1 Introduction Just the Factors, Ma am The purpose of this note is to find and study a method for determining and counting all the positive integer divisors of a positive integer Let N be a given positive
More informationUngrouped data. A list of all the values of a variable in a data set is referred to as ungrouped data.
1 Social Studies 201 September 21, 2006 Presenting data See text, chapter 4, pp. 87160. Data sets When data are initially obtained from questionnaires, interviews, experiments, administrative sources,
More information4. Matrix inverses. left and right inverse. linear independence. nonsingular matrices. matrices with linearly independent columns
L. Vandenberghe EE133A (Spring 2016) 4. Matrix inverses left and right inverse linear independence nonsingular matrices matrices with linearly independent columns matrices with linearly independent rows
More informationChapter 8. Matrices II: inverses. 8.1 What is an inverse?
Chapter 8 Matrices II: inverses We have learnt how to add subtract and multiply matrices but we have not defined division. The reason is that in general it cannot always be defined. In this chapter, we
More informationLinear Codes. In the V[n,q] setting, the terms word and vector are interchangeable.
Linear Codes Linear Codes In the V[n,q] setting, an important class of codes are the linear codes, these codes are the ones whose code words form a subvector space of V[n,q]. If the subspace of V[n,q]
More informationPart 1 Expressions, Equations, and Inequalities: Simplifying and Solving
Section 7 Algebraic Manipulations and Solving Part 1 Expressions, Equations, and Inequalities: Simplifying and Solving Before launching into the mathematics, let s take a moment to talk about the words
More informationSolving simultaneous equations using the inverse matrix
Solving simultaneous equations using the inverse matrix 8.2 Introduction The power of matrix algebra is seen in the representation of a system of simultaneous linear equations as a matrix equation. Matrix
More informationMath 312 Homework 1 Solutions
Math 31 Homework 1 Solutions Last modified: July 15, 01 This homework is due on Thursday, July 1th, 01 at 1:10pm Please turn it in during class, or in my mailbox in the main math office (next to 4W1) Please
More informationSection V.3: Dot Product
Section V.3: Dot Product Introduction So far we have looked at operations on a single vector. There are a number of ways to combine two vectors. Vector addition and subtraction will not be covered here,
More information1 Introduction to Matrices
1 Introduction to Matrices In this section, important definitions and results from matrix algebra that are useful in regression analysis are introduced. While all statements below regarding the columns
More information2x + y = 3. Since the second equation is precisely the same as the first equation, it is enough to find x and y satisfying the system
1. Systems of linear equations We are interested in the solutions to systems of linear equations. A linear equation is of the form 3x 5y + 2z + w = 3. The key thing is that we don t multiply the variables
More informationMATH10212 Linear Algebra. Systems of Linear Equations. Definition. An ndimensional vector is a row or a column of n numbers (or letters): a 1.
MATH10212 Linear Algebra Textbook: D. Poole, Linear Algebra: A Modern Introduction. Thompson, 2006. ISBN 0534405967. Systems of Linear Equations Definition. An ndimensional vector is a row or a column
More informationThe Inverse of a Matrix
The Inverse of a Matrix 7.4 Introduction In number arithmetic every number a ( 0) has a reciprocal b written as a or such that a ba = ab =. Some, but not all, square matrices have inverses. If a square
More informationLinear Programming. March 14, 2014
Linear Programming March 1, 01 Parts of this introduction to linear programming were adapted from Chapter 9 of Introduction to Algorithms, Second Edition, by Cormen, Leiserson, Rivest and Stein [1]. 1
More informationLinear Algebra Notes
Linear Algebra Notes Chapter 19 KERNEL AND IMAGE OF A MATRIX Take an n m matrix a 11 a 12 a 1m a 21 a 22 a 2m a n1 a n2 a nm and think of it as a function A : R m R n The kernel of A is defined as Note
More informationMath 313 Lecture #10 2.2: The Inverse of a Matrix
Math 1 Lecture #10 2.2: The Inverse of a Matrix Matrix algebra provides tools for creating many useful formulas just like real number algebra does. For example, a real number a is invertible if there is
More informationMAT Solving Linear Systems Using Matrices and Row Operations
MAT 171 8.5 Solving Linear Systems Using Matrices and Row Operations A. Introduction to Matrices Identifying the Size and Entries of a Matrix B. The Augmented Matrix of a System of Equations Forming Augmented
More informationCLASS NOTES. We bring down (copy) the leading coefficient below the line in the same column.
SYNTHETIC DIVISION CLASS NOTES When factoring or evaluating polynomials we often find that it is convenient to divide a polynomial by a linear (first degree) binomial of the form x k where k is a real
More informationLinear Algebra Notes for Marsden and Tromba Vector Calculus
Linear Algebra Notes for Marsden and Tromba Vector Calculus ndimensional Euclidean Space and Matrices Definition of n space As was learned in Math b, a point in Euclidean three space can be thought of
More information5.3 ORTHOGONAL TRANSFORMATIONS AND ORTHOGONAL MATRICES
5.3 ORTHOGONAL TRANSFORMATIONS AND ORTHOGONAL MATRICES Definition 5.3. Orthogonal transformations and orthogonal matrices A linear transformation T from R n to R n is called orthogonal if it preserves
More informationChapter 11. Pivot table
Chapter 11 Pivot table Your worksheet has lots of data, but do you know what the numbers mean? Does your data answer all your questions? PivotTable reports can help to analyze numerical data and answer
More informationBasics Inversion and related concepts Random vectors Matrix calculus. Matrix algebra. Patrick Breheny. January 20
Matrix algebra January 20 Introduction Basics The mathematics of multiple regression revolves around ordering and keeping track of large arrays of numbers and solving systems of equations The mathematical
More information03.05 Marginal Cost and Revenue Text Version
1 of 6 11/21/2014 2:38 PM 03.05 Marginal Cost and Revenue Text Version Slide 1: Slide 2 Slide 3: Slide 4: Slide 5: Slide 6: Slide 7: Audio: Using marginal cost analysis, a business owner can determine
More informationCHAPTER 17. Linear Programming: Simplex Method
CHAPTER 17 Linear Programming: Simplex Method CONTENTS 17.1 AN ALGEBRAIC OVERVIEW OF THE SIMPLEX METHOD Algebraic Properties of the Simplex Method Determining a Basic Solution Basic Feasible Solution 17.2
More informationAccuplacer Arithmetic Study Guide
Testing Center Student Success Center Accuplacer Arithmetic Study Guide I. Terms Numerator: which tells how many parts you have (the number on top) Denominator: which tells how many parts in the whole
More informationClick on the links below to jump directly to the relevant section
Click on the links below to jump directly to the relevant section What is algebra? Operations with algebraic terms Mathematical properties of real numbers Order of operations What is Algebra? Algebra is
More informationL12. Special Matrix Operations: Permutations, Transpose, Inverse, Augmentation 12 Aug 2014
L12. Special Matrix Operations: Permutations, Transpose, Inverse, Augmentation 12 Aug 2014 Unfortunately, no one can be told what the Matrix is. You have to see it for yourself.  Morpheus Primary concepts:
More informationMad Veterinarian Puzzles: A Mathematical Safari
Mad Veterinarian Puzzles: A Mathematical Safari The Mobile Math Circle, November 14, 2011 Presentation by Gene Abrams Department of Mathematics, University of Colorado at Colorado Springs www.uccs.edu/gabrams
More informationWorking with Pivot Tables
Working with Pivot Tables Content provided in partnership with Sams from the book Sams Teach Yourself Microsoft Office Excel 2003 in 24 Hours by Trudi Reisner The topics in this hour are as follows: What
More informationWhat is a Vector Space?
What is a Vector Space? Geoffrey Scott These are informal notes designed to motivate the abstract definition of a vector space to my MAT185 students I had trouble understanding abstract vector spaces when
More informationCustomer Lifetime Value II
Customer Lifetime Value II This module covers the concepts of CLV, CLV Remaining, retention rate, attrition rate, discount rate, churn rate, and customer acquisition and related costs. Authors: Paul Farris
More informationDETERMINANTS. b 2. x 2
DETERMINANTS 1 Systems of two equations in two unknowns A system of two equations in two unknowns has the form a 11 x 1 + a 12 x 2 = b 1 a 21 x 1 + a 22 x 2 = b 2 This can be written more concisely in
More information