Rational Expressions  Complex Fractions


 Bonnie Shelton
 1 years ago
 Views:
Transcription
1 7. Rational Epressions  Comple Fractions Objective: Simplify comple fractions by multiplying each term by the least common denominator. Comple fractions have fractions in either the numerator, or denominator, or usually both. These fractions can be simplified in one of two ways. This will be illustrated first with integers, then we will consider how the process can be epanded to include epressions with variables. The first method uses order of operations to simplify the numerator and denominator first, then divide the two resulting fractions by multiplying by the reciprocal. Eample Get common denominator in top and bottom fractions Add and subtract fractions, reducing solutions ( ( )( ) )( ) To divide fractions we multiply by the reciprocal Reduce Multiply 6 The process above works just fine to simplify, but between getting common denominators, taking reciprocals, and reducing, it can be a very involved process. Generally we prefer a different method, to multiply the numerator and denominator of the large fraction (in effect each term in the comple fraction) by the least common denominator (LCD). This will allow us to reduce and clear the small fractions. We will simplify the same problem using this second method. Eample. 6 + LCD is, multiply each term
2 () () () + () 6 () () ()+(6) Reduce each fraction Multiply Add and subtract Clearly the second method is a much cleaner and faster method to arrive at our solution. It is the method we will use when simplifying with variables as well. We will first find the LCD of the small fractions, and multiply each term by this LCD so we can clear the small fractions and simplify. Eample. LCD = Identify LCD (use highest eponent) Multiply each term by LCD ( ) ( ) ( ) ( ) ( ) ( ) ( + )( ) ( ) + Reduce fractions (subtract eponents) Multiply Factor Divide out( ) factor The process is the same if the LCD is a binomial, we will need to distribute Multiply each term by LCD, ( +)
3 ( + ) + ( + )+ ( + ) ( + ) + ( + ) ( +) Reduce fractions Distribute Combine like terms + The more fractions we have in our problem, the more we repeat the same process. Eample. + ab ab ab a b +ab ab LCD =a b Idenfity LCD (highest eponents) Multiply each term by LCD (a b ) (a b ) + (a b ) ab ab ab (a b ) a b + ab(a b ) (a b ) ab ab a + ab b +a b ab Reduce each fraction(subtract eponents) World View Note: Sophie Germain is one of the most famous women in mathematics, many primes, which are important to finding an LCD, carry her name. Germain primes are prime numbers where one more than double the prime number is also prime, for eample is prime and so is + = 7 prime. The largest known Germain prime (at the time of printing) is which has 799 digits! Some problems may require us to FOIL as we simplify. To avoid sign errors, if there is a binomial in the numerator, we will first distribute the negative through the numerator. Eample Distribute the subtraction to numerator Identify LCD
4 LCD =( + )( ) Multiply each term by LCD ( )( + )( ) ( )(+)( ) + + ( )(+)( ) ( + )( + )( ) + + ( )( )+( )( + ) ( )( )+( +)( + ) ( + 9) 6 9 Reduce fractions FOIL Combine like terms Factor out in denominator Divide out common factor If there are negative eponents in an epression we will have to first convert these negative eponents into fractions. Remember, the eponent is only on the factor it is attached to, not the whole term. Eample 6. m + m m +m Make each negative eponent into a fraction m + m m + m Multiply each term by LCD,m (m ) + (m ) m m m(m )+ (m ) m +m m + Reduce the fractions Once we convert each negative eponent into a fraction, the problem solves eactly like the other comple fraction problems. Beginning and Intermediate Algebra by Tyler Wallace is licensed under a Creative Commons Attribution.0 Unported License. (http://creativecommons.org/licenses/by/.0/)
5 7. Practice  Comple Fractions Solve. ) + ) y + y ) a a a ) a a +a ) a a a + a 6) b + b 7) ) + + 9) a + 6 a 0) b 0 b +6 ) ) a a a 6 a ) 9 ) 9 ) a b a b a+b 6ab 6) 6 + 7) ) + 9) ) ) )
6 ) ) a a + a a ) b b + + b b + 6) y y y + y 7) b ab a b + 7 ab + a 8) ) y y y + y y + y y + y 0) + + ( + ) + ( ) Simplify each of the following fractional epressions. ) y + y ) y y y ) y +y y ) + ) ) + y y + y Beginning and Intermediate Algebra by Tyler Wallace is licensed under a Creative Commons Attribution.0 Unported License. (http://creativecommons.org/licenses/by/.0/) 6
7 7. ) ) y y ) a a+ ) a a ) a a+ 6) b + b b 8b 7) 8) 9) 0) ) + + ) a a + a a ) Answers  Comple Fractions ) + ) b(a b) a 6) + 7) + 9 8) 9) 0) +8 + ) + ) 7 + ) + ) a a ) b b + 6) + y y ( )( + ) + 7) a b a+b 8) + 9) y 0) ) y y ) y + y y ) + y y ) + ) ( ) ( + )( ) 6) + y y Beginning and Intermediate Algebra by Tyler Wallace is licensed under a Creative Commons Attribution.0 Unported License. (http://creativecommons.org/licenses/by/.0/) 7
Radicals  Rationalize Denominators
8. Radicals  Rationalize Denominators Objective: Rationalize the denominators of radical expressions. It is considered bad practice to have a radical in the denominator of a fraction. When this happens
More informationSolving Linear Equations  One Step Equations
1.1 Solving Linear Equations  One Step Equations Objective: Solve one step linear equations by balancing using inverse operations Solving linear equations is an important and fundamental skill in algebra.
More informationRadicals  Rational Exponents
8. Radicals  Rational Exponents Objective: Convert between radical notation and exponential notation and simplify expressions with rational exponents using the properties of exponents. When we simplify
More informationPreAlgebra  Fractions
0. PreAlgebra  Fractions Objective: Reduce, add, subtract, multiply, and divide with fractions. Working with fractions is a very important foundation to algebra. Here we will briefly review reducing,
More informationRadicals  Complex Numbers
8.8 Radicals  Complex Numbers Objective: Add, subtract, multiply, rationalize, and simplify expressions using complex numbers. World View Note: When mathematics was first used, the primary purpose was
More informationPOLYNOMIALS. Constants A single number in the equation that does not contain any variable. Example: 4, 6
POLYNOMIALS Polynomials can be defined as the sum or difference of terms or epressions. Each term can be either a constant or variable, have one or more terms, and be composed of like terms or different
More informationRational Expressions  Least Common Denominators
7.3 Rational Expressions  Least Common Denominators Objective: Idenfity the least common denominator and build up denominators to match this common denominator. As with fractions, the least common denominator
More informationPreAlgebra  Order of Operations
0.3 PreAlgebra  Order of Operations Objective: Evaluate expressions using the order of operations, including the use of absolute value. When simplifying expressions it is important that we simplify them
More informationName Date Block. Algebra 1 Laws of Exponents/Polynomials Test STUDY GUIDE
Name Date Block Know how to Algebra 1 Laws of Eponents/Polynomials Test STUDY GUIDE Evaluate epressions with eponents using the laws of eponents: o a m a n = a m+n : Add eponents when multiplying powers
More informationPreAlgebra  Integers
0.1 PreAlgebra  Integers Objective: Add, Subtract, Multiply and Divide Positive and Negative Numbers. The ability to work comfortably with negative numbers is essential to success in algebra. For this
More informationSystems of Equations  Addition/Elimination
4.3 Systems of Equations  Addition/Elimination Objective: Solve systems of equations using the addition/elimination method. When solving systems we have found that graphing is very limited when solving
More informationSolving Linear Equations  Fractions
1.4 Solving Linear Equations  Fractions Objective: Solve linear equations with rational coefficients by multiplying by the least common denominator to clear the fractions. Often when solving linear equations
More informationEquations with Rational Expressions. Integers in the denominators. x 2. 1 Original equation. 1 2 x 2
0 (8) Chapter Rational Epressions In this section Equations with Rational Epressions Etraneous s. SOLVING EQUATIONS WITH RATIONAL EXPRESSIONS Many problems in algebra can be solved by using equations
More informationRadicals  Multiply and Divide Radicals
8. Radicals  Multiply and Divide Radicals Objective: Multiply and divide radicals using the product and quotient rules of radicals. Multiplying radicals is very simple if the index on all the radicals
More informationPolynomials  Negative Exponents
5.2 Polynomials  Negative Exponents Objective: Simplify expressions with negative exponents using the properties of exponents. There are a few special exponent properties that deal with exponents that
More informationCOMPLEX FRACTIONS 7.5. section. Complex Fractions
5 (7 ) Chapter 7 Rational Epressions 6. Barn painting. Melanie can paint a certain barn by herself in days. Her helper Melissa can paint the same barn by herself in days. Write a rational epression for
More informationQuadratics  Quadratic Formula
9.4 Quadratics  Quadratic Formula Objective: Solve quadratic equations by using the quadratic formula. The general from of a quadratic is ax + bx + c = 0. We will now solve this formula for x by completing
More informationAlgebra 1 Review for Algebra 2
for Algebra Table of Contents Section Topic Page 1.... 5. 6. Solving Equations Straightlined Graphs Factoring Quadratic Trinomials Factoring Polynomials Binomials Trinomials Polynomials Eponential Notation
More informationPolynomials  Multiplying Polynomials
5.5 Polynomials  Multiplying Polynomials Objective: Multiply polynomials. Multiplying polynomials can take several different forms based on what we are multiplying. We will first look at multiplying monomials,
More informationGraphing  PointSlope Form
. Graphing  PointSlope Form Objective: Give the equation of a line with a known slope and point. The slopeintercept form has the advantage of being simple to remember and use, however, it has one major
More information9.3 OPERATIONS WITH RADICALS
9. Operations with Radicals (9 1) 87 9. OPERATIONS WITH RADICALS In this section Adding and Subtracting Radicals Multiplying Radicals Conjugates In this section we will use the ideas of Section 9.1 in
More informationAnswers to Basic Algebra Review
Answers to Basic Algebra Review 1. 1.1 Follow the sign rules when adding and subtracting: If the numbers have the same sign, add them together and keep the sign. If the numbers have different signs, subtract
More informationFactoring  Grouping
6.2 Factoring  Grouping Objective: Factor polynomials with four terms using grouping. The first thing we will always do when factoring is try to factor out a GCF. This GCF is often a monomial like in
More informationPolynomials  Multiplying
5.5 Polynomials  Multiplying Multiplying polynomials can take several different forms based on what we are multiplying. We will first look at multiplying monomials, then monomials by polynomials and finish
More informationA.1 Radicals and Rational Exponents
APPENDIX A. Radicals and Rational Eponents 779 Appendies Overview This section contains a review of some basic algebraic skills. (You should read Section P. before reading this appendi.) Radical and rational
More informationSolving Linear Equations  General Equations
1.3 Solving Linear Equations  General Equations Objective: Solve general linear equations with variables on both sides. Often as we are solving linear equations we will need to do some work to set them
More informationMultiplication and Division With Square Roots
The Mathematics 11 Competency Test Multiplication and Division With Square Roots We have already looked in some detail at multiplication and division with numerical square roots The rules for multiplication
More informationGraphing  Parallel and Perpendicular Lines
. Graphing  Parallel and Perpendicular Lines Objective: Identify the equation of a line given a parallel or perpendicular line. There is an interesting connection between the slope of lines that are parallel
More informationSimplifying Exponential Expressions
Simplifying Eponential Epressions Eponential Notation Base Eponent Base raised to an eponent Eample: What is the base and eponent of the following epression? 7 is the base 7 is the eponent Goal To write
More informationPolynomials  Divide Polynomials
5.7 Polynomials  Divide Polynomials Objective: Divide polynomials using long division. Dividing polynomials is a process very similar to long division of whole numbers. But before we look at that, we
More informationQuadratics  Build Quadratics From Roots
9.5 Quadratics  Build Quadratics From Roots Objective: Find a quadratic equation that has given roots using reverse factoring and reverse completing the square. Up to this point we have found the solutions
More informationMultiplying and Dividing Algebraic Fractions
. Multiplying and Dividing Algebraic Fractions. OBJECTIVES. Write the product of two algebraic fractions in simplest form. Write the quotient of two algebraic fractions in simplest form. Simplify a comple
More informationInequalities  Absolute Value Inequalities
3.3 Inequalities  Absolute Value Inequalities Objective: Solve, graph and give interval notation for the solution to inequalities with absolute values. When an inequality has an absolute value we will
More informationAdding and Subtracting Unlike Fractions
. Adding and Subtracting Unlike Fractions. OBJECTIVES. Write the sum of two unlike fractions in simplest form. Write the difference of two unlike fractions in simplest form Adding or subtracting unlike
More informationThe difference between an expression and an equation
Section 0 7: Solving Linear Equations The difference between an epression and an equation Epressions do not contain an equal sign. An epression can be simplified to get a new epression. Equations contain
More informationSTUDY GUIDE FOR SOME BASIC INTERMEDIATE ALGEBRA SKILLS
STUDY GUIDE FOR SOME BASIC INTERMEDIATE ALGEBRA SKILLS The intermediate algebra skills illustrated here will be used extensively and regularly throughout the semester Thus, mastering these skills is an
More informationExample 1. Rise 4. Run 6. 2 3 Our Solution
. Graphing  Slope Objective: Find the slope of a line given a graph or two points. As we graph lines, we will want to be able to identify different properties of the lines we graph. One of the most important
More informationArithmetic Operations. The real numbers have the following properties: In particular, putting a 1 in the Distributive Law, we get
Review of Algebra REVIEW OF ALGEBRA Review of Algebra Here we review the basic rules and procedures of algebra that you need to know in order to be successful in calculus. Arithmetic Operations The real
More informationA rational number is a number that can be written as where a and b are integers and b 0.
S E L S O N Rational Numbers Goal: Perform operations on rational numbers. Vocabulary Rational number: Additive inverse: A rational number is a number that can be a written as where a and b are integers
More informationA positive exponent means repeated multiplication. A negative exponent means the opposite of repeated multiplication, which is repeated
Eponents Dealing with positive and negative eponents and simplifying epressions dealing with them is simply a matter of remembering what the definition of an eponent is. division. A positive eponent means
More informationSUNY ECC. ACCUPLACER Preparation Workshop. Algebra Skills
SUNY ECC ACCUPLACER Preparation Workshop Algebra Skills Gail A. Butler Ph.D. Evaluating Algebraic Epressions Substitute the value (#) in place of the letter (variable). Follow order of operations!!! E)
More informationSimplification Problems to Prepare for Calculus
Simplification Problems to Prepare for Calculus In calculus, you will encounter some long epressions that will require strong factoring skills. This section is designed to help you develop those skills.
More informationFactors of 8 are 1 and 8 or 2 and 4. Let s substitute these into our factors and see which produce the middle term, 10x.
Quadratic equations A quadratic equation in x is an equation that can be written in the standard quadratic form ax + bx + c 0, a 0. Several methods can be used to solve quadratic equations. If the quadratic
More informationSystems of Equations  Graphing
4.1 Systems of Equations  Graphing Objective: Solve systems of equations by graphing and identifying the point of intersection. We have solved problems like 3x 4 = 11 by adding 4 to both sides and then
More informationCh 7 Alg 2 Note Sheet Key
Ch Alg Note Sheet Key Chapter : Radical Functions and Rational Eponents The Why of Eponents Multiplication gave us a short way to write repeated addition: + + +. The counts the number of terms. Eponents
More informationAlgebra 1A and 1B Summer Packet
Algebra 1A and 1B Summer Packet Name: Calculators are not allowed on the summer math packet. This packet is due the first week of school and will be counted as a grade. You will also be tested over the
More informationFactoring  Trinomials where a = 1
6.3 Factoring  Trinomials where a = 1 Objective: Factor trinomials where the coefficient of x 2 is one. Factoring with three terms, or trinomials, is the most important type of factoring to be able to
More information6.3. section. Building Up the Denominator. To convert the fraction 2 3 factor 21 as 21 3 7. Because 2 3
0 (618) Chapter 6 Rational Epressions GETTING MORE INVOLVED 7. Discussion. Evaluate each epression. a) Onehalf of 1 b) Onethird of c) Onehalf of d) Onehalf of 1 a) b) c) d) 8 7. Eploration. Let R
More informationFactoring  Factoring Special Products
6.5 Factoring  Factoring Special Products Objective: Identify and factor special products including a difference of squares, perfect squares, and sum and difference of cubes. When factoring there are
More informationP.3 Linear Equations and Inequalities
SECTION P. Linear Equations and Inequalities 1 P. Linear Equations and Inequalities What you ll learn about Equations Solving Equations Linear Equations in One Variable Linear Inequalities in One Variable...
More informationP.3 Linear Equations and Inequalities
SECTION P. Linear Equations and Inequalities What you ll learn about Equations Solving Equations Linear Equations in One Variable Linear Inequalities in One Variable... and why These topics provide the
More informationFRACTIONS. a where b 0 b. In a fraction the number at the top is called the numerator, and the number at the bottom is called the denominator.
FRACTIONS A fraction is defined as a ratio of two numbers, where the number at the bottom cannot be equal to zero. a where b 0 b In a fraction the number at the top is called the numerator, and the number
More informationSolving Linear Equations  Absolute Value
1.6 Solving Linear Equations  Absolute Value Objective: Solve linear absolute value equations. When solving equations with absolute value we can end up with more than one possible answer. This is because
More informationPreAlgebra 8 Notes Unit Four: Factors, Fractions, and Exponents
PreAlgebra 8 Notes Unit Four: Factors, Fractions, and Eponents Prime Numbers A prime number is a whole number that is greater than one and has eactly two factors, one and itself. Some eamples are,,, 7,
More informationIntroduction. This chapter focuses on developing your skills with Algebraic Fractions
Introduction This chapter focuses on developing your skills with Algebraic Fractions At its core, you must remember that sums with Algebraic Fractions follow the same rules as for numerical versions You
More informationEquations Involving Fractions
. Equations Involving Fractions. OBJECTIVES. Determine the ecluded values for the variables of an algebraic fraction. Solve a fractional equation. Solve a proportion for an unknown NOTE The resulting equation
More informationAbout Fractions. Introduction
About Fractions TABLE OF CONTENTS About Fractions... 1 What is a FRACTION?... 1 Introduction... 1 Introduction... 1 Forms of Fractions... 1 Different Forms of Fractions... 1 Proper Fractions... 2 Improper
More informationHFCC Math Lab Intermediate Algebra  7 FINDING THE LOWEST COMMON DENOMINATOR (LCD)
HFCC Math Lab Intermediate Algebra  7 FINDING THE LOWEST COMMON DENOMINATOR (LCD) Adding or subtracting two rational expressions require the rational expressions to have the same denominator. Example
More informationExponents, Polynomials, and Polynomial Functions
Eponents, Polynomials, and Polynomial Functions. Integer Eponents R. Fractions and Scientific Notation Objectives. Use the product rule for eponents.. Define and negative eponents.. Use the quotient rule
More informationthe LCD is the product found by using certain prime number factors of each denominator.
DETAILED SOLUTIONS AND CONCEPTS  RATIONAL EXPRESSIONS AND EQUATIONS Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions Comments to ingrid.stewart@csn.edu. Thank you! PLEASE
More informationRational Expressions and Rational Equations
Rational Epressions and Rational Equations 6 6. Rational Epressions and Rational Functions 6. Multiplication and Division of Rational Epressions 6. Addition and Subtraction of Rational Epressions 6.4 Comple
More informationHFCC Math Lab Intermediate Algebra 20 SOLVING QUADRATIC EQUATIONS USING THE QUADRATIC FORMULA
HFCC Math Lab Intermediate Algebra 0 SOLVING QUADRATIC EQUATIONS USING THE QUADRATIC FORMULA Quadratic equations can be solved by a number of methods:. Factoring often the fastest method, but can t be
More informationFractions and Linear Equations
Fractions and Linear Equations Fraction Operations While you can perform operations on fractions using the calculator, for this worksheet you must perform the operations by hand. You must show all steps
More informationGraphing  SlopeIntercept Form
2.3 Graphing  SlopeIntercept Form Objective: Give the equation of a line with a known slope and yintercept. When graphing a line we found one method we could use is to make a table of values. However,
More informationSelfDirected Course: Transitional Math Module 2: Fractions
Lesson #1: Comparing Fractions Comparing fractions means finding out which fraction is larger or smaller than the other. To compare fractions, use the following inequality and equal signs:  greater than
More informationAnalysis. PreAlgebra. Readiness Assessment: Analysis. 1. Correct Answer : Correct Answer : Correct Answer : 8.
. Correct Answer : 24.098 Analysis The student needed to complete the following to solve this problem:. Write the equation vertically and align the decimal points. 2. Align the digits of each number vertically
More informationx 2 5x + 6 Definition 1.2 The domain of an algebraic expression is the set of values that the variable is allowed to take.
.4 Rational Epressions Definition. A quotient of two algebraic epressions is called a fractional epression. A rational epression is a fractional epression where both the numerator and denominator are polynomials.
More informationFactoring  Solve by Factoring
6.7 Factoring  Solve by Factoring Objective: Solve quadratic equation by factoring and using the zero product rule. When solving linear equations such as 2x 5 = 21 we can solve for the variable directly
More informationEvaluating an Exponential Function
º 0 Algebra 8. Notes Zero and Negative Eponents (pp 4648) Page of 9 I can evaluate zero and negative eponents. I can graph and solve problems with eponential functions. º = 4 º = 0 = 4 D E FINITION OF
More informationChapter 15 Radical Expressions and Equations Notes
Chapter 15 Radical Expressions and Equations Notes 15.1 Introduction to Radical Expressions The symbol is called the square root and is defined as follows: a = c only if c = a Sample Problem: Simplify
More informationChapter 6: Radical Functions and Rational Exponents
Algebra B: Chapter 6 Notes 1 Chapter 6: Radical Functions and Rational Eponents Concept Bte (Review): Properties of Eponents Recall from Algebra 1, the Properties (Rules) of Eponents. Propert of Eponents:
More information1.3 Algebraic Expressions
1.3 Algebraic Expressions A polynomial is an expression of the form: a n x n + a n 1 x n 1 +... + a 2 x 2 + a 1 x + a 0 The numbers a 1, a 2,..., a n are called coefficients. Each of the separate parts,
More informationSystems of Equations  Three Variables
4.4 Systems of Equations  Three Variables Objective: Solve systems of equations with three variables using addition/elimination. Solving systems of equations with 3 variables is very similar to how we
More informationAdding Integers. Example 1 Evaluate.
Adding Integers Adding Integers 0 Example 1 Evaluate. Adding Integers Example 2 Evaluate. Adding Integers Example 3 Evaluate. Subtracting Integers Subtracting Integers Subtracting Integers Change the subtraction
More information1.2 Linear Equations and Rational Equations
Linear Equations and Rational Equations Section Notes Page In this section, you will learn how to solve various linear and rational equations A linear equation will have an variable raised to a power of
More informationSection 5.0A Factoring Part 1
Section 5.0A Factoring Part 1 I. Work Together A. Multiply the following binomials into trinomials. (Write the final result in descending order, i.e., a + b + c ). ( 7)( + 5) ( + 7)( + ) ( + 7)( + 5) (
More informationSolutions of Linear Equations in One Variable
2. Solutions of Linear Equations in One Variable 2. OBJECTIVES. Identify a linear equation 2. Combine like terms to solve an equation We begin this chapter by considering one of the most important tools
More informationc The solution of the equation 5x 2x 11falls between what two consecutive integers? a. 0 and 1 b. 1 and 2 c. 2 and 3 d. 3 and 4 e.
Algebra Topics COMPASS Review revised Summer 0 You will be allowed to use a calculator on the COMPASS test. Acceptable calculators are basic calculators, scientific calculators, and approved graphing calculators.
More informationTHE BINOMIAL SERIES FOR RATIONAL POWERS
Mathematics Revision Guides The Binomial Series for Rational Powers Page of 9 M.K. HOME TUITION Mathematics Revision Guides Level: AS / A Level AQA : C Edecel: C OCR: C OCR MEI: C THE BINOMIAL SERIES FOR
More informationSOLVING RATIONAL EQUATIONS EXAMPLES
SOLVING RATIONAL EQUATIONS EXAMPLES. Recall that you can solve equations containing fractions by using the least common denominator of all the fractions in the equation. Multiplying each side of the equation
More informationImproper Fractions and Mixed Numbers
This assignment includes practice problems covering a variety of mathematical concepts. Do NOT use a calculator in this assignment. The assignment will be collected on the first full day of class. All
More informationIntroduction to the Practice Exams
Introduction to the Practice Eams The math placement eam determines what math course you will start with at North Hennepin Community College. The placement eam starts with a 1 question elementary algebra
More informationIntroduction to Fractions
Introduction to Fractions Fractions represent parts of a whole. The top part of a fraction is called the numerator, while the bottom part of a fraction is called the denominator. The denominator states
More informationPFE FRACTIONS WORKSHOP Subtract Fractions with Unlike Denominators Week 11, Lesson 1 TO SUBTRACT FRACTIONS WITH DIFFERENT DENOMINATORS, CHANGE EACH
Subtract Fractions with Unlike Denominators Week 11, Lesson 1 TO SUBTRACT FRACTIONS WITH DIFFERENT DENOMINATORS, CHANGE EACH FRACTION INTO AN EQUIVALENT FRACTION. YOU DO THIS, FIRST, BY FINDING THE LEAST
More informationPolynomials and Factoring
7.6 Polynomials and Factoring Basic Terminology A term, or monomial, is defined to be a number, a variable, or a product of numbers and variables. A polynomial is a term or a finite sum or difference of
More informationLesson 71. Roots and Radicals Expressions
Lesson 71 Roots and Radicals Epressions Radical Sign inde Radical Sign n a Radicand Eample 1 Page 66 #6 Find all the real cube roots of 0.15 0.15 0.15 0.15 0.50 (0.50) 0.15 0.50 is the cube root of 0.15.
More informationARITHMETIC. Overview. Testing Tips
ARITHMETIC Overview The Arithmetic section of ACCUPLACER contains 17 multiple choice questions that measure your ability to complete basic arithmetic operations and to solve problems that test fundamental
More informationDate: Section P.2: Exponents and Radicals. Properties of Exponents: Example #1: Simplify. a.) 3 4. b.) 2. c.) 3 4. d.) Example #2: Simplify. b.) a.
Properties of Exponents: Section P.2: Exponents and Radicals Date: Example #1: Simplify. a.) 3 4 b.) 2 c.) 34 d.) Example #2: Simplify. a.) b.) c.) d.) 1 Square Root: Principal n th Root: Example #3: Simplify.
More informationPractice IAD  Form A
Practice IAD  Form A This is a practice eam for Sacramento State s Intermediate Algebra Diagnostic Eam (IAD). The IAD eam was created to help channel students who need a review of intermediate algebra
More information3.1. RATIONAL EXPRESSIONS
3.1. RATIONAL EXPRESSIONS RATIONAL NUMBERS In previous courses you have learned how to operate (do addition, subtraction, multiplication, and division) on rational numbers (fractions). Rational numbers
More informationPolynomials and Power Functions
UNIT 5 Polynomials and Power Functions Engineers use polynomial curves to design cars. Engineers and artists use graphics programs to design cars, planes, and even shoes. Each surface consists of many
More informationFive 5. Rational Expressions and Equations C H A P T E R
Five C H A P T E R Rational Epressions and Equations. Rational Epressions and Functions. Multiplication and Division of Rational Epressions. Addition and Subtraction of Rational Epressions.4 Comple Fractions.
More informationSolving 1 and 2 Step Equations
Section 2 1: Solving 1 and 2 Step Equations Epressions The last chapter in this book contained epressions. The net type of algebraic statement that we will eamine is an equation. At the start of this section
More informationBeginning and Intermediate Algebra Chapter 5: Polynomials
Beginning and Intermediate Algebra Chapter 5: Polynomials An open source (CCBY) textbook by Tyler Wallace 1 Beginning and Intermediate Algebra by Tyler Wallace is licensed under a Creative Commons Attribution
More informationInequalities  Solve and Graph Inequalities
3.1 Inequalities  Solve and Graph Inequalities Objective: Solve, graph, and give interval notation for the solution to linear inequalities. When we have an equation such as x = 4 we have a specific value
More informationSkill Builders. (Extra Practice) Volume I
Skill Builders (Etra Practice) Volume I 1. Factoring Out Monomial Terms. Laws of Eponents 3. Function Notation 4. Properties of Lines 5. Multiplying Binomials 6. Special Triangles 7. Simplifying and Combining
More informationAdding and Subtracting Fractions. 1. The denominator of a fraction names the fraction. It tells you how many equal parts something is divided into.
Tallahassee Community College Adding and Subtracting Fractions Important Ideas:. The denominator of a fraction names the fraction. It tells you how many equal parts something is divided into.. The numerator
More informationAccuplacer Arithmetic Study Guide
Testing Center Student Success Center Accuplacer Arithmetic Study Guide I. Terms Numerator: which tells how many parts you have (the number on top) Denominator: which tells how many parts in the whole
More informationBig Bend Community College. Beginning Algebra MPC 095. Lab Notebook
Big Bend Community College Beginning Algebra MPC 095 Lab Notebook Beginning Algebra Lab Notebook by Tyler Wallace is licensed under a Creative Commons Attribution 3.0 Unported License. Permissions beyond
More informationChapter 5. Rational Expressions
5.. Simplify Rational Expressions KYOTE Standards: CR ; CA 7 Chapter 5. Rational Expressions Definition. A rational expression is the quotient P Q of two polynomials P and Q in one or more variables, where
More information