Existence and multiplicity of solutions for a Neumann-type p(x)-laplacian equation with nonsmooth potential. 1 Introduction

Size: px
Start display at page:

Download "Existence and multiplicity of solutions for a Neumann-type p(x)-laplacian equation with nonsmooth potential. 1 Introduction"

Transcription

1 Electronic Journal of Qualitative Theory of Differential Equations 20, No. 7, -0; Existence and multiplicity of solutions for a Neumann-type p(x)-laplacian equation with nonsmooth potential Bin Ge, Qingmei Zhou 2 Department of Applied Mathematics, Harbin Engineering University, Harbin, 5000, P. R. China 2 Library, Northeast Forestry University, Harbin, 50040, P. R. China Abstract: In this paper we study Neumann-type p(x)-laplacian equation with nonsmooth potential. Firstly, applying a version of the non-smooth three-critical-points theorem we obtain the existence of three solutions of the problem in W,p(x) (). Finally, we obtain the existence of at least two nontrivial solutions, when α > p +. Key words: p(x)-laplacian, Differential inclusion problem, Three critical points theorem, Neumann-type problem. Introduction The study of differential equations and variational problems with variable exponent has been a new and interesting topic. It arises from nonlinear elasticity theory, electrorheological fluids, etc. (see [, 2]). It also has wide applications in different research fields, such as image processing model (see e.g. [3, 4]), stationary thermorheological viscous flows (see [5]) and the mathematical description of the processes filtration of an idea barotropic gas through a porous medium (see [6]). The study on variable exponent problems attracts more and more interest in recent years, many results have been obtained on this kind of problems, for example [7-4]. In this paper, we investigate the following Neumann-type differential equation with p(x)- Laplacian and a nonsmooth potential: div( u p(x) 2 u) + u p(x) 2 u λ j(x, u), in, u γ = 0, on, (P) where is a bounded domain of R N with smooth boundary, λ > 0 is a real number, p(x) C() with < p := min p(x) p + := max p(x) < +, j(x, u) is the Clarke subdifferential of x x j(x, ), γ is the outward unit normal to the boundary. Corresponding author: gebin @63.com Supported by the National Science Fund (grant , 00063), Heilongjiang Province Foundation for Distinguished Young Scholars (JC20080), Program of Excellent Team in Harbin Institute of Technology and the Natural Science Foundation of Heilongjiang Province (No. A200803). EJQTDE, 20 No. 7, p.

2 In [7], Dai studied the particular case p(x) C() with N < p. He established the existence of three solutions by using the non-smooth critical -points theorem [5]. In this paper we will study problem (P) in the case when < p(x) < + for any x. We will prove that there also exist three weak solutions for problem (P), and existence of at least two nontrivial solutions, when α > p +. This paper is organized as follows. We will first introduce some basic preliminary results and lemma. In Section 2, including the variable exponent Lebesgue, Sobolev spaces, generalized gradient of locally Lipschitz function and non-smooth three-critical-points theorem. In section 3, we give the main results and their proof. 2 Preliminaries In this part, we introduce some definitions and results which will be used in the next section. Firstly, we introduce some theories of Lebesgue-Sobolev space with variable exponent. The detailed can be found in [8-3]. Assume that p C() and p(x) >, for all x. Set C + () = {h C() : h(x) > for any x }. Define h = min x h(x), h + = max h(x) for any h C + (). x For p(x) C + (), we define the variable exponent Lebesgue space: L p(x) () = {u : u is a measurable real value function u(x) p(x) dx < + }, with the norm u L p(x) () = u p(x) =inf{λ > 0 : u(x) λ p(x) dx }, and define the variable exponent Sobolev space W,p(x) () = {u L p(x) () : u L p(x) ()}, with the norm u = u W,p(x) () = u p(x) + u p(x). We remember that spaces L p(x) () and W,p(x) () are separable and reflexive Banach spaces. Denoting by L q(x) () the conjugate space of L p(x) () with p(x) + q(x) =, then the Hölder type inequality uv dx ( p + q ) u L () v p(x) L (), u L p(x) (), v L q(x) () () q(x) holds. Furthermore, define mapping ρ : W,p(x) R by ρ(u) = ( u p(x) + u p(x) )dx, then the following relations hold Hereafter, let p (x) = u < (=, > ) ρ(u) < (=, > ), (2) u > u p ρ(u) u p+, (3) u < u p+ ρ(u) u p. (4) Np(x), p(x) < N, N p(x) +, p(x) N. Remark 2.. If h C + () and h(x) p (x) for any x, by Theorem 2.3 in [], we deduce that W,p(x) () is continuously embedded in L h(x) (). When h(x) < p (x), the embedding is compact. EJQTDE, 20 No. 7, p. 2

3 Let X be a Banach space and X be its topological dual space and we denote <, > as the duality bracket for pair (X, X). A function ϕ : X R is said to be locally lipschitz, if for every x X, we can find a neighbourhood U of x and a constant k > 0(depending on U), such that ϕ(y) ϕ(z) k y z, y, z U. The generalized directional derivative of ϕ at the point u X in the direction h X is ϕ 0 ϕ(u + λh) ϕ(u ) (u; h) = limsup. u u;λ 0 λ The generalized subdifferential of ϕ at the point u X is defined by ϕ(u) = {u X ; < u, h > ϕ 0 (u; h), h X}, which is a nonempty, convex and w compact set of X. We say that u X is a critical point of ϕ, if 0 ϕ(x). For further details, we refer the reader to [6]. Finally, for proving our results in the next section, we introduce the following lemma: Lemma 2.(see [5]). Let X be a separable and reflexive real Banach space, and let Φ, Ψ : X R be two locally Lipschitz functions. Assume that there exist u 0 X such that Φ(u 0 ) = Ψ(u 0 ) = 0 and Φ(u) 0 for every u X and that there exists u X and r > 0 such that: () r < Φ(u ); (2) sup Ψ(u) < r Ψ(u) Φ(u ), and further, we assume that function Φ λψ is sequentially lower Φ(u)<r semicontinuous, satisfies the (PS)-condition, and (3) lim (Φ(u) λψ(u)) = + u for every λ [0, a], where hr a =, with h >. r Ψ(u ) sup Ψ(u) Φ(u ) Φ(u)<r Then, there exits an open interval Λ [0, a] and a positive real number σ such that, for every λ Λ, the function Φ(u) λψ(u) admits at least three critical points whose norms are less than σ. 3 Existence theorems In this section, we will prove that there also exist three weak solutions for problem (P). Our hypotheses on nonsmooth potential j(x, t) as follows. H(j) : j : R R is a function such that j(x, 0) = 0 a.e. on and satisfies the following facts: (i) for all t R, x j(x, t) is measurable; (ii) for almost all x, t j(x, t) is locally Lipschitz; (iii) there exist α C + () with α + < p and positive constants c, c 2, such that w c + c 2 t α(x) for every t R, almost all x and all w j(x, t); (iv) there exists a t 0 R +, such that j(x, t 0 ) > 0 for all x ; (v) there exist q C() such that p + < q q(x) < p (x) and j(x, t) lim = 0 uniformly a.e. x. t 0 t q(x) EJQTDE, 20 No. 7, p. 3

4 Remark 3.. It is easy to give examples satisfying all conditions in H(j). For example, the following nonsmooth locally Lipschitz function j : R R, satisfies hypotheses H(j): j(x, t) = { β(x) t β(x), if t, t, if t >, α(x) t α(x) + α(x) β(x) α(x)β(x) where α, β C + () with α + < p p + < q q + < β β(x) < p (x). In order to use Lemma 2., we define the function Φ, Ψ : W,p(x) () R by Φ(u) = p(x) ( u p(x) + u p(x) )dx, Ψ(u) = j(x, u)dx. and let ϕ(u) = Φ(u) λψ(u), by Fan [4, Theorem 3.], we know that Φ is continuous and convex, hence locally Lipschitz on W,p(x) (). On the other hand, because of hypotheses H(j)(i),(ii),(iii), Ψ is locally Lipschitz (see Clarke [6], p.83)). Therefore ϕ(u) is locally Lipschitz. We state below our main results Theorem 3.. If hypotheses H(j) hold, Then there are an open interval Λ [0. + ) and a number σ such that, for each λ Λ the problem (P) possesses at least three weak solutions in W,p(x) () whose norms are less than σ. Proof: The proof is divided into the following three Steps. Step. We will show that ϕ is coercive in the step. Firstly, for almost all x, by t j(x, t) is differentiable almost everywhere on R and we have d dt j(x, t) j(z, t). Moveover, from H(j)(iii), there exist positive constants c 3, c 4, such that t d j(x, t) = j(x, 0) + 0 dy j(x, y)dy c t + c 2 α(x) t α(x) c 3 + c 4 t α(x) (5) for almost all x and t R. Note that < α(x) α + < p < p (x), then by Remark 2., we have W,p(x) () L α(x) ()(compact embedding). Furthermore, there exists a c such that u α(x) c u for any u W,p(x) (). So, for any u α(x) > and u >, u α(x) dx u α+ α(x) u cα+ α+. Hence, from (3) and (5), we have ϕ(u) = p(x) ( u p(x) + u p(x) )dx λ j(x, u)dx as u +. p + ( u p(x) + u p(x) )dx λ j(x, u)dx p + u p λ j(x, u)dx p + u p λc 3 meas() λc 4 c α+ u α+ +, Step 2. We show that (PS)-condition holds. Suppose {u n } n W,p(x) () such that ϕ(u n ) c and m(u n ) 0 as n +. Let u n ϕ(u n) be such that m(u n ) = u n (W,p(x) ()), n, then we know that u n = Φ (u n ) λw n EJQTDE, 20 No. 7, p. 4

5 where the nonlinear operator Φ : W,p(x) () (W,p(x) ()) defined as < Φ (u), v >= u p(x) 2 u vdx + u p(x) 2 uvdx, for all v W,p(x) () and w n Ψ(u n ). From Chang [7] we know that w n L α (x) (), where α (x) + α(x) =. Since, ϕ is coercive, {u n } n is bounded in W,p(x) () and there exists u W,p(x) 0 () such that a subsequence of {u n } n, which is still be denoted as {u n } n, satisfies u n u weakly in W,p(x) (). Next we will prove that u n u in W,p(x) (). By W,p(x) () L α(x) (), we have u n u in L α(x) (). Moreover, since u n 0, we get < u n, u n > ε n. Note that u n = Φ (u n ) λw n, we obtain < Φ (u n ), u n u > λ w n(u n u)dx ε n, n. Moreover, w n(u n u)dx 0, since u n u in L α(x) () and {w n } n are bounded in L α (x) (), where α(x) + α (x) =. Therefore, lim sup < Φ (u n ), u n u > 0. n But we know Φ is a mapping of type (S + )(see [4, Theorem 3.]). Thus we obtain u n u in W,p(x) (). Step 3. We show that Φ, Ψ satisfy the conditions () and (2) in Lemma 2.. Consider u 0, u W,p(x) (), u 0 (x) = 0 and u (x) = t 0 for any x. A simple computation implies Φ(u 0 ) = Ψ(u 0 ) = 0 and Ψ(u ) > 0. From (3) and (4), we have if u, then p + Φ(u) u p p ; (6) u p+ if u <, then + p + u p Φ(u) p u p. (7) From H(j)(v), there exist η [0, ] and c 5 > 0 such that In view of H(j)(iii), if we put Ψ(u) = j(x, u)dx c 6 Since q > p +, we have j(x, t) c 5 t q(x) c 5 t q, t [ η, η], x. c 6 = max{c 5, sup η t < c 3 + c 4 t α a + a 2 t α+, sup }, t t q t q then we have j(x, t) c 6 t q, t R, x. Fix r such that 0 < r <. And when p max{ u p, u p+ } < r <, by Sobolev Embedding + Theorem (W,p(x) () L q ()), we have (for suitable positive constants c 7, c 8 ) u q dx c 7 u q < c 8 r q p (or c 8 r q p + ). lim r 0 + sup p + max{ u p, u p+ }<r r Ψ(u) = 0. (8) EJQTDE, 20 No. 7, p. 5

6 Fix r 0 such that r 0 < p min{ u + p, u p+, }. Case. When u, from (6), we have p u p + Φ(u ) p + u p. (9) From (8) and (9), we know that when 0 < r < r 0, Φ(u ) > r and From (6), we have Hence, sup p + u p <r Ψ(u) r 2 Ψ(u ) r Ψ(u ) p u p+ 2 Φ(u ) < rψ(u ) Φ(u ). {u W,p(x) () : Φ(u) < r} {u W,p(x) () : p + u p+ <r sup Ψ(u) < r Ψ(u ) Φ(u)<r Φ(u ). p + u p < r}. Case 2. When u, fixing r as above, with the role of u p+ above now assumed by u p, we can analogously get sup Ψ(u) r Ψ(u ) 2 r Ψ(u ) p u p 2 Φ(u ) < rψ(u ) Φ(u ). From (7), we have Hence, {u W,p(x) () : Φ(u) < r} {u W,p(x) () : + p + u p < r}. sup Ψ(u) < r Ψ(u ) Φ(u)<r Φ(u ). Thus, Φ and Ψ satisfy all the assumptions of Lemma 2., and the proof is complect. Thus far the results involved potential functions exhibiting p(x)-sublinear. The next theorem concerns problems where the potential function is p(x)-superlinear. The hypotheses on the nonsmooth potential are the following: H(j) : j : R R is a function such that j(x, 0) = 0 a.e. on and satisfies the following facts: (i) for all t R, x j(x, t) is measurable; (ii) for almost all x, t j(x, t) is locally Lipschitz; (iii) there exist α C + () with α > p + and positive constants c, c 2, such that w c + c 2 t α(x) for every t R, almost all x and all w j(x, t); (iv) There exist γ C() with p + < γ(x) < p (x) and µ L (), such that < w, t > lim sup < µ(x), t 0 t γ(x) uniformly for almost all x and all w j(x, t); (v) There exist ξ 0 R, x 0 and r 0 > 0, such that where B r0 (x 0 ) := {x : x x 0 r 0 } ; j(x, ξ 0 ) > δ 0 > 0, a.e. x B r0 (x 0 ) EJQTDE, 20 No. 7, p. 6

7 (vi) For almost all x, all t R and all w j(x, t), we have j(x, t) ν(x) with ν L β(x) (), β(x) < p. Remark 3.2. It is easy to give examples satisfying all conditions in H(j). For example, the following nonsmooth locally Lipschitz function j : R R, satisfies hypotheses H(j) : sin( π 2 t γ(x) ), t, j(x, t) = 2 t 3, t >, 2 Theorem 3.2. If hypotheses H(j) hold, then there exists a λ 0 > 0 such that for each λ > λ 0, the problem (P) has at least two nontrivial solutions. Proof: The proof is divided into the following five Steps. Step. We will show that ϕ is coercive in the step. By H(j) (vi), for all u W,p(x) (), u >, we have ϕ(u) = p(x) ( u p(x) + u p(x) )dx λ j(x, u)dx p + λ ν(x)dx, as u. u p Step 2. We will show that the ϕ is weakly lower semi-continuous. Let u n u weakly in W,p(x) (), by Remark 2., we obtain the following results: W,p(x) () L p(x) (); u n u in L p(x) (); u n u for a.e. x ; j(x, u n (x)) j(x, u(x)) for a.e. x. By Fatou s Lemma, lim sup j(x, u n (x))dx j(x, u(x))dx. n Thus, lim inf n) = liminf n n p(x) ( u n p(x) + u n p(x) )dx limsup λ j(x, u n )dx n p(x) ( u p(x) + u p(x) )dx λ j(x, u)dx = ϕ(u). Hence, by The Weierstrass Theorem, we deduce that there exists a global minimizer u 0 W,p(x) () such that ϕ(u 0 ) = min ϕ(u). u W,p(x) () Step 3. We will show that there exists λ 0 > 0 such that for each λ > λ 0, ϕ(u 0 ) < 0. By the condition H(j) (v), there exists ξ 0 R such that j(x, ξ 0 ) > δ 0 > 0, a.e. x B r0 (x 0 ). It is clear that 0 < M := max {c t + c 2 t α +, c t + c 2 t α } < +. t ξ 0 Now we denote M ξ t 0 = ( ) 0 ξ 0 N, K(t) := max{( δ 0 + M r 0 ( t) )p, ( r 0 ( t) )p+ } EJQTDE, 20 No. 7, p. 7

8 and λ 0 = max t [t,t 2] K(t)( t N ) + max{ξ p 0, ξp+ [δ 0 t N M ( t N )] where t 0 < t < t 2 < and δ 0 is given in the condition H(j) (v). A simple calculation shows that the function t δ 0 t N M ( t N ) is positive whenever t > t 0 and δ 0 t N 0 M ( t N 0 ) = 0. Thus λ 0 is well defined and λ 0 > 0. We will show that for each λ > λ 0, the problem (P) has two nontrivial solutions. In order to do this, for t [t, t 2 ], let us define 0, if x \B r0 (x 0 ), η t (x) = ξ 0, if x B tr0 (x 0 ), ξ 0 r 0 ( t) (r 0 x x 0 ), if x B r0 (x 0 )\B tr0 (x 0 ). By conditions H(j) (iii) and (v) we have j(x, η t (x))dx = j(x, η t (x))dx + j(x, η t (x))dx B tr0 (x 0) w N r N 0 tn δ 0 M ( t N )w N r N 0 =w N r N 0 (δ 0 t N M ( t N )). 0 } B r0 (x 0)\B tr0 (x 0) Hence, for t [t, t 2 ], ϕ(η t ) = p(x) η t p(x) dx + p(x) η t p(x) dx λ j(x, η t (x))dx p ( η t p(x) + η t p(x) )dx λw N r0 N (δ 0 t N M ( t N )) ξ 0 max{[, [ }w r 0 ( t) ]p r 0 ( t) ]p+ N r0 N ( tn ) ξ 0 + max{ξ p 0, ξp+ 0 }w Nr N 0 λw N r N 0 (δ 0 t N M ( t N )) =w N r N 0 [K(t)( tn ) + max{ξ p 0, ξp+ 0 } λ(δ 0t N M ( t N ))], so that ϕ(η t ) < 0 whenever λ > λ 0. Step 4. We will check the C-condition in the following. Suppose {u n } n W,p(x) 0 () such that ϕ(u n ) c and ( + u n )m(u n ) 0. Since, ϕ is coercive, {u n } n is bounded in W,p(x) () and passed to a subsequence, still denote {u n } n, we may assume that there exists u W,p(x) (), such that u n u weakly in W,p(x) (). Next we will prove that u n u in W,p(x) (). By W,p(x) () L p(x) (), we have u n u in L p(x) (). Moreover, since u n 0, we get < u n, u n > ε n. Note that u n = Φ (u n ) λw n, we have < Φ (u n ), u n u > λ w n(u n u)dx ε n, n. Moreover, w n(u n u)dx 0, since u n u in L p(x) () and {w n } n in L p (x) () are bounded, where p(x) + p (x) =. Therefore, lim sup < Φ (u n ), u n u > 0. n From [4, Theorem 3.], we have u n u as n. Thus ϕ satisfies the nonsmooth C-, EJQTDE, 20 No. 7, p. 8

9 condition. Step 5. We will show that there exists another nontrivial weak solution of problem (P). From Lebourg Mean Value Theorem, we obtain j(x, t) j(x, 0) = w, t for some w j(x, ϑt) and 0 < ϑ <. Thus, from H(j) (iv), there exists β (0, ) such that j(x, t) w, t µ(x) t γ(x), t < β and a.e. x. (0) On the other hand, by the condition H(j) (iii), we have j(x, t) c t + c 2 t α(x) c t β α(x) t + c 2 t α(x) =c β α+ t α(x) + c 2 t α(x) () =c 5 t α(x) for a.e. x, all t β with c 5 > 0. Combining (0) and (), it follows that for a.e. x and all t R. j(x, t) µ(x) t γ(x) + c 5 t α(x) Thus, For all λ > λ 0, u <, u γ(x) < and u α(x) <, we have ϕ(u) = p(x) u p(x) dx λ j(x, u(x))dx p + λ µ(x) u γ(x) dx λc u p+ 5 u α(x) dx p + u p+ λc 6 u γ λc 7 u α. So, for ρ > 0 small enough, there exists a ν > 0 such that ϕ(u) > ν, for u = ρ and u 0 > ρ. So by the Nonsmooth Mountain Pass Theorem, we can get u W,p(x) () satisfies ϕ(u ) = c > 0 and m(u ) = 0. Therefore, u is second nontrivial critical point of ϕ. References [] M. Ruzicka, Electrorheological Fluids: Modeling and Mathematical Theory, Springer-Verlag, Berlin, [2] V. V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory. Math. USSR. Izv, 987, 29(): [3] P. Harjulehto, P. Hästö, V. Latvala, Minimizers of the variable exponent, non-uniformly convex Dirichlet energy. J. Math. Pures Appl, 2008, 89: [4] Y. Chen, S. Levine, M. Rao, Variable exponent linear growth functionals in image restoration. SIAM J. Appl. Math, 2006, 66(4): EJQTDE, 20 No. 7, p. 9

10 [5] S. N. Antontsev, J. F. Rodrigues, On stationary thermo-rheological viscous flows. Ann. Univ. Ferrara Sez. VII, Sci. Mat, 2006, 52: [6] S. N. Antontsev, S. I. Shmarev, A model porous medium equation with variable exponent of nonlinearity: Existence uniqueness and localization properties of solutions. Nonlinear Anal. TMA, 2005, 60: [7] G. Dai, Three solutions for a Neumann-type differential inclusion problem involving the p(x)-laplacian. Nonlinear Anal, 2009, 70(0): [8] D. E. Edmunds, J. Lang, A. Nekvinda, On L p(x) () norms. Proc. R. Soc. Ser. A, 999, 455: [9] D. E. Edmunds, J. Rákosník, Sobolev embedding with variable exponent. Studia Math, 2000, 43: [0] X. L. Fan, J. Shen, D. Zhao, Sobolev embedding theorems for spaces W,p(x). J. Math. Anal. Appl, 200, 262(2): [] X. L. Fan, D. Zhao, On the space L p(x) () and W k,p(x) (). J. Math. Anal. Appl, 200, 263(2): [2] X. L. Fan, D. Zhao, On the generalized Orlicz-Sobolev space W,p(x) (). J. Gansu Educ. College, 998, 2():-6. [3] O. Kováčik, J. Rákosník, On spaces L p(x) W,p(x). Czechoslovak Math. J, 99, 4: [4] X. L. Fan, Q. H Zhang, Existence of solutions for p(x)-laplacian Dirichlet problem. Nonlinear Anal, 2003, 52(8): [5] G. Bonanno, P. Candito, On a class of nonlinear variational-hemivariational inequalities. Appl. Anal, 2004, 83: [6] F. H. Clarke, Optimization and Nonsmooth Analysis. Wiley, New York, 983. [7] K. C. Chang, Variational methods for nondifferentiable functionals and their applications to partial differential equations. J. Math. Anal. Appl, 98, 80(): (Received December 4, 200) EJQTDE, 20 No. 7, p. 0

Pacific Journal of Mathematics

Pacific Journal of Mathematics Pacific Journal of Mathematics GLOBAL EXISTENCE AND DECREASING PROPERTY OF BOUNDARY VALUES OF SOLUTIONS TO PARABOLIC EQUATIONS WITH NONLOCAL BOUNDARY CONDITIONS Sangwon Seo Volume 193 No. 1 March 2000

More information

School on Nonlinear Elliptic Problems. On higher order p Kirchhoff problems. Patrizia Pucci

School on Nonlinear Elliptic Problems. On higher order p Kirchhoff problems. Patrizia Pucci School on Nonlinear Elliptic Problems Dipartimento di Matematica e Applicazioni Università di Milano Bicocca On higher order p Kirchhoff problems Patrizia Pucci University of Perugia Milan January 20 24,

More information

Fuzzy Differential Systems and the New Concept of Stability

Fuzzy Differential Systems and the New Concept of Stability Nonlinear Dynamics and Systems Theory, 1(2) (2001) 111 119 Fuzzy Differential Systems and the New Concept of Stability V. Lakshmikantham 1 and S. Leela 2 1 Department of Mathematical Sciences, Florida

More information

Separation Properties for Locally Convex Cones

Separation Properties for Locally Convex Cones Journal of Convex Analysis Volume 9 (2002), No. 1, 301 307 Separation Properties for Locally Convex Cones Walter Roth Department of Mathematics, Universiti Brunei Darussalam, Gadong BE1410, Brunei Darussalam

More information

ON NONNEGATIVE SOLUTIONS OF NONLINEAR TWO-POINT BOUNDARY VALUE PROBLEMS FOR TWO-DIMENSIONAL DIFFERENTIAL SYSTEMS WITH ADVANCED ARGUMENTS

ON NONNEGATIVE SOLUTIONS OF NONLINEAR TWO-POINT BOUNDARY VALUE PROBLEMS FOR TWO-DIMENSIONAL DIFFERENTIAL SYSTEMS WITH ADVANCED ARGUMENTS ON NONNEGATIVE SOLUTIONS OF NONLINEAR TWO-POINT BOUNDARY VALUE PROBLEMS FOR TWO-DIMENSIONAL DIFFERENTIAL SYSTEMS WITH ADVANCED ARGUMENTS I. KIGURADZE AND N. PARTSVANIA A. Razmadze Mathematical Institute

More information

RANDOM INTERVAL HOMEOMORPHISMS. MICHA L MISIUREWICZ Indiana University Purdue University Indianapolis

RANDOM INTERVAL HOMEOMORPHISMS. MICHA L MISIUREWICZ Indiana University Purdue University Indianapolis RANDOM INTERVAL HOMEOMORPHISMS MICHA L MISIUREWICZ Indiana University Purdue University Indianapolis This is a joint work with Lluís Alsedà Motivation: A talk by Yulij Ilyashenko. Two interval maps, applied

More information

EXISTENCE AND NON-EXISTENCE RESULTS FOR A NONLINEAR HEAT EQUATION

EXISTENCE AND NON-EXISTENCE RESULTS FOR A NONLINEAR HEAT EQUATION Sixth Mississippi State Conference on Differential Equations and Computational Simulations, Electronic Journal of Differential Equations, Conference 5 (7), pp. 5 65. ISSN: 7-669. UL: http://ejde.math.txstate.edu

More information

1 Completeness of a Set of Eigenfunctions. Lecturer: Naoki Saito Scribe: Alexander Sheynis/Allen Xue. May 3, 2007. 1.1 The Neumann Boundary Condition

1 Completeness of a Set of Eigenfunctions. Lecturer: Naoki Saito Scribe: Alexander Sheynis/Allen Xue. May 3, 2007. 1.1 The Neumann Boundary Condition MAT 280: Laplacian Eigenfunctions: Theory, Applications, and Computations Lecture 11: Laplacian Eigenvalue Problems for General Domains III. Completeness of a Set of Eigenfunctions and the Justification

More information

Further Study on Strong Lagrangian Duality Property for Invex Programs via Penalty Functions 1

Further Study on Strong Lagrangian Duality Property for Invex Programs via Penalty Functions 1 Further Study on Strong Lagrangian Duality Property for Invex Programs via Penalty Functions 1 J. Zhang Institute of Applied Mathematics, Chongqing University of Posts and Telecommunications, Chongqing

More information

MATH 425, PRACTICE FINAL EXAM SOLUTIONS.

MATH 425, PRACTICE FINAL EXAM SOLUTIONS. MATH 45, PRACTICE FINAL EXAM SOLUTIONS. Exercise. a Is the operator L defined on smooth functions of x, y by L u := u xx + cosu linear? b Does the answer change if we replace the operator L by the operator

More information

BANACH AND HILBERT SPACE REVIEW

BANACH AND HILBERT SPACE REVIEW BANACH AND HILBET SPACE EVIEW CHISTOPHE HEIL These notes will briefly review some basic concepts related to the theory of Banach and Hilbert spaces. We are not trying to give a complete development, but

More information

Duality of linear conic problems

Duality of linear conic problems Duality of linear conic problems Alexander Shapiro and Arkadi Nemirovski Abstract It is well known that the optimal values of a linear programming problem and its dual are equal to each other if at least

More information

CONSTANT-SIGN SOLUTIONS FOR A NONLINEAR NEUMANN PROBLEM INVOLVING THE DISCRETE p-laplacian. Pasquale Candito and Giuseppina D Aguí

CONSTANT-SIGN SOLUTIONS FOR A NONLINEAR NEUMANN PROBLEM INVOLVING THE DISCRETE p-laplacian. Pasquale Candito and Giuseppina D Aguí Opuscula Math. 34 no. 4 2014 683 690 http://dx.doi.org/10.7494/opmath.2014.34.4.683 Opuscula Mathematica CONSTANT-SIGN SOLUTIONS FOR A NONLINEAR NEUMANN PROBLEM INVOLVING THE DISCRETE p-laplacian Pasquale

More information

Høgskolen i Narvik Sivilingeniørutdanningen STE6237 ELEMENTMETODER. Oppgaver

Høgskolen i Narvik Sivilingeniørutdanningen STE6237 ELEMENTMETODER. Oppgaver Høgskolen i Narvik Sivilingeniørutdanningen STE637 ELEMENTMETODER Oppgaver Klasse: 4.ID, 4.IT Ekstern Professor: Gregory A. Chechkin e-mail: chechkin@mech.math.msu.su Narvik 6 PART I Task. Consider two-point

More information

2.3 Convex Constrained Optimization Problems

2.3 Convex Constrained Optimization Problems 42 CHAPTER 2. FUNDAMENTAL CONCEPTS IN CONVEX OPTIMIZATION Theorem 15 Let f : R n R and h : R R. Consider g(x) = h(f(x)) for all x R n. The function g is convex if either of the following two conditions

More information

Optimal boundary control of quasilinear elliptic partial differential equations: theory and numerical analysis

Optimal boundary control of quasilinear elliptic partial differential equations: theory and numerical analysis Optimal boundary control of quasilinear elliptic partial differential equations: theory and numerical analysis vorgelegt von Dipl.-Math. Vili Dhamo von der Fakultät II - Mathematik und Naturwissenschaften

More information

0 <β 1 let u(x) u(y) kuk u := sup u(x) and [u] β := sup

0 <β 1 let u(x) u(y) kuk u := sup u(x) and [u] β := sup 456 BRUCE K. DRIVER 24. Hölder Spaces Notation 24.1. Let Ω be an open subset of R d,bc(ω) and BC( Ω) be the bounded continuous functions on Ω and Ω respectively. By identifying f BC( Ω) with f Ω BC(Ω),

More information

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO NIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Examination in: Trial exam Partial differential equations and Sobolev spaces I. Day of examination: November 18. 2009. Examination hours:

More information

Sumit Chandok and T. D. Narang INVARIANT POINTS OF BEST APPROXIMATION AND BEST SIMULTANEOUS APPROXIMATION

Sumit Chandok and T. D. Narang INVARIANT POINTS OF BEST APPROXIMATION AND BEST SIMULTANEOUS APPROXIMATION F A S C I C U L I M A T H E M A T I C I Nr 51 2013 Sumit Chandok and T. D. Narang INVARIANT POINTS OF BEST APPROXIMATION AND BEST SIMULTANEOUS APPROXIMATION Abstract. In this paper we generalize and extend

More information

No: 10 04. Bilkent University. Monotonic Extension. Farhad Husseinov. Discussion Papers. Department of Economics

No: 10 04. Bilkent University. Monotonic Extension. Farhad Husseinov. Discussion Papers. Department of Economics No: 10 04 Bilkent University Monotonic Extension Farhad Husseinov Discussion Papers Department of Economics The Discussion Papers of the Department of Economics are intended to make the initial results

More information

Numerical Verification of Optimality Conditions in Optimal Control Problems

Numerical Verification of Optimality Conditions in Optimal Control Problems Numerical Verification of Optimality Conditions in Optimal Control Problems Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Julius-Maximilians-Universität Würzburg vorgelegt von

More information

INDISTINGUISHABILITY OF ABSOLUTELY CONTINUOUS AND SINGULAR DISTRIBUTIONS

INDISTINGUISHABILITY OF ABSOLUTELY CONTINUOUS AND SINGULAR DISTRIBUTIONS INDISTINGUISHABILITY OF ABSOLUTELY CONTINUOUS AND SINGULAR DISTRIBUTIONS STEVEN P. LALLEY AND ANDREW NOBEL Abstract. It is shown that there are no consistent decision rules for the hypothesis testing problem

More information

KATO S INEQUALITY UP TO THE BOUNDARY. Contents 1. Introduction 1 2. Properties of functions in X 4 3. Proof of Theorem 1.1 6 4.

KATO S INEQUALITY UP TO THE BOUNDARY. Contents 1. Introduction 1 2. Properties of functions in X 4 3. Proof of Theorem 1.1 6 4. KATO S INEQUALITY UP TO THE BOUNDARY HAÏM BREZIS(1),(2) AND AUGUSTO C. PONCE (3) Abstract. We show that if u is a finite measure in then, under suitable assumptions on u near, u + is also a finite measure

More information

NONLOCAL PROBLEMS WITH NEUMANN BOUNDARY CONDITIONS

NONLOCAL PROBLEMS WITH NEUMANN BOUNDARY CONDITIONS NONLOCAL PROBLEMS WITH NEUMANN BOUNDARY CONDITIONS SERENA DIPIERRO, XAVIER ROS-OTON, AND ENRICO VALDINOCI Abstract. We introduce a new Neumann problem for the fractional Laplacian arising from a simple

More information

and s n (x) f(x) for all x and s.t. s n is measurable if f is. REAL ANALYSIS Measures. A (positive) measure on a measurable space

and s n (x) f(x) for all x and s.t. s n is measurable if f is. REAL ANALYSIS Measures. A (positive) measure on a measurable space RAL ANALYSIS A survey of MA 641-643, UAB 1999-2000 M. Griesemer Throughout these notes m denotes Lebesgue measure. 1. Abstract Integration σ-algebras. A σ-algebra in X is a non-empty collection of subsets

More information

Parabolic Equations. Chapter 5. Contents. 5.1.2 Well-Posed Initial-Boundary Value Problem. 5.1.3 Time Irreversibility of the Heat Equation

Parabolic Equations. Chapter 5. Contents. 5.1.2 Well-Posed Initial-Boundary Value Problem. 5.1.3 Time Irreversibility of the Heat Equation 7 5.1 Definitions Properties Chapter 5 Parabolic Equations Note that we require the solution u(, t bounded in R n for all t. In particular we assume that the boundedness of the smooth function u at infinity

More information

Some stability results of parameter identification in a jump diffusion model

Some stability results of parameter identification in a jump diffusion model Some stability results of parameter identification in a jump diffusion model D. Düvelmeyer Technische Universität Chemnitz, Fakultät für Mathematik, 09107 Chemnitz, Germany Abstract In this paper we discuss

More information

The Heat Equation. Lectures INF2320 p. 1/88

The Heat Equation. Lectures INF2320 p. 1/88 The Heat Equation Lectures INF232 p. 1/88 Lectures INF232 p. 2/88 The Heat Equation We study the heat equation: u t = u xx for x (,1), t >, (1) u(,t) = u(1,t) = for t >, (2) u(x,) = f(x) for x (,1), (3)

More information

Metric Spaces. Chapter 7. 7.1. Metrics

Metric Spaces. Chapter 7. 7.1. Metrics Chapter 7 Metric Spaces A metric space is a set X that has a notion of the distance d(x, y) between every pair of points x, y X. The purpose of this chapter is to introduce metric spaces and give some

More information

MEASURE AND INTEGRATION. Dietmar A. Salamon ETH Zürich

MEASURE AND INTEGRATION. Dietmar A. Salamon ETH Zürich MEASURE AND INTEGRATION Dietmar A. Salamon ETH Zürich 12 May 2016 ii Preface This book is based on notes for the lecture course Measure and Integration held at ETH Zürich in the spring semester 2014. Prerequisites

More information

A PRIORI ESTIMATES FOR SEMISTABLE SOLUTIONS OF SEMILINEAR ELLIPTIC EQUATIONS. In memory of Rou-Huai Wang

A PRIORI ESTIMATES FOR SEMISTABLE SOLUTIONS OF SEMILINEAR ELLIPTIC EQUATIONS. In memory of Rou-Huai Wang A PRIORI ESTIMATES FOR SEMISTABLE SOLUTIONS OF SEMILINEAR ELLIPTIC EQUATIONS XAVIER CABRÉ, MANEL SANCHÓN, AND JOEL SPRUCK In memory of Rou-Huai Wang 1. Introduction In this note we consider semistable

More information

Notes on metric spaces

Notes on metric spaces Notes on metric spaces 1 Introduction The purpose of these notes is to quickly review some of the basic concepts from Real Analysis, Metric Spaces and some related results that will be used in this course.

More information

Research Article Stability Analysis for Higher-Order Adjacent Derivative in Parametrized Vector Optimization

Research Article Stability Analysis for Higher-Order Adjacent Derivative in Parametrized Vector Optimization Hindawi Publishing Corporation Journal of Inequalities and Applications Volume 2010, Article ID 510838, 15 pages doi:10.1155/2010/510838 Research Article Stability Analysis for Higher-Order Adjacent Derivative

More information

Walrasian Demand. u(x) where B(p, w) = {x R n + : p x w}.

Walrasian Demand. u(x) where B(p, w) = {x R n + : p x w}. Walrasian Demand Econ 2100 Fall 2015 Lecture 5, September 16 Outline 1 Walrasian Demand 2 Properties of Walrasian Demand 3 An Optimization Recipe 4 First and Second Order Conditions Definition Walrasian

More information

CHAPTER IV - BROWNIAN MOTION

CHAPTER IV - BROWNIAN MOTION CHAPTER IV - BROWNIAN MOTION JOSEPH G. CONLON 1. Construction of Brownian Motion There are two ways in which the idea of a Markov chain on a discrete state space can be generalized: (1) The discrete time

More information

An optimal transportation problem with import/export taxes on the boundary

An optimal transportation problem with import/export taxes on the boundary An optimal transportation problem with import/export taxes on the boundary Julián Toledo Workshop International sur les Mathématiques et l Environnement Essaouira, November 2012..................... Joint

More information

ALMOST COMMON PRIORS 1. INTRODUCTION

ALMOST COMMON PRIORS 1. INTRODUCTION ALMOST COMMON PRIORS ZIV HELLMAN ABSTRACT. What happens when priors are not common? We introduce a measure for how far a type space is from having a common prior, which we term prior distance. If a type

More information

Multiple positive solutions of a nonlinear fourth order periodic boundary value problem

Multiple positive solutions of a nonlinear fourth order periodic boundary value problem ANNALES POLONICI MATHEMATICI LXIX.3(1998) Multiple positive solutions of a nonlinear fourth order periodic boundary value problem by Lingbin Kong (Anda) and Daqing Jiang (Changchun) Abstract.Thefourthorderperiodicboundaryvalueproblemu

More information

Quasi Contraction and Fixed Points

Quasi Contraction and Fixed Points Available online at www.ispacs.com/jnaa Volume 2012, Year 2012 Article ID jnaa-00168, 6 Pages doi:10.5899/2012/jnaa-00168 Research Article Quasi Contraction and Fixed Points Mehdi Roohi 1, Mohsen Alimohammady

More information

The Ergodic Theorem and randomness

The Ergodic Theorem and randomness The Ergodic Theorem and randomness Peter Gács Department of Computer Science Boston University March 19, 2008 Peter Gács (Boston University) Ergodic theorem March 19, 2008 1 / 27 Introduction Introduction

More information

CHAPTER II THE LIMIT OF A SEQUENCE OF NUMBERS DEFINITION OF THE NUMBER e.

CHAPTER II THE LIMIT OF A SEQUENCE OF NUMBERS DEFINITION OF THE NUMBER e. CHAPTER II THE LIMIT OF A SEQUENCE OF NUMBERS DEFINITION OF THE NUMBER e. This chapter contains the beginnings of the most important, and probably the most subtle, notion in mathematical analysis, i.e.,

More information

INSURANCE RISK THEORY (Problems)

INSURANCE RISK THEORY (Problems) INSURANCE RISK THEORY (Problems) 1 Counting random variables 1. (Lack of memory property) Let X be a geometric distributed random variable with parameter p (, 1), (X Ge (p)). Show that for all n, m =,

More information

A NEW LOOK AT CONVEX ANALYSIS AND OPTIMIZATION

A NEW LOOK AT CONVEX ANALYSIS AND OPTIMIZATION 1 A NEW LOOK AT CONVEX ANALYSIS AND OPTIMIZATION Dimitri Bertsekas M.I.T. FEBRUARY 2003 2 OUTLINE Convexity issues in optimization Historical remarks Our treatment of the subject Three unifying lines of

More information

Date: April 12, 2001. Contents

Date: April 12, 2001. Contents 2 Lagrange Multipliers Date: April 12, 2001 Contents 2.1. Introduction to Lagrange Multipliers......... p. 2 2.2. Enhanced Fritz John Optimality Conditions...... p. 12 2.3. Informative Lagrange Multipliers...........

More information

TOPIC 4: DERIVATIVES

TOPIC 4: DERIVATIVES TOPIC 4: DERIVATIVES 1. The derivative of a function. Differentiation rules 1.1. The slope of a curve. The slope of a curve at a point P is a measure of the steepness of the curve. If Q is a point on the

More information

Properties of BMO functions whose reciprocals are also BMO

Properties of BMO functions whose reciprocals are also BMO Properties of BMO functions whose reciprocals are also BMO R. L. Johnson and C. J. Neugebauer The main result says that a non-negative BMO-function w, whose reciprocal is also in BMO, belongs to p> A p,and

More information

n k=1 k=0 1/k! = e. Example 6.4. The series 1/k 2 converges in R. Indeed, if s n = n then k=1 1/k, then s 2n s n = 1 n + 1 +...

n k=1 k=0 1/k! = e. Example 6.4. The series 1/k 2 converges in R. Indeed, if s n = n then k=1 1/k, then s 2n s n = 1 n + 1 +... 6 Series We call a normed space (X, ) a Banach space provided that every Cauchy sequence (x n ) in X converges. For example, R with the norm = is an example of Banach space. Now let (x n ) be a sequence

More information

FACTORING POLYNOMIALS IN THE RING OF FORMAL POWER SERIES OVER Z

FACTORING POLYNOMIALS IN THE RING OF FORMAL POWER SERIES OVER Z FACTORING POLYNOMIALS IN THE RING OF FORMAL POWER SERIES OVER Z DANIEL BIRMAJER, JUAN B GIL, AND MICHAEL WEINER Abstract We consider polynomials with integer coefficients and discuss their factorization

More information

9 More on differentiation

9 More on differentiation Tel Aviv University, 2013 Measure and category 75 9 More on differentiation 9a Finite Taylor expansion............... 75 9b Continuous and nowhere differentiable..... 78 9c Differentiable and nowhere monotone......

More information

Inner Product Spaces

Inner Product Spaces Math 571 Inner Product Spaces 1. Preliminaries An inner product space is a vector space V along with a function, called an inner product which associates each pair of vectors u, v with a scalar u, v, and

More information

ON A DIFFERENTIAL EQUATION WITH LEFT AND RIGHT FRACTIONAL DERIVATIVES. Abstract

ON A DIFFERENTIAL EQUATION WITH LEFT AND RIGHT FRACTIONAL DERIVATIVES. Abstract ON A DIFFERENTIAL EQUATION WITH LEFT AND RIGHT FRACTIONAL DERIVATIVES Teodor M. Atanackovic and Bogoljub Stankovic 2 Abstract We treat the fractional order differential equation that contains the left

More information

Convergence Rates for Tikhonov Regularization from Different Kinds of Smoothness Conditions

Convergence Rates for Tikhonov Regularization from Different Kinds of Smoothness Conditions Convergence Rates for Tikhonov Regularization from Different Kinds of Smoothness Conditions Albrecht Böttcher 1, Bernd Hofmann 2, Ulrich Tautenhahn 3 and Masahiro Yamamoto 4 28 November 2005 Abstract.

More information

Bipan Hazarika ON ACCELERATION CONVERGENCE OF MULTIPLE SEQUENCES. 1. Introduction

Bipan Hazarika ON ACCELERATION CONVERGENCE OF MULTIPLE SEQUENCES. 1. Introduction F A S C I C U L I M A T H E M A T I C I Nr 51 2013 Bipan Hazarika ON ACCELERATION CONVERGENCE OF MULTIPLE SEQUENCES Abstract. In this article the notion of acceleration convergence of double sequences

More information

6.2 Permutations continued

6.2 Permutations continued 6.2 Permutations continued Theorem A permutation on a finite set A is either a cycle or can be expressed as a product (composition of disjoint cycles. Proof is by (strong induction on the number, r, of

More information

( ) ( ) [2],[3],[4],[5],[6],[7]

( ) ( ) [2],[3],[4],[5],[6],[7] ( ) ( ) Lebesgue Takagi, - []., [2],[3],[4],[5],[6],[7].,. [] M. Hata and M. Yamaguti, The Takagi function and its generalization, Japan J. Appl. Math., (984), 83 99. [2] T. Sekiguchi and Y. Shiota, A

More information

Fixed Point Theorems

Fixed Point Theorems Fixed Point Theorems Definition: Let X be a set and let T : X X be a function that maps X into itself. (Such a function is often called an operator, a transformation, or a transform on X, and the notation

More information

Shape Optimization Problems over Classes of Convex Domains

Shape Optimization Problems over Classes of Convex Domains Shape Optimization Problems over Classes of Convex Domains Giuseppe BUTTAZZO Dipartimento di Matematica Via Buonarroti, 2 56127 PISA ITALY e-mail: buttazzo@sab.sns.it Paolo GUASONI Scuola Normale Superiore

More information

Geometrical Characterization of RN-operators between Locally Convex Vector Spaces

Geometrical Characterization of RN-operators between Locally Convex Vector Spaces Geometrical Characterization of RN-operators between Locally Convex Vector Spaces OLEG REINOV St. Petersburg State University Dept. of Mathematics and Mechanics Universitetskii pr. 28, 198504 St, Petersburg

More information

VALUATION OF STOCK LOANS WITH REGIME SWITCHING

VALUATION OF STOCK LOANS WITH REGIME SWITCHING VALUATION OF STOCK LOANS WITH REGIME SWITCHING QING ZHANG AND XUN YU ZHOU Abstract. This paper is concerned with stock loan valuation in which the underlying stock price is dictated by geometric Brownian

More information

SOLUTIONS TO EXERCISES FOR. MATHEMATICS 205A Part 3. Spaces with special properties

SOLUTIONS TO EXERCISES FOR. MATHEMATICS 205A Part 3. Spaces with special properties SOLUTIONS TO EXERCISES FOR MATHEMATICS 205A Part 3 Fall 2008 III. Spaces with special properties III.1 : Compact spaces I Problems from Munkres, 26, pp. 170 172 3. Show that a finite union of compact subspaces

More information

1. Introduction. O. MALI, A. MUZALEVSKIY, and D. PAULY

1. Introduction. O. MALI, A. MUZALEVSKIY, and D. PAULY Russ. J. Numer. Anal. Math. Modelling, Vol. 28, No. 6, pp. 577 596 (2013) DOI 10.1515/ rnam-2013-0032 c de Gruyter 2013 Conforming and non-conforming functional a posteriori error estimates for elliptic

More information

Downloaded 08/02/12 to 132.68.160.18. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.

Downloaded 08/02/12 to 132.68.160.18. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa. SIAM J. OPTIM. Vol. 22, No. 2, pp. 557 580 c 2012 Society for Industrial and Applied Mathematics SMOOTHING AND FIRST ORDER METHODS: A UNIFIED FRAMEWORK AMIR BECK AND MARC TEBOULLE Abstract. We propose

More information

Lecture Notes on Measure Theory and Functional Analysis

Lecture Notes on Measure Theory and Functional Analysis Lecture Notes on Measure Theory and Functional Analysis P. Cannarsa & T. D Aprile Dipartimento di Matematica Università di Roma Tor Vergata cannarsa@mat.uniroma2.it daprile@mat.uniroma2.it aa 2006/07 Contents

More information

THE EIGENVALUES OF THE LAPLACIAN ON DOMAINS WITH SMALL SLITS

THE EIGENVALUES OF THE LAPLACIAN ON DOMAINS WITH SMALL SLITS THE EIGENVALUES OF THE LAPLACIAN ON DOMAINS WITH SMALL SLITS LUC HILLAIRET AND CHRIS JUDGE Abstract. We introduce a small slit into a planar domain and study the resulting effect upon the eigenvalues of

More information

Some remarks on Phragmén-Lindelöf theorems for weak solutions of the stationary Schrödinger operator

Some remarks on Phragmén-Lindelöf theorems for weak solutions of the stationary Schrödinger operator Wan Boundary Value Problems (2015) 2015:239 DOI 10.1186/s13661-015-0508-0 R E S E A R C H Open Access Some remarks on Phragmén-Lindelöf theorems for weak solutions of the stationary Schrödinger operator

More information

1. Prove that the empty set is a subset of every set.

1. Prove that the empty set is a subset of every set. 1. Prove that the empty set is a subset of every set. Basic Topology Written by Men-Gen Tsai email: b89902089@ntu.edu.tw Proof: For any element x of the empty set, x is also an element of every set since

More information

Section 4.4 Inner Product Spaces

Section 4.4 Inner Product Spaces Section 4.4 Inner Product Spaces In our discussion of vector spaces the specific nature of F as a field, other than the fact that it is a field, has played virtually no role. In this section we no longer

More information

Modern Optimization Methods for Big Data Problems MATH11146 The University of Edinburgh

Modern Optimization Methods for Big Data Problems MATH11146 The University of Edinburgh Modern Optimization Methods for Big Data Problems MATH11146 The University of Edinburgh Peter Richtárik Week 3 Randomized Coordinate Descent With Arbitrary Sampling January 27, 2016 1 / 30 The Problem

More information

DIFFERENTIABILITY OF COMPLEX FUNCTIONS. Contents

DIFFERENTIABILITY OF COMPLEX FUNCTIONS. Contents DIFFERENTIABILITY OF COMPLEX FUNCTIONS Contents 1. Limit definition of a derivative 1 2. Holomorphic functions, the Cauchy-Riemann equations 3 3. Differentiability of real functions 5 4. A sufficient condition

More information

Metric Spaces Joseph Muscat 2003 (Last revised May 2009)

Metric Spaces Joseph Muscat 2003 (Last revised May 2009) 1 Distance J Muscat 1 Metric Spaces Joseph Muscat 2003 (Last revised May 2009) (A revised and expanded version of these notes are now published by Springer.) 1 Distance A metric space can be thought of

More information

College of the Holy Cross, Spring 2009 Math 373, Partial Differential Equations Midterm 1 Practice Questions

College of the Holy Cross, Spring 2009 Math 373, Partial Differential Equations Midterm 1 Practice Questions College of the Holy Cross, Spring 29 Math 373, Partial Differential Equations Midterm 1 Practice Questions 1. (a) Find a solution of u x + u y + u = xy. Hint: Try a polynomial of degree 2. Solution. Use

More information

Undergraduate Notes in Mathematics. Arkansas Tech University Department of Mathematics

Undergraduate Notes in Mathematics. Arkansas Tech University Department of Mathematics Undergraduate Notes in Mathematics Arkansas Tech University Department of Mathematics An Introductory Single Variable Real Analysis: A Learning Approach through Problem Solving Marcel B. Finan c All Rights

More information

Extremal equilibria for reaction diffusion equations in bounded domains and applications.

Extremal equilibria for reaction diffusion equations in bounded domains and applications. Extremal equilibria for reaction diffusion equations in bounded domains and applications. Aníbal Rodríguez-Bernal Alejandro Vidal-López Departamento de Matemática Aplicada Universidad Complutense de Madrid,

More information

Let H and J be as in the above lemma. The result of the lemma shows that the integral

Let H and J be as in the above lemma. The result of the lemma shows that the integral Let and be as in the above lemma. The result of the lemma shows that the integral ( f(x, y)dy) dx is well defined; we denote it by f(x, y)dydx. By symmetry, also the integral ( f(x, y)dx) dy is well defined;

More information

ON COMPLETELY CONTINUOUS INTEGRATION OPERATORS OF A VECTOR MEASURE. 1. Introduction

ON COMPLETELY CONTINUOUS INTEGRATION OPERATORS OF A VECTOR MEASURE. 1. Introduction ON COMPLETELY CONTINUOUS INTEGRATION OPERATORS OF A VECTOR MEASURE J.M. CALABUIG, J. RODRÍGUEZ, AND E.A. SÁNCHEZ-PÉREZ Abstract. Let m be a vector measure taking values in a Banach space X. We prove that

More information

Fourth-Order Compact Schemes of a Heat Conduction Problem with Neumann Boundary Conditions

Fourth-Order Compact Schemes of a Heat Conduction Problem with Neumann Boundary Conditions Fourth-Order Compact Schemes of a Heat Conduction Problem with Neumann Boundary Conditions Jennifer Zhao, 1 Weizhong Dai, Tianchan Niu 1 Department of Mathematics and Statistics, University of Michigan-Dearborn,

More information

Current Density Impedance Imaging with Complete Electrode Model

Current Density Impedance Imaging with Complete Electrode Model Current Density Impedance Imaging with Complete Electrode Model Alexandru Tamasan jointly with A. Nachman & J. Veras University of Central Florida Work supported by NSF BIRS Workshop on Hybrid Methods

More information

Asian Option Pricing Formula for Uncertain Financial Market

Asian Option Pricing Formula for Uncertain Financial Market Sun and Chen Journal of Uncertainty Analysis and Applications (215) 3:11 DOI 1.1186/s4467-15-35-7 RESEARCH Open Access Asian Option Pricing Formula for Uncertain Financial Market Jiajun Sun 1 and Xiaowei

More information

Imprecise probabilities, bets and functional analytic methods in Łukasiewicz logic.

Imprecise probabilities, bets and functional analytic methods in Łukasiewicz logic. Imprecise probabilities, bets and functional analytic methods in Łukasiewicz logic. Martina Fedel joint work with K.Keimel,F.Montagna,W.Roth Martina Fedel (UNISI) 1 / 32 Goal The goal of this talk is to

More information

Error Bound for Classes of Polynomial Systems and its Applications: A Variational Analysis Approach

Error Bound for Classes of Polynomial Systems and its Applications: A Variational Analysis Approach Outline Error Bound for Classes of Polynomial Systems and its Applications: A Variational Analysis Approach The University of New South Wales SPOM 2013 Joint work with V. Jeyakumar, B.S. Mordukhovich and

More information

Metric Spaces. Lecture Notes and Exercises, Fall 2015. M.van den Berg

Metric Spaces. Lecture Notes and Exercises, Fall 2015. M.van den Berg Metric Spaces Lecture Notes and Exercises, Fall 2015 M.van den Berg School of Mathematics University of Bristol BS8 1TW Bristol, UK mamvdb@bristol.ac.uk 1 Definition of a metric space. Let X be a set,

More information

A note on Dulac functions for a sum of vector fields

A note on Dulac functions for a sum of vector fields AVANZA. Vol. iii. Fm - Iit, Uacj (2013) 17 23. Isbn: 978-607-9224-52-3 A note on Dulac functions for a sum of vector fields Osuna, Osvaldo, Vargas-De-León, Cruz, Villaseñor, Gabriel Abstract In this paper

More information

An ultimate Sobolev dimension-free imbedding

An ultimate Sobolev dimension-free imbedding An ultimate Sobolev dimension-free imbedding Alberto FIORENZA Universitá di Napoli "Federico II" Memorial seminar dedicated to Prof. RNDr. Miroslav Krbec, DrSc. Praha, November 8, 212 () 1 / 25 PRAHA 1995

More information

L q -solutions to the Cosserat spectrum in bounded and exterior domains

L q -solutions to the Cosserat spectrum in bounded and exterior domains L q -solutions to the Cosserat spectrum in bounded exterior domains by Stephan Weyers, November 2005 Contents Introduction 3 Part I: Preliminaries 12 1 Notations 12 2 The space Ĥ1,q () 15 3 The space Ĥ2,q

More information

Adaptive Online Gradient Descent

Adaptive Online Gradient Descent Adaptive Online Gradient Descent Peter L Bartlett Division of Computer Science Department of Statistics UC Berkeley Berkeley, CA 94709 bartlett@csberkeleyedu Elad Hazan IBM Almaden Research Center 650

More information

Asymptotics of discounted aggregate claims for renewal risk model with risky investment

Asymptotics of discounted aggregate claims for renewal risk model with risky investment Appl. Math. J. Chinese Univ. 21, 25(2: 29-216 Asymptotics of discounted aggregate claims for renewal risk model with risky investment JIANG Tao Abstract. Under the assumption that the claim size is subexponentially

More information

RESONANCES AND BALLS IN OBSTACLE SCATTERING WITH NEUMANN BOUNDARY CONDITIONS

RESONANCES AND BALLS IN OBSTACLE SCATTERING WITH NEUMANN BOUNDARY CONDITIONS RESONANCES AND BALLS IN OBSTACLE SCATTERING WITH NEUMANN BOUNDARY CONDITIONS T. J. CHRISTIANSEN Abstract. We consider scattering by an obstacle in R d, d 3 odd. We show that for the Neumann Laplacian if

More information

Additional questions for chapter 4

Additional questions for chapter 4 Additional questions for chapter 4 1. A stock price is currently $ 1. Over the next two six-month periods it is expected to go up by 1% or go down by 1%. The risk-free interest rate is 8% per annum with

More information

1 if 1 x 0 1 if 0 x 1

1 if 1 x 0 1 if 0 x 1 Chapter 3 Continuity In this chapter we begin by defining the fundamental notion of continuity for real valued functions of a single real variable. When trying to decide whether a given function is or

More information

Multi-variable Calculus and Optimization

Multi-variable Calculus and Optimization Multi-variable Calculus and Optimization Dudley Cooke Trinity College Dublin Dudley Cooke (Trinity College Dublin) Multi-variable Calculus and Optimization 1 / 51 EC2040 Topic 3 - Multi-variable Calculus

More information

Non-Arbitrage and the Fundamental Theorem of Asset Pricing: Summary of Main Results

Non-Arbitrage and the Fundamental Theorem of Asset Pricing: Summary of Main Results Proceedings of Symposia in Applied Mathematics Volume 00, 1997 Non-Arbitrage and the Fundamental Theorem of Asset Pricing: Summary of Main Results Freddy Delbaen and Walter Schachermayer Abstract. The

More information

Hedging bounded claims with bounded outcomes

Hedging bounded claims with bounded outcomes Hedging bounded claims with bounded outcomes Freddy Delbaen ETH Zürich, Department of Mathematics, CH-892 Zurich, Switzerland Abstract. We consider a financial market with two or more separate components

More information

An explicit inversion formula for the exponetial Radon transform using data from 180

An explicit inversion formula for the exponetial Radon transform using data from 180 ISSN: 40-567 An explicit inversion formula for the exponetial Radon transform using data from 80 Hans Rullgård Research Reports in Mathematics Number 9, 00 Department of Mathematics Stockholm University

More information

A survey on multivalued integration 1

A survey on multivalued integration 1 Atti Sem. Mat. Fis. Univ. Modena Vol. L (2002) 53-63 A survey on multivalued integration 1 Anna Rita SAMBUCINI Dipartimento di Matematica e Informatica 1, Via Vanvitelli - 06123 Perugia (ITALY) Abstract

More information

The Henstock-Kurzweil-Stieltjes type integral for real functions on a fractal subset of the real line

The Henstock-Kurzweil-Stieltjes type integral for real functions on a fractal subset of the real line The Henstock-Kurzweil-Stieltjes type integral for real functions on a fractal subset of the real line D. Bongiorno, G. Corrao Dipartimento di Ingegneria lettrica, lettronica e delle Telecomunicazioni,

More information

α α λ α = = λ λ α ψ = = α α α λ λ ψ α = + β = > θ θ β > β β θ θ θ β θ β γ θ β = γ θ > β > γ θ β γ = θ β = θ β = θ β = β θ = β β θ = = = β β θ = + α α α α α = = λ λ λ λ λ λ λ = λ λ α α α α λ ψ + α =

More information

t := maxγ ν subject to ν {0,1,2,...} and f(x c +γ ν d) f(x c )+cγ ν f (x c ;d).

t := maxγ ν subject to ν {0,1,2,...} and f(x c +γ ν d) f(x c )+cγ ν f (x c ;d). 1. Line Search Methods Let f : R n R be given and suppose that x c is our current best estimate of a solution to P min x R nf(x). A standard method for improving the estimate x c is to choose a direction

More information

Lecture notes on Ordinary Differential Equations. Plan of lectures

Lecture notes on Ordinary Differential Equations. Plan of lectures 1 Lecture notes on Ordinary Differential Equations Annual Foundation School, IIT Kanpur, Dec.3-28, 2007. by Dept. of Mathematics, IIT Bombay, Mumbai-76. e-mail: sivaji.ganesh@gmail.com References Plan

More information

arxiv:math/0501161v1 [math.ds] 11 Jan 2005

arxiv:math/0501161v1 [math.ds] 11 Jan 2005 ANALYTICITY OF THE SUSCEPTIBILITY FUNCTION FOR UNIMODAL MARKOVIAN MAPS OF THE INTERVAL. by Yunping iang* and David Ruelle**. arxiv:math/0501161v1 [math.ds] 11 an 2005 Abstract. We study the expression

More information

ON SEQUENTIAL CONTINUITY OF COMPOSITION MAPPING. 0. Introduction

ON SEQUENTIAL CONTINUITY OF COMPOSITION MAPPING. 0. Introduction ON SEQUENTIAL CONTINUITY OF COMPOSITION MAPPING Abstract. In [1] there was proved a theorem concerning the continuity of the composition mapping, and there was announced a theorem on sequential continuity

More information