# INSURANCE RISK THEORY (Problems)

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 INSURANCE RISK THEORY (Problems) 1 Counting random variables 1. (Lack of memory property) Let X be a geometric distributed random variable with parameter p (, 1), (X Ge (p)). Show that for all n, m =, 1,... P (X n + m X m) = P (X n). 2. Let X and Y be independent identically Ge (p) distributed random variables and Z = X + Y. Prove that a) the distribution of Z is given by P (Z = k) = (k + 1)(1 p) 2 p k, k =, 1, 2,... ; b) Find the conditional probability P (X = m X + Y = k), m =, 1,... k. 3. Let X k Ge(p k ), k = 1, 2,... n be independent random variables and m n = min 1 k n X k. Show that m n Ge(p), where p = n k=1 p k. 4. Show that the tail of the binomial distribution is given by n ( ) ( ) n n p p k (1 p) n k = m x m 1 (1 x) n m dx. k m 5. Let X and Y be independent negative binomial distributed random variables, X NB(α 1, p) and Y NB(α 2, p). Verify that Z = X + Y NB(α 1 + α 2, p). 6. Let X NB(n, p). Show that the tail of the distribution is given by P (X m) = ( ) ( ) n + k 1 m + n 1 p (1 p) n p k = m x m 1 (1 x) n 1 dx. k m 1

2 7. Let X be a Poisson distributed random variable with parameter λ (X P o(λ)). Verify that for any m =, 1,..., the tail is given by λ k λ x m 1 P (X m) = k! e λ = (m 1)! e x dx. 8. Let X P o(λ) and Y P o(µ) be independent. a) Verify that Z = X + Y P o(λ + µ); b) Given Z = X + Y, find the distribution of X, i.e. P (X = k X + Y = n), k =, 1,... n. 9. Let X be a nonnegative integer valued random variable with probabilities {p k }, such that k= p kt k < for any t [, t ] and t 1. Show that (1 t) r k+1 t k = 1 P X (t), t < t, k= where r k = p k + p k is the tail of the distribution. 1. The random variable X is Poisson distributed with probability mass function P (X = k λ) = λk k! e λ, k =, 1,.... The parameter λ is a realization of Gamma distributed random variable with density function f(λ) = βr Γ(r) λr 1 e βλ, β >, λ >, where Γ is the Gamma function, r is the shape parameter and β the scale parameter. Prove that ( ) r ( ) ( ) k β r + k 1 1 P (X = k) =, k =, 1, β k 1 + β 11. Let S i CP o(λ i, F i (x)), i = 1,... n be independent Compound Poisson random variables with parameters λ i and Z F i (x), x >. Show that S n = S S n is also Compound Poisson with parameters λ = n i=1 λ i and F (x) = n λ i i=1 F λ i(x). 12. Let X 1, X 2,... be independent identically Ge 1 (1 ρ) distributed random variables with parameter ρ [, 1) and probability mass function P (X 1 = i) = ρ i 1 (1 ρ), i = 1, 2,.... The random variable Y P o(λ) is independent of X i, i = 1, 2,.... Consider the random variable S Y = X 1 + X X Y. Show that the probability mass function of S Y is given by e λ, k =, P (S Y = k) = e λ k i=1 ( ) k 1 [λ(1 ρ)] i ρ k i, i = 1, 2,... i 1 i! Hint: The probability generating function of S Y is given by P SY (s) = e λ(1 P Y (s)), where P Y (s) = (1 ρ)s is the probability generating function of Y. The random variable S 1 ρs Y P A(λ, ρ) (Pólya - Aeppli distribution). 2

3 2 Continuous random variables 13. Let X and Y be independent identically exponential distributed random variables with parameter 1 (exp(1)). a) Find the distribution of X ; Y b) Show that Z = X U(, 1); X + Y c) Show that the random variable W = X Y has a standard Laplace distribution: f W (x) = 1 2 e x, < x <. 14. Let Y exp(λ). It is known that the Laplace transform of Y is given by LT Y (t) = λ λ+t. Find the Laplace transform of the r.v. V = a + Y exp(a, λ). 15. Let X and Y be independent exponentially distributed random variables with respective parameters λ and µ. Show that P (X Y min(x, Y ) > z) = λ λ + µ, i.e. the probability that the smallest value will be the value of X is proportional to the parameter of X and is independent of min(x, Y ). 16. Let Y k exp(λ k ), k = 1, 2,... n be independent random variables and m n = min{y 1, Y 2,...}. Prove that for any n = 1, 2,..., m n exp(λ), where λ = λ λ n. 17. Let X exp(λ). Prove that for any u >, m 1 (u) = E[X X > u] = u + 1 λ and V ar[x X > u] = 1 λ 2. Hint: Given a threshold u, the exceedances above u are calculated conditional on X > u. By Bayes rule f(x x > u) = f(x). 1 F (u) 18. Let X 1, X 2,... X n be independent Gamma distributed random variables (X i Γ(α i, β)). Show that X = X X n Γ(α α n, β). 19. Let X Γ(α, 1) and Y Γ(β, 1) be independent random variables. Show that the random variables U = X and V = X + Y are independent, U is Beta distributed with X+Y parameters (α, β), (U B(α, β)) and V Γ(α + β, 1). 2. Let X B(α, β). Prove that a) 1 X B(β, α); 1; b) the distribution of Y = 1 X is given by the density function f Y (x) = 1 B(α,β) c) the distribution of Z = Y 1 = 1 X is given by f X Z(x) = 1 (Beta distribution of second kind). B(α,β) x β 1 (x 1) β 1 x α+β, x > (1+x) α+β, x > 3

4 21. Let V Bi(n, p) and X B(m, n m + 1), where m n are integer numbers and < p < 1. Show that P (V m) = P (X < p). 22. Let U U(, 1). Show that the random variable X = U 1 α, α > is Pareto distributed with density function given by f X (x) = αx (α+1), x Let F (x) be the distribution function of a nonnegative random variable X and F ( ) =. Show that for any s R, the moment generating function M X (s): M X (s) = e sx df (x) = 1 + s e sx F (x)dx, if it exists. 24. Show that F with the first finite moment is heavy tailed if and only if the corresponding integrated tail distribution F I is heavy tailed. 25. Find the hazard rate function λ(t), of the Pareto distribution P ar(α, λ). 26. Show that the following distribution functions are Pareto - type: a) Pareto distribution P ar(α, λ); b) Loggamma distribution with a density function f(x) = λα Γ(α) (log x)α 1 x (λ+1), x > 1; c) Burr distribution with survival function ( ) α λ F (x) =, x. λ + x 27. Let X 1,... X n be independent identically Inverse Gaussian distributed random variables with density function f X (x) = µ (2πσx 3 ) 1 2 e (x µ)2 2σx, x >, µ, σ >. Notation: X i IG(µ, σ). Show that the sum S = X X n is IG(nµ, σ) distributed. Hint: Show that M X (s) = e µ σ [1 (1 2σs) 1 2 ]. 3 Cramér - Lundberg model 28. Let {U t } be a Cramér-Lundberg model with initial capital c, claim intensity λ and Γ(2, β) distributed claims with density function f(x) = β 2 xe βx, x >. a) Explain the NPC (net profit condition); b) Show that the nonruin probability Φ(u) satisfies the equation cφ (u) + (2βc λ)φ (u) + β(βc 2λ)Φ (u) =. 4

5 c) Find the ruin probability. 29. Let {U t } be a Cramér-Lundberg model with initial capital c, claim intensity λ and constant claims Z i = µ. a) Show that the nonruin probability Φ(u) is differentiable everywhere except the point u = µ and satisfies the equation b) Show that for u µ Φ (u) = λ[φ(u) Φ(u µ)]; Φ(u) = c λµ e λ c u. c 3. Let {U t } be a renewal risk model with Erlang(2, β) distributed inter-arrival times. The mean value of the claims is m 1 = EZ. Verify that the Laplace transform of the nonruin probability is given by LT Φ (s) = c 2 sφ() + β 2 m 1 2βc c 2 s 2 2βcs + β 2 (1 LT F (s)), where Φ() is the nonruin probability with noinitial capital. 31. Let the claim sizes Z i P ar(α, λ) in the classical risk model. a) Find a condition of NPC; b) Find the integrated tail distribution F I ; c) Verify the following approximation of the ruin probability Ψ(u) = θ ( u ) (α 1), u > λ. α(1 θ) λ 32. Consider the classical risk model with λ = 1, safety loading θ and exp(1) distributed claims. The reinsurer s safety loading factor is η. Calculate the adjustment coefficient in the case of a) proportional reinsurance h(x) = bx; b) excess of loss reinsurance h(x) = (x b) +. Leda D.Minkova August 21 Faculty of Mathematics and Informatics Sofia University 5

### A Uniform Asymptotic Estimate for Discounted Aggregate Claims with Subexponential Tails

12th International Congress on Insurance: Mathematics and Economics July 16-18, 2008 A Uniform Asymptotic Estimate for Discounted Aggregate Claims with Subexponential Tails XUEMIAO HAO (Based on a joint

### Department of Mathematics, Indian Institute of Technology, Kharagpur Assignment 2-3, Probability and Statistics, March 2015. Due:-March 25, 2015.

Department of Mathematics, Indian Institute of Technology, Kharagpur Assignment -3, Probability and Statistics, March 05. Due:-March 5, 05.. Show that the function 0 for x < x+ F (x) = 4 for x < for x

### Maximum Likelihood Estimation

Math 541: Statistical Theory II Lecturer: Songfeng Zheng Maximum Likelihood Estimation 1 Maximum Likelihood Estimation Maximum likelihood is a relatively simple method of constructing an estimator for

### Notes on the Negative Binomial Distribution

Notes on the Negative Binomial Distribution John D. Cook October 28, 2009 Abstract These notes give several properties of the negative binomial distribution. 1. Parameterizations 2. The connection between

### 2WB05 Simulation Lecture 8: Generating random variables

2WB05 Simulation Lecture 8: Generating random variables Marko Boon http://www.win.tue.nl/courses/2wb05 January 7, 2013 Outline 2/36 1. How do we generate random variables? 2. Fitting distributions Generating

### 1 Sufficient statistics

1 Sufficient statistics A statistic is a function T = rx 1, X 2,, X n of the random sample X 1, X 2,, X n. Examples are X n = 1 n s 2 = = X i, 1 n 1 the sample mean X i X n 2, the sample variance T 1 =

### Errata and updates for ASM Exam C/Exam 4 Manual (Sixteenth Edition) sorted by page

Errata for ASM Exam C/4 Study Manual (Sixteenth Edition) Sorted by Page 1 Errata and updates for ASM Exam C/Exam 4 Manual (Sixteenth Edition) sorted by page Practice exam 1:9, 1:22, 1:29, 9:5, and 10:8

### Section 5.1 Continuous Random Variables: Introduction

Section 5. Continuous Random Variables: Introduction Not all random variables are discrete. For example:. Waiting times for anything (train, arrival of customer, production of mrna molecule from gene,

α α λ α = = λ λ α ψ = = α α α λ λ ψ α = + β = > θ θ β > β β θ θ θ β θ β γ θ β = γ θ > β > γ θ β γ = θ β = θ β = θ β = β θ = β β θ = = = β β θ = + α α α α α = = λ λ λ λ λ λ λ = λ λ α α α α λ ψ + α =

### Past and present trends in aggregate claims analysis

Past and present trends in aggregate claims analysis Gordon E. Willmot Munich Re Professor of Insurance Department of Statistics and Actuarial Science University of Waterloo 1st Quebec-Ontario Workshop

### MATH4427 Notebook 2 Spring 2016. 2 MATH4427 Notebook 2 3. 2.1 Definitions and Examples... 3. 2.2 Performance Measures for Estimators...

MATH4427 Notebook 2 Spring 2016 prepared by Professor Jenny Baglivo c Copyright 2009-2016 by Jenny A. Baglivo. All Rights Reserved. Contents 2 MATH4427 Notebook 2 3 2.1 Definitions and Examples...................................

### P (x) 0. Discrete random variables Expected value. The expected value, mean or average of a random variable x is: xp (x) = v i P (v i )

Discrete random variables Probability mass function Given a discrete random variable X taking values in X = {v 1,..., v m }, its probability mass function P : X [0, 1] is defined as: P (v i ) = Pr[X =

### The Exponential Distribution

21 The Exponential Distribution From Discrete-Time to Continuous-Time: In Chapter 6 of the text we will be considering Markov processes in continuous time. In a sense, we already have a very good understanding

### For a partition B 1,..., B n, where B i B j = for i. A = (A B 1 ) (A B 2 ),..., (A B n ) and thus. P (A) = P (A B i ) = P (A B i )P (B i )

Probability Review 15.075 Cynthia Rudin A probability space, defined by Kolmogorov (1903-1987) consists of: A set of outcomes S, e.g., for the roll of a die, S = {1, 2, 3, 4, 5, 6}, 1 1 2 1 6 for the roll

### A note on the distribution of the aggregate claim amount at ruin

A note on the distribution of the aggregate claim amount at ruin Jingchao Li, David C M Dickson, Shuanming Li Centre for Actuarial Studies, Department of Economics, University of Melbourne, VIC 31, Australia

### Properties of Future Lifetime Distributions and Estimation

Properties of Future Lifetime Distributions and Estimation Harmanpreet Singh Kapoor and Kanchan Jain Abstract Distributional properties of continuous future lifetime of an individual aged x have been studied.

### Modeling and Analysis of Information Technology Systems

Modeling and Analysis of Information Technology Systems Dr. János Sztrik University of Debrecen, Faculty of Informatics Reviewers: Dr. József Bíró Doctor of the Hungarian Academy of Sciences, Full Professor

### Probability Calculator

Chapter 95 Introduction Most statisticians have a set of probability tables that they refer to in doing their statistical wor. This procedure provides you with a set of electronic statistical tables that

### Practice problems for Homework 11 - Point Estimation

Practice problems for Homework 11 - Point Estimation 1. (10 marks) Suppose we want to select a random sample of size 5 from the current CS 3341 students. Which of the following strategies is the best:

### Probability Generating Functions

page 39 Chapter 3 Probability Generating Functions 3 Preamble: Generating Functions Generating functions are widely used in mathematics, and play an important role in probability theory Consider a sequence

### MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 14 10/27/2008 MOMENT GENERATING FUNCTIONS

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 14 10/27/2008 MOMENT GENERATING FUNCTIONS Contents 1. Moment generating functions 2. Sum of a ranom number of ranom variables 3. Transforms

### Statistics 100A Homework 8 Solutions

Part : Chapter 7 Statistics A Homework 8 Solutions Ryan Rosario. A player throws a fair die and simultaneously flips a fair coin. If the coin lands heads, then she wins twice, and if tails, the one-half

### Final Mathematics 5010, Section 1, Fall 2004 Instructor: D.A. Levin

Final Mathematics 51, Section 1, Fall 24 Instructor: D.A. Levin Name YOU MUST SHOW YOUR WORK TO RECEIVE CREDIT. A CORRECT ANSWER WITHOUT SHOWING YOUR REASONING WILL NOT RECEIVE CREDIT. Problem Points Possible

### Section 6.1 Joint Distribution Functions

Section 6.1 Joint Distribution Functions We often care about more than one random variable at a time. DEFINITION: For any two random variables X and Y the joint cumulative probability distribution function

### UNIVERSITY OF OSLO. The Poisson model is a common model for claim frequency.

UNIVERSITY OF OSLO Faculty of mathematics and natural sciences Candidate no Exam in: STK 4540 Non-Life Insurance Mathematics Day of examination: December, 9th, 2015 Examination hours: 09:00 13:00 This

### CHAPTER 6: Continuous Uniform Distribution: 6.1. Definition: The density function of the continuous random variable X on the interval [A, B] is.

Some Continuous Probability Distributions CHAPTER 6: Continuous Uniform Distribution: 6. Definition: The density function of the continuous random variable X on the interval [A, B] is B A A x B f(x; A,

### Chapter 4. Multivariate Distributions

1 Chapter 4. Multivariate Distributions Joint p.m.f. (p.d.f.) Independent Random Variables Covariance and Correlation Coefficient Expectation and Covariance Matrix Multivariate (Normal) Distributions Matlab

### 1.1 Introduction, and Review of Probability Theory... 3. 1.1.1 Random Variable, Range, Types of Random Variables... 3. 1.1.2 CDF, PDF, Quantiles...

MATH4427 Notebook 1 Spring 2016 prepared by Professor Jenny Baglivo c Copyright 2009-2016 by Jenny A. Baglivo. All Rights Reserved. Contents 1 MATH4427 Notebook 1 3 1.1 Introduction, and Review of Probability

### Exponential Distribution

Exponential Distribution Definition: Exponential distribution with parameter λ: { λe λx x 0 f(x) = 0 x < 0 The cdf: F(x) = x Mean E(X) = 1/λ. f(x)dx = Moment generating function: φ(t) = E[e tx ] = { 1

### Chapter 3: DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

Chapter 3: DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS Part 4: Geometric Distribution Negative Binomial Distribution Hypergeometric Distribution Sections 3-7, 3-8 The remaining discrete random

### VISUALIZATION OF DENSITY FUNCTIONS WITH GEOGEBRA

VISUALIZATION OF DENSITY FUNCTIONS WITH GEOGEBRA Csilla Csendes University of Miskolc, Hungary Department of Applied Mathematics ICAM 2010 Probability density functions A random variable X has density

### Aggregate Loss Models

Aggregate Loss Models Chapter 9 Stat 477 - Loss Models Chapter 9 (Stat 477) Aggregate Loss Models Brian Hartman - BYU 1 / 22 Objectives Objectives Individual risk model Collective risk model Computing

### Introduction to Hypothesis Testing. Point estimation and confidence intervals are useful statistical inference procedures.

Introduction to Hypothesis Testing Point estimation and confidence intervals are useful statistical inference procedures. Another type of inference is used frequently used concerns tests of hypotheses.

### Dependence in non-life insurance

Dependence in non-life insurance Hanna Arvidsson and Sofie Francke U.U.D.M. Project Report 2007:23 Examensarbete i matematisk statistik, 20 poäng Handledare och examinator: Ingemar Kaj Juni 2007 Department

### UNIT I: RANDOM VARIABLES PART- A -TWO MARKS

UNIT I: RANDOM VARIABLES PART- A -TWO MARKS 1. Given the probability density function of a continuous random variable X as follows f(x) = 6x (1-x) 0

### 1 Prior Probability and Posterior Probability

Math 541: Statistical Theory II Bayesian Approach to Parameter Estimation Lecturer: Songfeng Zheng 1 Prior Probability and Posterior Probability Consider now a problem of statistical inference in which

### A Unifying Pricing Theory for Insurance and Financial Risks: Applications for a Unified Risk Management

A Unifying Pricing Theory for Insurance and Financial Risks: Applications for a Unified Risk Management Alejandro Balbás 1 and José Garrido 1,2 1 Department of Business Administration University Carlos

### Joint Exam 1/P Sample Exam 1

Joint Exam 1/P Sample Exam 1 Take this practice exam under strict exam conditions: Set a timer for 3 hours; Do not stop the timer for restroom breaks; Do not look at your notes. If you believe a question

### Notes on Continuous Random Variables

Notes on Continuous Random Variables Continuous random variables are random quantities that are measured on a continuous scale. They can usually take on any value over some interval, which distinguishes

### Overview of Monte Carlo Simulation, Probability Review and Introduction to Matlab

Monte Carlo Simulation: IEOR E4703 Fall 2004 c 2004 by Martin Haugh Overview of Monte Carlo Simulation, Probability Review and Introduction to Matlab 1 Overview of Monte Carlo Simulation 1.1 Why use simulation?

### Asymptotics of discounted aggregate claims for renewal risk model with risky investment

Appl. Math. J. Chinese Univ. 21, 25(2: 29-216 Asymptotics of discounted aggregate claims for renewal risk model with risky investment JIANG Tao Abstract. Under the assumption that the claim size is subexponentially

### Statistics 100A Homework 7 Solutions

Chapter 6 Statistics A Homework 7 Solutions Ryan Rosario. A television store owner figures that 45 percent of the customers entering his store will purchase an ordinary television set, 5 percent will purchase

### Nonparametric adaptive age replacement with a one-cycle criterion

Nonparametric adaptive age replacement with a one-cycle criterion P. Coolen-Schrijner, F.P.A. Coolen Department of Mathematical Sciences University of Durham, Durham, DH1 3LE, UK e-mail: Pauline.Schrijner@durham.ac.uk

### Chapter 3 RANDOM VARIATE GENERATION

Chapter 3 RANDOM VARIATE GENERATION In order to do a Monte Carlo simulation either by hand or by computer, techniques must be developed for generating values of random variables having known distributions.

### Survival Distributions, Hazard Functions, Cumulative Hazards

Week 1 Survival Distributions, Hazard Functions, Cumulative Hazards 1.1 Definitions: The goals of this unit are to introduce notation, discuss ways of probabilistically describing the distribution of a

### THE NUMBER OF GRAPHS AND A RANDOM GRAPH WITH A GIVEN DEGREE SEQUENCE. Alexander Barvinok

THE NUMBER OF GRAPHS AND A RANDOM GRAPH WITH A GIVEN DEGREE SEQUENCE Alexer Barvinok Papers are available at http://www.math.lsa.umich.edu/ barvinok/papers.html This is a joint work with J.A. Hartigan

### ON SOME ANALOGUE OF THE GENERALIZED ALLOCATION SCHEME

ON SOME ANALOGUE OF THE GENERALIZED ALLOCATION SCHEME Alexey Chuprunov Kazan State University, Russia István Fazekas University of Debrecen, Hungary 2012 Kolchin s generalized allocation scheme A law of

### SOCIETY OF ACTUARIES/CASUALTY ACTUARIAL SOCIETY EXAM C CONSTRUCTION AND EVALUATION OF ACTUARIAL MODELS EXAM C SAMPLE QUESTIONS

SOCIETY OF ACTUARIES/CASUALTY ACTUARIAL SOCIETY EXAM C CONSTRUCTION AND EVALUATION OF ACTUARIAL MODELS EXAM C SAMPLE QUESTIONS Copyright 005 by the Society of Actuaries and the Casualty Actuarial Society

### Approximation of Aggregate Losses Using Simulation

Journal of Mathematics and Statistics 6 (3): 233-239, 2010 ISSN 1549-3644 2010 Science Publications Approimation of Aggregate Losses Using Simulation Mohamed Amraja Mohamed, Ahmad Mahir Razali and Noriszura

### Principle of Data Reduction

Chapter 6 Principle of Data Reduction 6.1 Introduction An experimenter uses the information in a sample X 1,..., X n to make inferences about an unknown parameter θ. If the sample size n is large, then

### 6 PROBABILITY GENERATING FUNCTIONS

6 PROBABILITY GENERATING FUNCTIONS Certain derivations presented in this course have been somewhat heavy on algebra. For example, determining the expectation of the Binomial distribution (page 5.1 turned

### A SURVEY ON CONTINUOUS ELLIPTICAL VECTOR DISTRIBUTIONS

A SURVEY ON CONTINUOUS ELLIPTICAL VECTOR DISTRIBUTIONS Eusebio GÓMEZ, Miguel A. GÓMEZ-VILLEGAS and J. Miguel MARÍN Abstract In this paper it is taken up a revision and characterization of the class of

### Lecture 13: Martingales

Lecture 13: Martingales 1. Definition of a Martingale 1.1 Filtrations 1.2 Definition of a martingale and its basic properties 1.3 Sums of independent random variables and related models 1.4 Products of

### Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 18. A Brief Introduction to Continuous Probability

CS 7 Discrete Mathematics and Probability Theory Fall 29 Satish Rao, David Tse Note 8 A Brief Introduction to Continuous Probability Up to now we have focused exclusively on discrete probability spaces

### Lecture Notes on Elasticity of Substitution

Lecture Notes on Elasticity of Substitution Ted Bergstrom, UCSB Economics 20A October 26, 205 Today s featured guest is the elasticity of substitution. Elasticity of a function of a single variable Before

### Joint Distributions. Tieming Ji. Fall 2012

Joint Distributions Tieming Ji Fall 2012 1 / 33 X : univariate random variable. (X, Y ): bivariate random variable. In this chapter, we are going to study the distributions of bivariate random variables

### Probability Theory. Florian Herzog. A random variable is neither random nor variable. Gian-Carlo Rota, M.I.T..

Probability Theory A random variable is neither random nor variable. Gian-Carlo Rota, M.I.T.. Florian Herzog 2013 Probability space Probability space A probability space W is a unique triple W = {Ω, F,

### AGGREGATE CLAIMS, SOLVENCY AND REINSURANCE. David Dickson, Centre for Actuarial Studies, University of Melbourne. Cherry Bud Workshop

AGGREGATE CLAIMS, SOLVENCY AND REINSURANCE David Dickson, Centre for Actuarial Studies, University of Melbourne Cherry Bud Workshop Keio University, 27 March 2006 Basic General Insurance Risk Model where

### Stochastic Models for Inventory Management at Service Facilities

Stochastic Models for Inventory Management at Service Facilities O. Berman, E. Kim Presented by F. Zoghalchi University of Toronto Rotman School of Management Dec, 2012 Agenda 1 Problem description Deterministic

### Non-Life Insurance Mathematics

Thomas Mikosch Non-Life Insurance Mathematics An Introduction with the Poisson Process Second Edition 4y Springer Contents Part I Collective Risk Models 1 The Basic Model 3 2 Models for the Claim Number

### Chapter 3: DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS. Part 3: Discrete Uniform Distribution Binomial Distribution

Chapter 3: DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS Part 3: Discrete Uniform Distribution Binomial Distribution Sections 3-5, 3-6 Special discrete random variable distributions we will cover

### Lecture Notes on Elasticity of Substitution

Lecture Notes on Elasticity of Substitution Ted Bergstrom, UCSB Economics 210A March 3, 2011 Today s featured guest is the elasticity of substitution. Elasticity of a function of a single variable Before

### 1.5 / 1 -- Communication Networks II (Görg) -- www.comnets.uni-bremen.de. 1.5 Transforms

.5 / -- Communication Networks II (Görg) -- www.comnets.uni-bremen.de.5 Transforms Using different summation and integral transformations pmf, pdf and cdf/ccdf can be transformed in such a way, that even

### minimal polyonomial Example

Minimal Polynomials Definition Let α be an element in GF(p e ). We call the monic polynomial of smallest degree which has coefficients in GF(p) and α as a root, the minimal polyonomial of α. Example: We

### Introduction to Probability

Introduction to Probability EE 179, Lecture 15, Handout #24 Probability theory gives a mathematical characterization for experiments with random outcomes. coin toss life of lightbulb binary data sequence

### Exam C, Fall 2006 PRELIMINARY ANSWER KEY

Exam C, Fall 2006 PRELIMINARY ANSWER KEY Question # Answer Question # Answer 1 E 19 B 2 D 20 D 3 B 21 A 4 C 22 A 5 A 23 E 6 D 24 E 7 B 25 D 8 C 26 A 9 E 27 C 10 D 28 C 11 E 29 C 12 B 30 B 13 C 31 C 14

### Some theoretical results about bisexual branching processes with controlled population-size dependent mating

14th European Young Statisticians Meeting Some theoretical results about bisexual branching processes with controlled population-size dependent mating Debrecen, August 2005 Inés M. del Puerto idelpuerto@unex.es

### Portfolio Distribution Modelling and Computation. Harry Zheng Department of Mathematics Imperial College h.zheng@imperial.ac.uk

Portfolio Distribution Modelling and Computation Harry Zheng Department of Mathematics Imperial College h.zheng@imperial.ac.uk Workshop on Fast Financial Algorithms Tanaka Business School Imperial College

### ON RUIN PROBABILITY AND AGGREGATE CLAIM REPRESENTATIONS FOR PARETO CLAIM SIZE DISTRIBUTIONS

ON RUIN PROBABILITY AND AGGREGATE CLAIM REPRESENTATIONS FOR PARETO CLAIM SIZE DISTRIBUTIONS Hansjörg Albrecher a Dominik Kortschak a,b a Institute of Actuarial Science, University of Lausanne, Quartier

### An Introduction to Basic Statistics and Probability

An Introduction to Basic Statistics and Probability Shenek Heyward NCSU An Introduction to Basic Statistics and Probability p. 1/4 Outline Basic probability concepts Conditional probability Discrete Random

### Optimization of Business Processes: An Introduction to Applied Stochastic Modeling. Ger Koole Department of Mathematics, VU University Amsterdam

Optimization of Business Processes: An Introduction to Applied Stochastic Modeling Ger Koole Department of Mathematics, VU University Amsterdam Version of March 30, 2010 c Ger Koole, 1998 2010. These lecture

### 5. Continuous Random Variables

5. Continuous Random Variables Continuous random variables can take any value in an interval. They are used to model physical characteristics such as time, length, position, etc. Examples (i) Let X be

x o R n a π(a, x o ) A R n π(a, x o ) π(a, x o ) A R n a a x o x o x n X R n δ(x n, x o ) d(a, x n ) d(, ) δ(, ) R n x n X d(a, x n ) δ(x n, x o ) a = a A π(a, xo ) a a A = X = R π(a, x o ) = (x o + ρ)

### Parametric Survival Models

Parametric Survival Models Germán Rodríguez grodri@princeton.edu Spring, 2001; revised Spring 2005, Summer 2010 We consider briefly the analysis of survival data when one is willing to assume a parametric

### MTH135/STA104: Probability

MTH135/STA14: Probability Homework # 8 Due: Tuesday, Nov 8, 5 Prof Robert Wolpert 1 Define a function f(x, y) on the plane R by { 1/x < y < x < 1 f(x, y) = other x, y a) Show that f(x, y) is a joint probability

### Chapter 3 Joint Distributions

Chapter 3 Joint Distributions 3.6 Functions of Jointly Distributed Random Variables Discrete Random Variables: Let f(x, y) denote the joint pdf of random variables X and Y with A denoting the two-dimensional

### Polynomial approximations for bivariate aggregate claims amount probability distributions

Polynomial approximations for bivariate aggregate claims amount probability distributions P.O. GOFFARD, S. LOISEL and D. POMMERET September 14, 2015 Abstract A numerical method to compute bivariate probability

### Lecture 8: More Continuous Random Variables

Lecture 8: More Continuous Random Variables 26 September 2005 Last time: the eponential. Going from saying the density e λ, to f() λe λ, to the CDF F () e λ. Pictures of the pdf and CDF. Today: the Gaussian

EXAM 3, FALL 003 Please note: On a one-time basis, the CAS is releasing annotated solutions to Fall 003 Examination 3 as a study aid to candidates. It is anticipated that for future sittings, only the

### Topic 8: The Expected Value

Topic 8: September 27 and 29, 2 Among the simplest summary of quantitative data is the sample mean. Given a random variable, the corresponding concept is given a variety of names, the distributional mean,

### Exact Confidence Intervals

Math 541: Statistical Theory II Instructor: Songfeng Zheng Exact Confidence Intervals Confidence intervals provide an alternative to using an estimator ˆθ when we wish to estimate an unknown parameter

### Sufficient Statistics and Exponential Family. 1 Statistics and Sufficient Statistics. Math 541: Statistical Theory II. Lecturer: Songfeng Zheng

Math 541: Statistical Theory II Lecturer: Songfeng Zheng Sufficient Statistics and Exponential Family 1 Statistics and Sufficient Statistics Suppose we have a random sample X 1,, X n taken from a distribution

### Definition 6.1.1. A r.v. X has a normal distribution with mean µ and variance σ 2, where µ R, and σ > 0, if its density is f(x) = 1. 2σ 2.

Chapter 6 Brownian Motion 6. Normal Distribution Definition 6... A r.v. X has a normal distribution with mean µ and variance σ, where µ R, and σ > 0, if its density is fx = πσ e x µ σ. The previous definition

### ST 371 (VIII): Theory of Joint Distributions

ST 371 (VIII): Theory of Joint Distributions So far we have focused on probability distributions for single random variables. However, we are often interested in probability statements concerning two or

### Summary of Formulas and Concepts. Descriptive Statistics (Ch. 1-4)

Summary of Formulas and Concepts Descriptive Statistics (Ch. 1-4) Definitions Population: The complete set of numerical information on a particular quantity in which an investigator is interested. We assume

### Estimating the Degree of Activity of jumps in High Frequency Financial Data. joint with Yacine Aït-Sahalia

Estimating the Degree of Activity of jumps in High Frequency Financial Data joint with Yacine Aït-Sahalia Aim and setting An underlying process X = (X t ) t 0, observed at equally spaced discrete times

### 1 IEOR 6711: Notes on the Poisson Process

Copyright c 29 by Karl Sigman 1 IEOR 6711: Notes on the Poisson Process We present here the essentials of the Poisson point process with its many interesting properties. As preliminaries, we first define

### Alternative Price Processes for Black-Scholes: Empirical Evidence and Theory

Alternative Price Processes for Black-Scholes: Empirical Evidence and Theory Samuel W. Malone April 19, 2002 This work is supported by NSF VIGRE grant number DMS-9983320. Page 1 of 44 1 Introduction This

### P(a X b) = f X (x)dx. A p.d.f. must integrate to one: f X (x)dx = 1. Z b

Continuous Random Variables The probability that a continuous random variable, X, has a value between a and b is computed by integrating its probability density function (p.d.f.) over the interval [a,b]:

### Worked examples Multiple Random Variables

Worked eamples Multiple Random Variables Eample Let X and Y be random variables that take on values from the set,, } (a) Find a joint probability mass assignment for which X and Y are independent, and

### Credit Risk Models: An Overview

Credit Risk Models: An Overview Paul Embrechts, Rüdiger Frey, Alexander McNeil ETH Zürich c 2003 (Embrechts, Frey, McNeil) A. Multivariate Models for Portfolio Credit Risk 1. Modelling Dependent Defaults:

### Exercises with solutions (1)

Exercises with solutions (). Investigate the relationship between independence and correlation. (a) Two random variables X and Y are said to be correlated if and only if their covariance C XY is not equal

### Probability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur

Probability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur Module No. #01 Lecture No. #15 Special Distributions-VI Today, I am going to introduce

### ( ) = P Z > = P( Z > 1) = 1 Φ(1) = 1 0.8413 = 0.1587 P X > 17

4.6 I company that manufactures and bottles of apple juice uses a machine that automatically fills 6 ounce bottles. There is some variation, however, in the amounts of liquid dispensed into the bottles

### Stats on the TI 83 and TI 84 Calculator

Stats on the TI 83 and TI 84 Calculator Entering the sample values STAT button Left bracket { Right bracket } Store (STO) List L1 Comma Enter Example: Sample data are {5, 10, 15, 20} 1. Press 2 ND and

### Hypothesis Testing COMP 245 STATISTICS. Dr N A Heard. 1 Hypothesis Testing 2 1.1 Introduction... 2 1.2 Error Rates and Power of a Test...

Hypothesis Testing COMP 45 STATISTICS Dr N A Heard Contents 1 Hypothesis Testing 1.1 Introduction........................................ 1. Error Rates and Power of a Test.............................

### Determining distribution parameters from quantiles

Determining distribution parameters from quantiles John D. Cook Department of Biostatistics The University of Texas M. D. Anderson Cancer Center P. O. Box 301402 Unit 1409 Houston, TX 77230-1402 USA cook@mderson.org

### Feb 28 Homework Solutions Math 151, Winter 2012. Chapter 6 Problems (pages 287-291)

Feb 8 Homework Solutions Math 5, Winter Chapter 6 Problems (pages 87-9) Problem 6 bin of 5 transistors is known to contain that are defective. The transistors are to be tested, one at a time, until the