Principles & Practice of Electron Diffraction

Size: px
Start display at page:

Download "Principles & Practice of Electron Diffraction"

Transcription

1 Principles & Practice of Electron Diffraction Duncan Alexander EPFL-CIME 1 Contents Introduction to electron diffraction Elastic scattering theory Basic crystallography & symmetry Electron diffraction theory Intensity in the electron diffraction pattern Selected-area diffraction phenomena Convergent beam electron diffraction Recording & analysing selected-area diffraction patterns Quantitative electron diffraction References 2

2 Introduction to electron diffraction 3 Why use electron diffraction? Diffraction: constructive and destructive interference of waves! wavelength of fast moving electrons much smaller than spacing of atomic planes => diffraction from atomic planes (e.g. 200 kv e -, λ = nm)! electrons interact very strongly with matter => strong diffraction intensity (can take patterns in seconds, unlike X-ray diffraction)! spatially-localized information ( 200 nm for selected-area diffraction; 2 nm possible with convergent-beam electron diffraction)! close relationship to diffraction contrast in imaging! orientation information! immediate in the TEM! ("" diffraction from only selected set of planes in one pattern - e.g. only 2D information) ("" limited accuracy of measurement - e.g. 2-3%) ("" intensity of reflections difficult to interpret because of dynamical effects) 4

3 Optical axis Image formation Electron source Condenser lens Specimen Objective lens Back focal plane/ diffraction plane Intermediate image 1 Selected area aperture Intermediate lens Projector lens BaTiO3 nanocrystals (Psaltis lab) Insert selected area aperture to choose region of interest Image 5 Take selected-area diffraction pattern Optical axis Electron source Condenser lens Specimen Objective lens Back focal plane/ diffraction plane Intermediate image 1 Selected area aperture Intermediate lens Projector lens Image Diffraction Press D for diffraction on microscope console - alter strength of intermediate lens and focus diffraction pattern on to screen Find cubic BaTiO3 aligned on [0 0 1] zone axis 6

4 Elastic scattering theory 7 Scattering theory - Atomic scattering factor Consider coherent elastic scattering of electrons from atom Differential elastic scattering cross section: Atomic scattering factor 8

5 Scattering theory - Huygen s principle Periodic array of scattering centres (atoms) Plane electron wave generates secondary wavelets k 0 k D1 k D2 Atoms closer together => scattering angles greater k 0 k D2 k 0 Secondary wavelets interfere => strong direct beam and multiple orders of diffracted beams from constructive interference => Reciprocity! k D1 9 Basic crystallography & symmetry 10

6 Crystals: translational periodicity & symmetry Repetition of translated structure to infinity 11 Crystallography: the unit cell Unit cell is the smallest repeating unit of the crystal lattice Has a lattice point on each corner (and perhaps more elsewhere) Defined by lattice parameters a, b, c along axes x, y, z and angles between crystallographic axes: α = b^c; β = a^c; γ = a^b 12

7 Building a crystal structure Use example of CuZn brass Choose the unit cell - for CuZn: primitive cubic (lattice point on each corner) Choose the motif - Cu: 0, 0, 0; Zn:!,!,! Structure = lattice +motif => Start applying motif to each lattice point z Motif: y Cu Zn x z y x 13 Building a crystal structure Use example of CuZn brass Choose the unit cell - for CuZn: primitive cubic (lattice point on each corner) Choose the motif - Cu: 0, 0, 0; Zn:!,!,! Structure = lattice +motif => Start applying motif to each lattice point Extend lattice further in to space z Motif: z y Cu Zn x z y y y y y x x x x 14

8 As well as having translational symmetry, nearly all crystals obey other symmetries - i.e. can reflect or rotate crystal and obtain exactly the same structure Symmetry elements: Mirror planes: Introduction to symmetry Rotation axes: Centre of symmetry or inversion centre: Inversion axes: combination of rotation axis with centre of symmetry 15 Introduction to symmetry Example - Tetragonal lattice: a = b c; α = β = γ = 90 Anatase TiO2 (body-centred lattice) view down [0 0 1] (z-axis): Identify mirror planes Identify rotation axis: 4-fold = defining symmetry of tetragonal lattice! y Mirror plane y Tetrad: 4-fold rotation axis z x x O Ti 16

9 More defining symmetry elements Cubic crystal system: a = b = c; α = β = γ = 90 View down body diagonal (i.e. [1 1 1] axis) Choose Primitive cell (lattice point on each corner) Identify rotation axis: 3-fold (triad) Defining symmetry of cube: four 3-fold rotation axes (not 4-fold rotation axes!) z x y 17 (Cubic α-al(fe,mn)si: example of primitive cubic with no 4-fold axis) 18

10 More defining symmetry elements Hexagonal crystal system: a = b c; α = β = 90, γ = 120 Primitive cell, lattice points on each corner; view down z-axis - i.e.[1 0 0] Draw 2 x 2 unit cells Identify rotation axis: 6-fold (hexad) - defining symmetry of hexagonal lattice z a y a a z a y x 19 The seven crystal systems 7 possible unit cell shapes with different symmetries that can be repeated by translation in 3 dimensions => 7 crystal systems each defined by symmetry Triclinic Monoclinic Orthorhombic Tetragonal Rhombohedral Hexagonal Cubic Diagrams from 20

11 Four possible lattice centerings P: Primitive - lattice points on cell corners I: Body-centred - additional lattice point at cell centre F: Face-centred - one additional lattice point at centre of each face A/B/C: Centred on a single face - one additional lattice point centred on A, B or C face Diagrams from Bravais lattices Combinations of crystal systems and lattice point centring that describe all possible crystals - Equivalent system/centring combinations eliminated => 14 (not 7 x 4 = 28) possibilities Diagrams from 22

12 14 Bravais lattices 23 Crystallography - lattice vectors A lattice vector is a vector joining any two lattice points Written as linear combination of unit cell vectors a, b, c: t = Ua + Vb + Wc Also written as: t = [U V W] Examples: z z z y y y x x [1 0 0] [0 3 2] [1 2 1] x Important in diffraction because we look down the lattice vectors ( zone axes ) 24

13 Crystallography - lattice planes Lattice plane is a plane which passes through any 3 lattice points which are not in a straight line Lattice planes are described using Miller indices (h k l) where the first plane away from the origin intersects the x, y, z axes at distances: a/h on the x axis b/k on the y axis c/l on the z axis 25 Crystallography - lattice planes Sets of planes intersecting the unit cell - examples: z y z x (1 0 0) y z x (0 2 2) y x (1 1 1) 26

14 Lattice planes and symmetry Lattice planes in a crystal related by the crystal symmetry For example, in cubic lattices the 3-fold rotation axis on the [1 1 1] body diagonal relates the planes (1 0 0), (0 1 0), (0 0 1): z x y Set of planes {1 0 0} = (1 0 0), (0 1 0), (0 0 1), (-1 0 0), (0-1 0), (0 0-1) 27 Weiss Zone Law If the lattice vector [U V W] lies in the plane (h k l) then: hu + kv + lw = 0 Electron diffraction: Electron beam oriented parallel to lattice vector called the zone axis Diffracting planes must be parallel to electron beam - therefore they obey the Weiss Zone law* (*at least for zero-order Laue zone) 28

15 θ Electron diffraction theory 29 Diffraction theory - Bragg law Path difference between reflection from planes distance dhkl apart = 2dhklsinθ 2dhklsinθ = λ/2 λ => - constructive - Bragg destructive law: interference nλ = 2dhklsinθ + = θ d d hkl Electron diffraction: λ ~ nm therefore: λ dhkl => small angle approximation: nλ 2dhklθ Reciprocity: scattering angle θ dhkl -1 30

16 Diffraction theory - 2-beam condition θ θ θ θ θ k I θ θ θ θ θ θ θ θ k D k I g d hkl G 2-beam condition: strong scattering from single set of planes 31 Electron beam parallel to low-index crystal orientation [U V W] = zone axis Crystal viewed down zone axis is like diffraction grating with planes parallel to e-beam In diffraction pattern obtain spots perpendicular to plane orientation Example: primitive cubic with e-beam parallel to [0 0 1] zone axis 2 x 2 unit cells z Multi-beam scattering condition y x Note reciprocal relationship: smaller plane spacing => larger indices (h k l) & greater scattering angle on diffraction pattern from (0 0 0) direct beam Also note Weiss Zone Law obeyed in indexing (hu + kv + lw = 0) 32

17 Scattering from non-orthogonal crystals With scattering from the cubic crystal we can note that the diffracted beam for plane (1 0 0) is parallel to the lattice vector [1 0 0]; makes life easy However, not true in non-orthogonal systems - e.g. hexagonal: z a y (1 0 0) planes a x [1 0 0] g => care must be taken in reciprocal space! 33 The reciprocal lattice In diffraction we are working in reciprocal space ; useful to transform the crystal lattice in to a reciprocal lattice that represents the crystal in reciprocal space: Real lattice vector: Reciprocal lattice rn = n1a + n2b + n3c r* = m1a* + m2b* + m3c* vector: where: a*.b = a*.c = b*.c = b*.a = c*.a = c*.b = 0 a*.a = b*.b = c*.c = 1 i.e. a* = (b ^ c)/vc VC: volume of unit cell For scattering from plane (h k l) the diffraction vector: ghkl = ha* + kb* + lc* Plane spacing: 34

18 Fourier transforms for understanding reciprocal space Fourier transform: identifies frequency components of an object - e.g. frequency components of wave forms Each lattice plane has a frequency in the crystal lattice given by its plane spacing - this frequency information is contained in its diffraction spot The diffraction spot is part of the reciprocal lattice and, indeed the reciprocal lattice is the Fourier transform of the real lattice Can use this to understand diffraction patterns and reciprocal space more easily 35 The Ewald sphere ki: incident beam wave vector kd: diffracted wave vector radius = 1/λ k I C k D 0 Reciprocal space: sphere radius 1/λ represents possible scattering wave vectors intersecting reciprocal space Electron diffraction: radius of sphere very large compared to reciprocal lattice => sphere circumference almost flat 36

19 Ewald sphere in 2-beam condition θ k I 2θ k I k D θ θ k D g hkl G k I g G 2-beam condition with one strong Bragg reflection corresponds to Ewald sphere intersecting one reciprocal lattice point 37 Ewald sphere and multi-beam scattering Assume reciprocal lattice points are infinitely small With crystal oriented on zone axis, Ewald sphere may not intersect reciprocal lattice points k I k D However, we see strong diffraction from many planes in this condition Because reciprocal lattice points have size and shape!

20 Fourier transforms and reciprocal lattice Real lattice is not infinite, but is bound disc of material with diameter of selected area aperture and thickness of specimen - i.e. thin disc of material X FT FT X Relrod = 2 lengths scales in reciprocal space! 39 Ewald sphere intersects Relrods k I k D

21 Relrod shape Shape (e.g. thickness) of sample is like a top-hat function Therefore shape of Relrod is: sin(x)/x Can compare to single-slit diffraction pattern with intensity: 41 Relrod shape 42

22 Intensity in the electron diffraction pattern 43 Excitation error Tilted slightly off Bragg condition, intensity of diffraction spot much lower Introduce new vector s - the excitation error that measures deviation from exact Bragg condition 44

23 Excitation error 45 Dynamical scattering For interpretation of intensities in diffraction pattern, single scattering would be ideal - i.e. kinematical scattering However, in electron diffraction there is often multiple elastic scattering: i.e. dynamical behaviour This dynamical scattering has a high probability because a Bragg-scattered beam is at the perfect angle to be Bragg-scattered again (and again...) As a result, scattering of different beams is not independent from each other 46

24 Dynamical scattering for 2-beam condition For a 2-beam condition (i.e. strong scattering at ϴB) it can be derived that: where: and ξg is the extinction distance for the Bragg reflection: Further: i.e. the intensities of the direct and diffracted beams are complementary, and in anti-phase, to each other. Both are periodic in t and seff If the excitation distance s = 0 (i.e. perfect Bragg condition), then: 47 Extinction and thickness fringes Dynamical scattering in the dark-field image => Intensity zero for thicknesses t = nξg (integer n) See effect as dark thickness fringes on wedge-shaped sample: Composition changes in quantum wells => extinction at different thickness compared to substrate 48

25 Dynamical scattering for 2-beam 2-beam condition: direct and diffracted beam intensities beams π/2 out of phase: Model with absorption using JEMS: Bright-field image showing modulation with absorption: 49 2-beam: kinematical vs dynamical Kinematical (weak interactions) Dynamical (strong interactions) 50

26 Weak beam; kinematical approximation Before we saw for 2-beam condition: where: Weak-beam imaging: make s large (~0.2 nm -1 ) Now Ig is effectively independent of ξg - kinematical conditions! => dark-field image intensity easier to interpret 51 Structure factor Amplitude of a diffracted beam: ri: position of each atom => ri: = xi a + yi b + zi c K = g: K = h a * + k b * + l c * Define structure factor: Intensity of reflection: Note fi is a function of s and (h k l) 52

27 Forbidden reflections Consider FCC lattice with lattice point coordinates: 0,0,0;!,!,0;!,0,!; 0,!,! Calculate structure factor for (0 1 0) plane (assume single atom motif): z => y x 53 Cu3Au - like FCC Au but with Cu atoms on face-centred sites. What happens to SADP if we gradually increase Z of Cu sites until that of Au (to obtain FCC Au)? z Forbidden reflections Diffraction pattern on [0 0 1] zone axis: y x Au Cu Patterns simulated using JEMS 54

28 Cu3Au - like FCC Au but with Cu atoms on face-centred sites. What happens to SADP if we gradually increase Z of Cu sites until that of Au (to obtain FCC Au)? z Forbidden reflections Diffraction pattern on [0 0 1] zone axis: y x Au Cu Patterns simulated using JEMS 55 Extinction rules Face-centred cubic: reflections with mixed odd, even h, k, l absent: Body-centred cubic: reflections with h + k + l = odd absent: Reciprocal lattice of FCC is BCC and vice-versa 56

29 Selected-area diffraction phenomena 57 Symmetry information Zone axis SADPs have symmetry closely related to symmetry of crystal lattice Example: FCC aluminium [0 0 1] [1 1 0] [1 1 1] 4-fold rotation axis 2-fold rotation axis 6-fold rotation axis - but [1 1 1] actually 3-fold axis Need third dimension for true symmetry! 58

30 Twinning in diffraction Example: FCC twins Stacking of close-packed {1 1 1} planes reversed at twin boundary: A B C A B C A B C A B C # A B C A B C B A C B A C View on [1 1 0] zone axis: {1 1 1} planes: A B B A Twinning in diffraction Example: Co-Ni-Al shape memory FCC twins observed on [1 1 0] zone axis (1 1 1) close-packed twin planes overlap in SADP Images provided by Barbora Bartová, CIME 60

31 Epitaxy and orientation relationships SADP excellent tool for studying orientation relationships across interfaces Example: Mn-doped ZnO on sapphire Sapphire substrate Sapphire + film Zone axes: [1-1 0]ZnO // [0-1 0]sapphire Planes: c-planezno // c-planesapphire 61 Crystallographically-oriented precipitates Co-Ni-Al shape memory alloy, austenitic with Co-rich precipitates Bright-field image Dark-field image!"#$%#&'#%()*+,&-./0 1 &2 '3)#.),2'+4'!"#"$"%!&'(%51167! :;:/: <'=>11>1?!8 99=116? -:;:/: 8,@ '3)#.),2'+4'!"#"$"%!&'(%51167! :;:/: <%=>111?!8 99=116? -:;:/: Images provided by Barbora Bartová, CIME 62

32 Double diffraction Special type of multiple elastic scattering: diffracted beam travelling through a crystal is rediffracted Example 1: rediffraction in different crystal - NiO being reduced to Ni in-situ in TEM Epitaxial relationship between the two FCC structures (NiO: a = 0.42 nm Ni: a = 0.37 nm) Formation of satellite spots around Bragg reflections Images by Quentin Jeangros, EPFL 63 Double diffraction Example 1: NiO being reduced to Ni in-situ in TEM movie 64

33 Double diffraction Example 1I: rediffraction in the same crystal; appearance of forbidden reflections Example of silicon; from symmetry of the structure {2 0 0} reflections should be absent However, normally see them because of double diffraction Simulate diffraction pattern on [1 1 0] zone axis: 65 Ring diffraction patterns If selected area aperture selects numerous, randomly-oriented nanocrystals, SADP consists of rings sampling all possible diffracting planes - like powder X-ray diffraction Example: needles of contaminant cubic MnZnO3 - which XRD failed to observe! Note: if scattering sufficiently kinematical, can compare intensities with those of X-ray PDF files 66

34 Ring diffraction patterns Larger crystals => more spotty patterns Example: ZnO nanocrystals ~20 nm in diameter 67 Ring diffraction patterns Texture - i.e. preferential orientation - is seen as arcs of greater intensity in the diffraction rings Example: hydrozincite Zn5(CO3)2(OH)6 recrystallised to ZnO crystals 1-2 nm in diameter 68

35 Amorphous diffraction pattern Crystals: short-range order and long-range order Amorphous materials: no long-range order, but do have short-range order (roughly uniform interatomic distances as atoms pack around each other) Short-range order produces diffuse rings in diffraction pattern Example: Vitrified germanium (M. H. Bhat et al. Nature (2007) 69 Kikuchi lines Inelastic scattering event scatters electrons in all directions inside crystal Some scattered electrons in correct orientation for Bragg scattering => cone of scattering Cones have very large diameters => intersect diffraction plane as ~straight lines 70

36 Kikuchi lines Position of the Kikuchi line pairs of (excess and deficient) very sensitive to specimen orientation Can use to identify excitation vector; in particular s = 0 when diffracted beam coincides exactly with excess Kikuchi line (and direct beam with deficient Kikuchi line) Lower-index lattice planes => narrower pairs of lines 71 Kikuchi lines - road map to reciprocal space Kikuchi lines traverse reciprocal space, converging on zone axes - use them to navigate reciprocal space as you tilt the specimen! Examples: Si simulations using JEMS Si [1 1 0] Si [1 1 0] tilted off zone axis Si [2 2 3] Obviously Kikuchi lines can be useful, but can be hard to see (e.g. from insufficient thickness, diffuse lines from crystal bending, strain). Need an alternative method... 72

37 Convergent beam electron diffraction 73 Convergent beam electron diffraction Instead of parallel illumination with selected-area aperture, CBED uses highly converged illumination to select a much smaller specimen region Small illuminated area => no thickness and orientation variations There is dynamical scattering, but it is useful! Can obtain disc and line patterns packed with information: 74

38 Convergent beam electron diffraction 75 Convergent beam electron diffraction 76

39 Convergent beam electron diffraction 77 Convergent beam electron diffraction Kikuchi from: inelastic scattering convergent beam Kikuchi lines much less diffuse for CBED => use CBED to orientate sample! 78

40 Convergent beam electron diffraction practical example ZnO thin-film sample; Conditions: convergent beam, large condenser aperture, diffraction mode 79 Convergent beam electron diffraction practical example ZnO thin-film sample; Conditions: convergent beam, large condenser aperture, diffraction mode [1 1 0] zone axis 80

41 Recording & analysing selected-area diffraction patterns 81 Recording SADPs Orientate your specimen by tilting - focus the beam on specimen in image mode, select diffraction mode and use Kikuchi lines to navigate reciprocal space - or instead use contrast in image mode e.g. multi-beam zone axis corresponds to strong diffraction contrast in the image In image mode, insert chosen selected-area aperture; spread illumination fully (or near fully) overfocus to obtain parallel beam Select diffraction mode; focus diffraction spots using diffraction focus Choose recording media: - if CCD camera, insert beam stopper to cut out central, bright beam to avoid detector saturation (unless you have very strong scattering to diffracted beams) - if plate negatives, consider using 2 exposures: one short to record structure near central, bright beam; one long (e.g. 60 s) to capture weak diffracted beams 82

42 Recording media: image plates vs CCD camera! no saturation damage! high dynamic range and sensitivity! linear dynamic range! large field of view " time consuming loading, scanning! immediate digital image! linear dynamic range " small field of view " care to avoid oversaturatation " reduced dynamic range 83 Calibrating your diffraction pattern Plate negatives CCD camera Record SADP from a known standard - e.g. NiOx ring pattern λl = dhklrhkl λ: e - wavelength (Å) L: camera length (mm) dhkl: plane spacing (Å) Rhkl: spot spacing on negative (mm) (D/2)C = dhkl -1 D: diameter of ring (pixels) C: calibration (nm -1 per pixel) dhkl -1 : reciprocal plane spacing (nm -1 ) 84

43 Optical axis Calibrating rotation Unless Electron you source are using rotation-corrected TEM (e.g. JEOL 2200FS), you must calibrate rotation between image and diffraction pattern if you want to correlate orientation with image Condenser lens Specimen Objective lens Back focal plane/ diffraction plane Use specimen with clear shape orientation Defocus diffraction pattern (diffraction focus/ intermediate lens) to image pattern above BFP Diffraction spots now discs; in each disc there is an image (BF in direct beam, DF in diffracted beams Intermediate image 1 Selected area aperture Intermediate lens Projector lens BF image (GaAs nanowire) Defocus SADP 85 Diffraction Analysing your diffraction pattern Calculate planes spacings for lower index reflections (measure across a number and average) Measure angles between planes Compare plane spacings e.g. with XRD data for expected crystals Identify possible zone axes using Weiss Zone Law Simulate patterns e.g. using JEMS; overlay simulation on recorded data 86

44 Indexing planes example 87 Indexing planes example 88

45 Indexing planes example 89 Quantitative electron diffraction 90

46 Disadvantages of conventional SADP " lose higher symmetry information (projection effect; 2D information; intensities not kinematical) " dynamical intensity hard to interpret " poor measurement accuracy of lattice parameters (2-3%) Can solve with:! higher order Laue zones: 3D information! advanced CBED: higher order symmetry, accurate lattice parameter measurements, interpretable dynamical intensity! electron precession: kinematical zone axis patterns => full symmetry/point group, space group determination; strain measurements; polarity of non-centrosymmetric crystals; thickness determination; Higher-order Laue Zones ZOLZ: hu + kv + lw = 0 FOLZ: hu + kv + lw = 1 SOLZ: hu + kv + lw =

47 Higher-order Laue Zones 93 Advanced CBED Patterns from dynamical scattering in direct and diffraction discs allow determination of: - polarity of non-centrosymmetric crystals - sample thickness JEMS simulation: GaN [ ] zone axis Simulation vs experiment: t = 100 nm t = 150 nm t = 200 nm t = 250 nm T. Mitate et al. Phys. Stat. Sol. (a) 192, 383 (2002)

48 HOLZ lines in CBED Positions of Kikuchi HOLZ lines in direct CBED beam very sensitive to lattice parameters => use for lattice parameter determination with e.g. 0.1% accuracy, strain measurement 95 HOLZ lines in CBED Because HOLZ lines contain 3D information, they also show true symmetry e.g. three-fold {111} symmetry for cubic - unlike apparent six-fold axis in SADP or from ZOLZ Kikuchi lines 96

49 HOLZ lines in CBED Energy-filtered imaging mandatory for good quality CBED pattern - e.g. Si [1 0 0] below taken with new JEOL 2200FS Unfiltered Filtered Images by Anas Mouti, CIME 97 Precession electron diffraction Tilt beam off zone axis, rotate => hollow-cone illumination Descan to reconstruct pointual diffraction spots => spot pattern with moving beam 98

50 Precession electron diffraction Because beam tilted off strong multi-beam axis, much less dynamical scattering => Multi-beam zone axis diffraction with kinematical intensity Precession pattern shows higher order symmetry lost in conventional SADP Precession pattern also much less sensitive to specimen tilt - can try on the CM20 in CIME! Images from 99 Large angle CBED (LACBED) Bragg and HOLZ lines superimposed on defocus image - use for: - Burgers vector analysis: splitting of lines by dislocations - orientation relationships: lines continuous/discontinuous across interfaces

51 Nano-area electron diffraction Image the condenser aperture using a third condenser lens => nanometer-sized beam with parallel illumination Zuo et al. Microscopy Research and Technique (2004) 101 Nano-area electron diffraction Method developed for nano-objects where no dynamical scattering problem but phase is required - therefore need coherent illumination that you do not obtain with CBED Electron diffraction pattern from single double-walled carbon nanotube - can determine chirality 102

52 Phase/orientation mapping NanoMEGAS ASTAR: phase and orientation mapping in TEM similar to EBSD in SEM but e.g. much higher spatial resolution (~5 nm possible) Record diffraction patterns as electron probe moved across sample Analyse diffraction patterns by template matching i.e. correlate to ~2000 patterns simulated at different orientations Combine with precession and can achieve angular resolution of < 1 Orientation map for nanocrystalline Cu: Phase map showing local martensitic structure of steel at stacking faults: Images from NanoMEGAS company literature 103 References Transmission Electron Microscopy, Williams & Carter, Plenum Press Transmission Electron Microscopy: Physics of Image Formation and Microanalysis (Springer Series in Optical Sciences), Reimer, Springer Publishing Electron diffraction in the electron microscope, J. W. Edington, Macmillan Publishers Ltd Large-Angle Convergent-Beam Electron Diffraction Applications to Crystal Defects, Morniroli, Taylor & Francis Publishing JEMS Electron Microscopy Software Java version Web-based Electron Microscopy APplication Software (WebEMAPS) access to crystal structure file database Can download CIF file and import to JEMS 104

LMB Crystallography Course, 2013. Crystals, Symmetry and Space Groups Andrew Leslie

LMB Crystallography Course, 2013. Crystals, Symmetry and Space Groups Andrew Leslie LMB Crystallography Course, 2013 Crystals, Symmetry and Space Groups Andrew Leslie Many of the slides were kindly provided by Erhard Hohenester (Imperial College), several other illustrations are from

More information

Solid State Theory Physics 545

Solid State Theory Physics 545 Solid State Theory Physics 545 CRYSTAL STRUCTURES Describing periodic structures Terminology Basic Structures Symmetry Operations Ionic crystals often have a definite habit which gives rise to particular

More information

X-Ray Diffraction HOW IT WORKS WHAT IT CAN AND WHAT IT CANNOT TELL US. Hanno zur Loye

X-Ray Diffraction HOW IT WORKS WHAT IT CAN AND WHAT IT CANNOT TELL US. Hanno zur Loye X-Ray Diffraction HOW IT WORKS WHAT IT CAN AND WHAT IT CANNOT TELL US Hanno zur Loye X-rays are electromagnetic radiation of wavelength about 1 Å (10-10 m), which is about the same size as an atom. The

More information

Physics 441/2: Transmission Electron Microscope

Physics 441/2: Transmission Electron Microscope Physics 441/2: Transmission Electron Microscope Introduction In this experiment we will explore the use of transmission electron microscopy (TEM) to take us into the world of ultrasmall structures. This

More information

Looking through the fish-eye the Electron Ronchigram. Duncan T.L. Alexander CIME seminar May 24, 2012

Looking through the fish-eye the Electron Ronchigram. Duncan T.L. Alexander CIME seminar May 24, 2012 Looking through the fish-eye the Electron Ronchigram Duncan T.L. Alexander CIME seminar May 24, 2012 Introduction Aim of the seminar: open a discussion on the Electron Ronchigram How is it formed? What

More information

Crystal Optics of Visible Light

Crystal Optics of Visible Light Crystal Optics of Visible Light This can be a very helpful aspect of minerals in understanding the petrographic history of a rock. The manner by which light is transferred through a mineral is a means

More information

Experiment: Crystal Structure Analysis in Engineering Materials

Experiment: Crystal Structure Analysis in Engineering Materials Experiment: Crystal Structure Analysis in Engineering Materials Objective The purpose of this experiment is to introduce students to the use of X-ray diffraction techniques for investigating various types

More information

Crystal Structure Determination I

Crystal Structure Determination I Crystal Structure Determination I Dr. Falak Sher Pakistan Institute of Engineering and Applied Sciences National Workshop on Crystal Structure Determination using Powder XRD, organized by the Khwarzimic

More information

Relevant Reading for this Lecture... Pages 83-87.

Relevant Reading for this Lecture... Pages 83-87. LECTURE #06 Chapter 3: X-ray Diffraction and Crystal Structure Determination Learning Objectives To describe crystals in terms of the stacking of planes. How to use a dot product to solve for the angles

More information

12.524 2003 Lec 17: Dislocation Geometry and Fabric Production 1. Crystal Geometry

12.524 2003 Lec 17: Dislocation Geometry and Fabric Production 1. Crystal Geometry 12.524 2003 Lec 17: Dislocation Geometry and Fabric Production 1. Bibliography: Crystal Geometry Assigned Reading: [Poirier, 1985]Chapter 2, 4. General References: [Kelly and Groves, 1970] Chapter 1. [Hirth

More information

Lenses and Apertures of A TEM

Lenses and Apertures of A TEM Instructor: Dr. C.Wang EMA 6518 Course Presentation Lenses and Apertures of A TEM Group Member: Anup Kr. Keshri Srikanth Korla Sushma Amruthaluri Venkata Pasumarthi Xudong Chen Outline Electron Optics

More information

X-ray diffraction techniques for thin films

X-ray diffraction techniques for thin films X-ray diffraction techniques for thin films Rigaku Corporation Application Laboratory Takayuki Konya 1 Today s contents (PM) Introduction X-ray diffraction method Out-of-Plane In-Plane Pole figure Reciprocal

More information

Chapter Outline. How do atoms arrange themselves to form solids?

Chapter Outline. How do atoms arrange themselves to form solids? Chapter Outline How do atoms arrange themselves to form solids? Fundamental concepts and language Unit cells Crystal structures Simple cubic Face-centered cubic Body-centered cubic Hexagonal close-packed

More information

EXPERIMENT O-6. Michelson Interferometer. Abstract. References. Pre-Lab

EXPERIMENT O-6. Michelson Interferometer. Abstract. References. Pre-Lab EXPERIMENT O-6 Michelson Interferometer Abstract A Michelson interferometer, constructed by the student, is used to measure the wavelength of He-Ne laser light and the index of refraction of a flat transparent

More information

AP Physics B Ch. 23 and Ch. 24 Geometric Optics and Wave Nature of Light

AP Physics B Ch. 23 and Ch. 24 Geometric Optics and Wave Nature of Light AP Physics B Ch. 23 and Ch. 24 Geometric Optics and Wave Nature of Light Name: Period: Date: MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Reflection,

More information

Introduction to Powder X-Ray Diffraction History Basic Principles

Introduction to Powder X-Ray Diffraction History Basic Principles Introduction to Powder X-Ray Diffraction History Basic Principles Folie.1 History: Wilhelm Conrad Röntgen Wilhelm Conrad Röntgen discovered 1895 the X-rays. 1901 he was honoured by the Noble prize for

More information

X-ray thin-film measurement techniques

X-ray thin-film measurement techniques Technical articles X-ray thin-film measurement techniques II. Out-of-plane diffraction measurements Toru Mitsunaga* 1. Introduction A thin-film sample is two-dimensionally formed on the surface of a substrate,

More information

A Guide to Acousto-Optic Modulators

A Guide to Acousto-Optic Modulators A Guide to Acousto-Optic Modulators D. J. McCarron December 7, 2007 1 Introduction Acousto-optic modulators (AOMs) are useful devices which allow the frequency, intensity and direction of a laser beam

More information

Introduction to X-Ray Powder Diffraction Data Analysis

Introduction to X-Ray Powder Diffraction Data Analysis Introduction to X-Ray Powder Diffraction Data Analysis Center for Materials Science and Engineering at MIT http://prism.mit.edu/xray An X-ray diffraction pattern is a plot of the intensity of X-rays scattered

More information

6) How wide must a narrow slit be if the first diffraction minimum occurs at ±12 with laser light of 633 nm?

6) How wide must a narrow slit be if the first diffraction minimum occurs at ±12 with laser light of 633 nm? Test IV Name 1) In a single slit diffraction experiment, the width of the slit is 3.1 10-5 m and the distance from the slit to the screen is 2.2 m. If the beam of light of wavelength 600 nm passes through

More information

Diffraction Course Series 2015

Diffraction Course Series 2015 Diffraction Course Series 2015 Mark Wainwright Analytical Centre Kensington Campus, Chemical Sciences Building F10, Room G37 The Mark Wainwright Analytical Centre is offering a new series of courses covering

More information

X-ray Diffraction and EBSD

X-ray Diffraction and EBSD X-ray Diffraction and EBSD Jonathan Cowen Swagelok Center for the Surface Analysis of Materials Case School of Engineering Case Western Reserve University October 27, 2014 Outline X-ray Diffraction (XRD)

More information

Chapters 2 and 6 in Waseda. Lesson 8 Lattice Planes and Directions. Suggested Reading

Chapters 2 and 6 in Waseda. Lesson 8 Lattice Planes and Directions. Suggested Reading Analytical Methods for Materials Chapters 2 and 6 in Waseda Lesson 8 Lattice Planes and Directions Suggested Reading 192 Directions and Miller Indices Draw vector and define the tail as the origin. z Determine

More information

Theory of X-Ray Diffraction. Kingshuk Majumdar

Theory of X-Ray Diffraction. Kingshuk Majumdar Theory of X-Ray Diffraction Kingshuk Majumdar Contents Introduction to X-Rays Crystal Structures: Introduction to Lattices Different types of lattices Reciprocal Lattice Index Planes X-Ray Diffraction:

More information

Martensite in Steels

Martensite in Steels Materials Science & Metallurgy http://www.msm.cam.ac.uk/phase-trans/2002/martensite.html H. K. D. H. Bhadeshia Martensite in Steels The name martensite is after the German scientist Martens. It was used

More information

Chapter 3: Structure of Metals and Ceramics. Chapter 3: Structure of Metals and Ceramics. Learning Objective

Chapter 3: Structure of Metals and Ceramics. Chapter 3: Structure of Metals and Ceramics. Learning Objective Chapter 3: Structure of Metals and Ceramics Chapter 3: Structure of Metals and Ceramics Goals Define basic terms and give examples of each: Lattice Basis Atoms (Decorations or Motifs) Crystal Structure

More information

Reflection and Refraction

Reflection and Refraction Equipment Reflection and Refraction Acrylic block set, plane-concave-convex universal mirror, cork board, cork board stand, pins, flashlight, protractor, ruler, mirror worksheet, rectangular block worksheet,

More information

Chapter 3. 1. 3 types of materials- amorphous, crystalline, and polycrystalline. 5. Same as #3 for the ceramic and diamond crystal structures.

Chapter 3. 1. 3 types of materials- amorphous, crystalline, and polycrystalline. 5. Same as #3 for the ceramic and diamond crystal structures. Chapter Highlights: Notes: 1. types of materials- amorphous, crystalline, and polycrystalline.. Understand the meaning of crystallinity, which refers to a regular lattice based on a repeating unit cell..

More information

Interference. Physics 102 Workshop #3. General Instructions

Interference. Physics 102 Workshop #3. General Instructions Interference Physics 102 Workshop #3 Name: Lab Partner(s): Instructor: Time of Workshop: General Instructions Workshop exercises are to be carried out in groups of three. One report per group is due by

More information

Fraunhofer Diffraction

Fraunhofer Diffraction Physics 334 Spring 1 Purpose Fraunhofer Diffraction The experiment will test the theory of Fraunhofer diffraction at a single slit by comparing a careful measurement of the angular dependence of intensity

More information

Holography 1 HOLOGRAPHY

Holography 1 HOLOGRAPHY Holography 1 HOLOGRAPHY Introduction and Background The aesthetic appeal and commercial usefulness of holography are both related to the ability of a hologram to store a three-dimensional image. Unlike

More information

POWDER X-RAY DIFFRACTION: STRUCTURAL DETERMINATION OF ALKALI HALIDE SALTS

POWDER X-RAY DIFFRACTION: STRUCTURAL DETERMINATION OF ALKALI HALIDE SALTS EXPERIMENT 4 POWDER X-RAY DIFFRACTION: STRUCTURAL DETERMINATION OF ALKALI HALIDE SALTS I. Introduction The determination of the chemical structure of molecules is indispensable to chemists in their effort

More information

Chapter 7: Basics of X-ray Diffraction

Chapter 7: Basics of X-ray Diffraction Providing Solutions To Your Diffraction Needs. Chapter 7: Basics of X-ray Diffraction Scintag has prepared this section for use by customers and authorized personnel. The information contained herein is

More information

rotation,, axis of rotoinversion,, center of symmetry, and mirror planes can be

rotation,, axis of rotoinversion,, center of symmetry, and mirror planes can be Crystal Symmetry The external shape of a crystal reflects the presence or absence of translation-free symmetry y elements in its unit cell. While not always immediately obvious, in most well formed crystal

More information

X-ray Diffraction (XRD)

X-ray Diffraction (XRD) X-ray Diffraction (XRD) 1.0 What is X-ray Diffraction 2.0 Basics of Crystallography 3.0 Production of X-rays 4.0 Applications of XRD 5.0 Instrumental Sources of Error 6.0 Conclusions Bragg s Law n l =2dsinq

More information

Polarization Dependence in X-ray Spectroscopy and Scattering. S P Collins et al Diamond Light Source UK

Polarization Dependence in X-ray Spectroscopy and Scattering. S P Collins et al Diamond Light Source UK Polarization Dependence in X-ray Spectroscopy and Scattering S P Collins et al Diamond Light Source UK Overview of talk 1. Experimental techniques at Diamond: why we care about x-ray polarization 2. How

More information

This is an author-deposited version published in: http://sam.ensam.eu Handle ID:.http://hdl.handle.net/10985/10324

This is an author-deposited version published in: http://sam.ensam.eu Handle ID:.http://hdl.handle.net/10985/10324 Science Arts & Métiers (SAM) is an open access repository that collects the work of Arts et Métiers ParisTech researchers and makes it freely available over the web where possible. This is an author-deposited

More information

waves rays Consider rays of light from an object being reflected by a plane mirror (the rays are diverging): mirror object

waves rays Consider rays of light from an object being reflected by a plane mirror (the rays are diverging): mirror object PHYS1000 Optics 1 Optics Light and its interaction with lenses and mirrors. We assume that we can ignore the wave properties of light. waves rays We represent the light as rays, and ignore diffraction.

More information

ORIENTATION CHARACTERISTICS OF THE MICROSTRUCTURE OF MATERIALS

ORIENTATION CHARACTERISTICS OF THE MICROSTRUCTURE OF MATERIALS ORIENTATION CHARACTERISTICS OF THE MICROSTRUCTURE OF MATERIALS K. Sztwiertnia Polish Academy of Sciences, Institute of Metallurgy and Materials Science, 25 Reymonta St., 30-059 Krakow, Poland MMN 2009

More information

Structure Factors 59-553 78

Structure Factors 59-553 78 78 Structure Factors Until now, we have only typically considered reflections arising from planes in a hypothetical lattice containing one atom in the asymmetric unit. In practice we will generally deal

More information

Automatic and Objective Measurement of Residual Stress and Cord in Glass

Automatic and Objective Measurement of Residual Stress and Cord in Glass Automatic and Objective Measurement of Residual Stress and Cord in Glass GlassTrend - ICG TC15/21 Seminar SENSORS AND PROCESS CONTROL 13-14 October 2015, Eindhoven Henning Katte, ilis gmbh copyright ilis

More information

Introduction to microstructure

Introduction to microstructure Introduction to microstructure 1.1 What is microstructure? When describing the structure of a material, we make a clear distinction between its crystal structure and its microstructure. The term crystal

More information

Diffraction of a Circular Aperture

Diffraction of a Circular Aperture Diffraction of a Circular Aperture Diffraction can be understood by considering the wave nature of light. Huygen's principle, illustrated in the image below, states that each point on a propagating wavefront

More information

Physics 10. Lecture 29A. "There are two ways of spreading light: to be the candle or the mirror that reflects it." --Edith Wharton

Physics 10. Lecture 29A. There are two ways of spreading light: to be the candle or the mirror that reflects it. --Edith Wharton Physics 10 Lecture 29A "There are two ways of spreading light: to be the candle or the mirror that reflects it." --Edith Wharton Converging Lenses What if we wanted to use refraction to converge parallel

More information

Electron Microscopy 3. SEM. Image formation, detection, resolution, signal to noise ratio, interaction volume, contrasts

Electron Microscopy 3. SEM. Image formation, detection, resolution, signal to noise ratio, interaction volume, contrasts Electron Microscopy 3. SEM Image formation, detection, resolution, signal to noise ratio, interaction volume, contrasts 3-1 SEM is easy! Just focus and shoot "Photo"!!! Please comment this picture... Any

More information

Chapter 23. The Reflection of Light: Mirrors

Chapter 23. The Reflection of Light: Mirrors Chapter 23 The Reflection of Light: Mirrors Wave Fronts and Rays Defining wave fronts and rays. Consider a sound wave since it is easier to visualize. Shown is a hemispherical view of a sound wave emitted

More information

CRYSTALLINE SOLIDS IN 3D

CRYSTALLINE SOLIDS IN 3D CRYSTALLINE SOLIDS IN 3D Andrew Baczewski PHY 491, October 7th, 2011 OVERVIEW First - are there any questions from the previous lecture? Today, we will answer the following questions: Why should we care

More information

WAVELENGTH OF LIGHT - DIFFRACTION GRATING

WAVELENGTH OF LIGHT - DIFFRACTION GRATING PURPOSE In this experiment we will use the diffraction grating and the spectrometer to measure wavelengths in the mercury spectrum. THEORY A diffraction grating is essentially a series of parallel equidistant

More information

Today. next two weeks

Today. next two weeks Today Temporal and spatial coherence Spatially incoherent imaging The incoherent PSF The Optical Transfer Function (OTF) and Modulation Transfer Function (MTF) MTF and contrast comparison of spatially

More information

Diffraction of Laser Light

Diffraction of Laser Light Diffraction of Laser Light No Prelab Introduction The laser is a unique light source because its light is coherent and monochromatic. Coherent light is made up of waves, which are all in phase. Monochromatic

More information

Preface Light Microscopy X-ray Diffraction Methods

Preface Light Microscopy X-ray Diffraction Methods Preface xi 1 Light Microscopy 1 1.1 Optical Principles 1 1.1.1 Image Formation 1 1.1.2 Resolution 3 1.1.3 Depth of Field 5 1.1.4 Aberrations 6 1.2 Instrumentation 8 1.2.1 Illumination System 9 1.2.2 Objective

More information

Geometric Optics Converging Lenses and Mirrors Physics Lab IV

Geometric Optics Converging Lenses and Mirrors Physics Lab IV Objective Geometric Optics Converging Lenses and Mirrors Physics Lab IV In this set of lab exercises, the basic properties geometric optics concerning converging lenses and mirrors will be explored. The

More information

Wafer Manufacturing. Reading Assignments: Plummer, Chap 3.1~3.4

Wafer Manufacturing. Reading Assignments: Plummer, Chap 3.1~3.4 Wafer Manufacturing Reading Assignments: Plummer, Chap 3.1~3.4 1 Periodic Table Roman letters give valence of the Elements 2 Why Silicon? First transistor, Shockley, Bardeen, Brattain1947 Made by Germanium

More information

COMPARISON OF TEXTURE IN COPPER AND ALUMINUM THIN FILMS DETERMINED BY XRD AND EBSD *

COMPARISON OF TEXTURE IN COPPER AND ALUMINUM THIN FILMS DETERMINED BY XRD AND EBSD * 201 COMPARISON OF TEXTURE IN COPPER AND ALUMINUM THIN FILMS DETERMINED BY XRD AND EBSD * J. Müller 1, D. Balzar 1,2, R.H. Geiss 1, D.T. Read 1, and R.R. Keller 1 1 Materials Reliability Division, National

More information

Electron Microscopy SEM and TEM

Electron Microscopy SEM and TEM Electron Microscopy SEM and TEM Content 1. Introduction: Motivation for electron microscopy 2. Interaction with matter 3. SEM: Scanning Electron Microscopy 3.1 Functional Principle 3.2 Examples 3.3 EDX

More information

ENGINEERING METROLOGY

ENGINEERING METROLOGY ENGINEERING METROLOGY ACADEMIC YEAR 92-93, SEMESTER ONE COORDINATE MEASURING MACHINES OPTICAL MEASUREMENT SYSTEMS; DEPARTMENT OF MECHANICAL ENGINEERING ISFAHAN UNIVERSITY OF TECHNOLOGY Coordinate Measuring

More information

Laue lens for Nuclear Medicine

Laue lens for Nuclear Medicine Laue lens for Nuclear Medicine PhD in Physics Gianfranco Paternò Ferrara, 6-11-013 Supervisor: prof. Vincenzo Guidi Sensors and Semiconductors Lab, Department of Physics and Earth Science, University of

More information

Acousto-optic modulator

Acousto-optic modulator 1 of 3 Acousto-optic modulator F An acousto-optic modulator (AOM), also called a Bragg cell, uses the acousto-optic effect to diffract and shift the frequency of light using sound waves (usually at radio-frequency).

More information

Scanning Near Field Optical Microscopy: Principle, Instrumentation and Applications

Scanning Near Field Optical Microscopy: Principle, Instrumentation and Applications Scanning Near Field Optical Microscopy: Principle, Instrumentation and Applications Saulius Marcinkevičius Optics, ICT, KTH 1 Outline Optical near field. Principle of scanning near field optical microscope

More information

3.5.4.2 One example: Michelson interferometer

3.5.4.2 One example: Michelson interferometer 3.5.4.2 One example: Michelson interferometer mirror 1 mirror 2 light source 1 2 3 beam splitter 4 object (n object ) interference pattern we either observe fringes of same thickness (parallel light) or

More information

PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS

PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS 1. Photons 2. Photoelectric Effect 3. Experimental Set-up to study Photoelectric Effect 4. Effect of Intensity, Frequency, Potential on P.E.

More information

Microscopy and Nanoindentation. Combining Orientation Imaging. to investigate localized. deformation behaviour. Felix Reinauer

Microscopy and Nanoindentation. Combining Orientation Imaging. to investigate localized. deformation behaviour. Felix Reinauer Combining Orientation Imaging Microscopy and Nanoindentation to investigate localized deformation behaviour Felix Reinauer René de Kloe Matt Nowell Introduction Anisotropy in crystalline materials Presentation

More information

PHYS 222 Spring 2012 Final Exam. Closed books, notes, etc. No electronic device except a calculator.

PHYS 222 Spring 2012 Final Exam. Closed books, notes, etc. No electronic device except a calculator. PHYS 222 Spring 2012 Final Exam Closed books, notes, etc. No electronic device except a calculator. NAME: (all questions with equal weight) 1. If the distance between two point charges is tripled, the

More information

Scanning Electron Microscopy tools for material characterization

Scanning Electron Microscopy tools for material characterization 5th International Workshop on Mechanisms of Vacuum Arcs 02-04/09/2015 Scanning Electron Microscopy tools for material characterization Focus on EBSD for characterisation of dislocation structures Floriane

More information

Nanoelectronics 09. Atsufumi Hirohata Department of Electronics. Quick Review over the Last Lecture

Nanoelectronics 09. Atsufumi Hirohata Department of Electronics. Quick Review over the Last Lecture Nanoelectronics 09 Atsufumi Hirohata Department of Electronics 12:00 Wednesday, 4/February/2015 (P/L 006) Quick Review over the Last Lecture ( Field effect transistor (FET) ): ( Drain ) current increases

More information

Efficiency, Dispersion and Straylight Performance Tests of Immersed Gratings for High Resolution Spectroscopy in the Near Infra-red

Efficiency, Dispersion and Straylight Performance Tests of Immersed Gratings for High Resolution Spectroscopy in the Near Infra-red Changing the economics of space Efficiency, Dispersion and Straylight Performance Tests of Immersed Gratings for High Resolution Spectroscopy in the Near Infra-red J. Fernandez-Saldivar 1, F. Culfaz 1,

More information

Defects Introduction. Bonding + Structure + Defects. Properties

Defects Introduction. Bonding + Structure + Defects. Properties Defects Introduction Bonding + Structure + Defects Properties The processing determines the defects Composition Bonding type Structure of Crystalline Processing factors Defects Microstructure Types of

More information

Near-field scanning optical microscopy (SNOM)

Near-field scanning optical microscopy (SNOM) Adviser: dr. Maja Remškar Institut Jožef Stefan January 2010 1 2 3 4 5 6 Fluorescence Raman and surface enhanced Raman 7 Conventional optical microscopy-limited resolution Two broad classes of techniques

More information

Vincent FAVRE-NICOLIN Univ. Grenoble Alpes & CEA Grenoble/INAC/SP2M XDISPE (ANR JCJC SIMI10 2011)

Vincent FAVRE-NICOLIN Univ. Grenoble Alpes & CEA Grenoble/INAC/SP2M XDISPE (ANR JCJC SIMI10 2011) Vincent FAVRE-NICOLIN Univ. Grenoble Alpes & CEA Grenoble/INAC/SP2M XDISPE (ANR JCJC SIMI10 2011) Imagerie par diffraction des rayons X de nano-objets uniques pour la photonique et l'électronique X-ray

More information

Chapter 4. Microscopy, Staining, and Classification. Lecture prepared by Mindy Miller-Kittrell North Carolina State University

Chapter 4. Microscopy, Staining, and Classification. Lecture prepared by Mindy Miller-Kittrell North Carolina State University Chapter 4 Microscopy, Staining, and Classification 2012 Pearson Education Inc. Lecture prepared by Mindy Miller-Kittrell North Carolina State University Microscopy and Staining 2012 Pearson Education Inc.

More information

Study Guide for Exam on Light

Study Guide for Exam on Light Name: Class: Date: Study Guide for Exam on Light Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which portion of the electromagnetic spectrum is used

More information

PHYS 39a Lab 3: Microscope Optics

PHYS 39a Lab 3: Microscope Optics PHYS 39a Lab 3: Microscope Optics Trevor Kafka December 15, 2014 Abstract In this lab task, we sought to use critical illumination and Köhler illumination techniques to view the image of a 1000 lines-per-inch

More information

Optical laser beam scanner lens relay system

Optical laser beam scanner lens relay system 1. Introduction Optical laser beam scanner lens relay system Laser beam scanning is used most often by far in confocal microscopes. There are many ways by which a laser beam can be scanned across the back

More information

Crystal Structure of High Temperature Superconductors. Marie Nelson East Orange Campus High School NJIT Professor: Trevor Tyson

Crystal Structure of High Temperature Superconductors. Marie Nelson East Orange Campus High School NJIT Professor: Trevor Tyson Crystal Structure of High Temperature Superconductors Marie Nelson East Orange Campus High School NJIT Professor: Trevor Tyson Introduction History of Superconductors Superconductors are material which

More information

P R E A M B L E. Facilitated workshop problems for class discussion (1.5 hours)

P R E A M B L E. Facilitated workshop problems for class discussion (1.5 hours) INSURANCE SCAM OPTICS - LABORATORY INVESTIGATION P R E A M B L E The original form of the problem is an Experimental Group Research Project, undertaken by students organised into small groups working as

More information

Each grain is a single crystal with a specific orientation. Imperfections

Each grain is a single crystal with a specific orientation. Imperfections Crystal Structure / Imperfections Almost all materials crystallize when they solidify; i.e., the atoms are arranged in an ordered, repeating, 3-dimensional pattern. These structures are called crystals

More information

Transmission Electron Microscopy

Transmission Electron Microscopy Transmission Electron Microscopy Wacek Swiech, Honghui Zhou, Jim Mabon, Changqiang (CQ) Chen and Matt Bresin Frederick Seitz Materials Research Laboratory University of Illinois at Urbana-Champaign Outline

More information

Basics of X-ray diffraction: From symmetry to structure determination

Basics of X-ray diffraction: From symmetry to structure determination Basics of X-ray diffraction: From symmetry to structure determination T. N. Guru Row Solid State and Structural Chemistry Unit Indian Institute of Science Bangalore-560012 Email: ssctng@sscu.iisc.ernet.in

More information

Mechanical Properties of Metals Mechanical Properties refers to the behavior of material when external forces are applied

Mechanical Properties of Metals Mechanical Properties refers to the behavior of material when external forces are applied Mechanical Properties of Metals Mechanical Properties refers to the behavior of material when external forces are applied Stress and strain fracture or engineering point of view: allows to predict the

More information

Rodenstock Photo Optics

Rodenstock Photo Optics Rogonar Rogonar-S Rodagon Apo-Rodagon N Rodagon-WA Apo-Rodagon-D Accessories: Modular-Focus Lenses for Enlarging, CCD Photos and Video To reproduce analog photographs as pictures on paper requires two

More information

WOOD WEAR TESTING USING TRIBOMETER

WOOD WEAR TESTING USING TRIBOMETER WOOD WEAR TESTING USING TRIBOMETER Prepared by Duanjie Li, PhD 6 Morgan, Ste156, Irvine CA 92618 P: 949.461.9292 F: 949.461.9232 nanovea.com Today's standard for tomorrow's materials. 2015 NANOVEA INTRO

More information

View of ΣIGMA TM (Ref. 1)

View of ΣIGMA TM (Ref. 1) Overview of the FESEM system 1. Electron optical column 2. Specimen chamber 3. EDS detector [Electron Dispersive Spectroscopy] 4. Monitors 5. BSD (Back scatter detector) 6. Personal Computer 7. ON/STANDBY/OFF

More information

DOING PHYSICS WITH MATLAB COMPUTATIONAL OPTICS RAYLEIGH-SOMMERFELD DIFFRACTION INTEGRAL OF THE FIRST KIND

DOING PHYSICS WITH MATLAB COMPUTATIONAL OPTICS RAYLEIGH-SOMMERFELD DIFFRACTION INTEGRAL OF THE FIRST KIND DOING PHYSICS WITH MATLAB COMPUTATIONAL OPTICS RAYLEIGH-SOMMERFELD DIFFRACTION INTEGRAL OF THE FIRST KIND THE THREE-DIMENSIONAL DISTRIBUTION OF THE RADIANT FLUX DENSITY AT THE FOCUS OF A CONVERGENCE BEAM

More information

Modern Classical Optics

Modern Classical Optics Modern Classical Optics GEOFFREY BROOKER Department of Physics University of Oxford OXPORD UNIVERSITY PRESS Contents 1 Electromagnetism and basic optics 1 1.1 Introduction 1 1.2 The Maxwell equations 1

More information

INTERFERENCE OBJECTIVES PRE-LECTURE. Aims

INTERFERENCE OBJECTIVES PRE-LECTURE. Aims 53 L4 INTERFERENCE Aims OBJECTIVES When you have finished this chapter you should understand how the wave model of light can be used to explain the phenomenon of interference. You should be able to describe

More information

Introduction to the Smith Chart for the MSA Sam Wetterlin 10/12/09 Z +

Introduction to the Smith Chart for the MSA Sam Wetterlin 10/12/09 Z + Introduction to the Smith Chart for the MSA Sam Wetterlin 10/12/09 Quick Review of Reflection Coefficient The Smith chart is a method of graphing reflection coefficients and impedance, and is often useful

More information

- the. or may. scales on. Butterfly wing. magnified about 75 times.

- the. or may. scales on. Butterfly wing. magnified about 75 times. Lecture Notes (Applications of Diffraction) Intro: - the iridescent colors seen in many beetles is due to diffraction of light rays hitting the small groovess of its exoskeleton - these ridges are only

More information

Ion Beam Sputtering: Practical Applications to Electron Microscopy

Ion Beam Sputtering: Practical Applications to Electron Microscopy Ion Beam Sputtering: Practical Applications to Electron Microscopy Applications Laboratory Report Introduction Electron microscope specimens, both scanning (SEM) and transmission (TEM), often require a

More information

Coating Thickness and Composition Analysis by Micro-EDXRF

Coating Thickness and Composition Analysis by Micro-EDXRF Application Note: XRF Coating Thickness and Composition Analysis by Micro-EDXRF www.edax.com Coating Thickness and Composition Analysis by Micro-EDXRF Introduction: The use of coatings in the modern manufacturing

More information

CHAPTER 7 DISLOCATIONS AND STRENGTHENING MECHANISMS PROBLEM SOLUTIONS

CHAPTER 7 DISLOCATIONS AND STRENGTHENING MECHANISMS PROBLEM SOLUTIONS 7-1 CHAPTER 7 DISLOCATIONS AND STRENGTHENING MECHANISMS PROBLEM SOLUTIONS Basic Concepts of Dislocations Characteristics of Dislocations 7.1 The dislocation density is just the total dislocation length

More information

Development of Optical Wave Microphone Measuring Sound Waves with No Diaphragm

Development of Optical Wave Microphone Measuring Sound Waves with No Diaphragm Progress In Electromagnetics Research Symposium Proceedings, Taipei, March 5 8, 3 359 Development of Optical Wave Microphone Measuring Sound Waves with No Diaphragm Yoshito Sonoda, Takashi Samatsu, and

More information

Phase Characterization of TiO 2 Powder by XRD and TEM

Phase Characterization of TiO 2 Powder by XRD and TEM Kasetsart J. (Nat. Sci.) 42 : 357-361 (28) Phase Characterization of TiO 2 Powder by XRD and TEM Kheamrutai Thamaphat 1 *, Pichet Limsuwan 1 and Boonlaer Ngotawornchai 2 ABSTRACT In this study, the commercial

More information

Transmission Electron Microscopy

Transmission Electron Microscopy Transmission Electron Microscopy Wacek Swiech, CQ Chen, Jim Mabon, Honghui Zhou and Matt Bresin Frederick Seitz Materials Research Laboratory University of Illinois at Urbana-Champaign Outline 1. Introduction

More information

7. advanced SEM. Latest generation of SEM SEM

7. advanced SEM. Latest generation of SEM SEM 7. advanced SEM SEM Low voltage SE imaging Condition of the surface, coatings, plasma cleaning Low voltage BSE imaging Polishing for BSE, EDX and EBSD, effect of ion beam etching/polishing 1 Latest generation

More information

Study of the Human Eye Working Principle: An impressive high angular resolution system with simple array detectors

Study of the Human Eye Working Principle: An impressive high angular resolution system with simple array detectors Study of the Human Eye Working Principle: An impressive high angular resolution system with simple array detectors Diego Betancourt and Carlos del Río Antenna Group, Public University of Navarra, Campus

More information

PHYSICS PAPER 1 (THEORY)

PHYSICS PAPER 1 (THEORY) PHYSICS PAPER 1 (THEORY) (Three hours) (Candidates are allowed additional 15 minutes for only reading the paper. They must NOT start writing during this time.) ---------------------------------------------------------------------------------------------------------------------

More information

Image Formation in the Electron Microscope

Image Formation in the Electron Microscope T H E U N I V E R S I T Y of T E X A S S C H O O L O F H E A L T H I N F O R M A T I O N S C I E N C E S A T H O U S T O N Image Formation in the Electron Microscope For students of HI 6001-125 Computational

More information

Lecture 20: Scanning Confocal Microscopy (SCM) Rationale for SCM. Principles and major components of SCM. Advantages and major applications of SCM.

Lecture 20: Scanning Confocal Microscopy (SCM) Rationale for SCM. Principles and major components of SCM. Advantages and major applications of SCM. Lecture 20: Scanning Confocal Microscopy (SCM) Rationale for SCM. Principles and major components of SCM. Advantages and major applications of SCM. Some limitations (disadvantages) of NSOM A trade-off

More information

Holographically corrected microscope with a large working distance (as appears in Applied Optics, Vol. 37, No. 10, 1849-1853, 1 April 1998)

Holographically corrected microscope with a large working distance (as appears in Applied Optics, Vol. 37, No. 10, 1849-1853, 1 April 1998) Holographically corrected microscope with a large working distance (as appears in Applied Optics, Vol. 37, No. 10, 1849-1853, 1 April 1998) Geoff Andersen and R. J. Knize Laser and Optics Research Center

More information

ELECTRIC FIELD LINES AND EQUIPOTENTIAL SURFACES

ELECTRIC FIELD LINES AND EQUIPOTENTIAL SURFACES ELECTRIC FIELD LINES AND EQUIPOTENTIAL SURFACES The purpose of this lab session is to experimentally investigate the relation between electric field lines of force and equipotential surfaces in two dimensions.

More information