Electron Microscopy 3. SEM. Image formation, detection, resolution, signal to noise ratio, interaction volume, contrasts

Size: px
Start display at page:

Download "Electron Microscopy 3. SEM. Image formation, detection, resolution, signal to noise ratio, interaction volume, contrasts"

Transcription

1 Electron Microscopy 3. SEM Image formation, detection, resolution, signal to noise ratio, interaction volume, contrasts 3-1 SEM is easy! Just focus and shoot "Photo"!!! Please comment this picture... Any idea what it might be??? 3-2

2 SEM is easy! Just focus and shoot "Photo"!!! Does this one sound more obvious? 3-3 SEM is easy! Just focus and shoot "Photo"!!! At least this one?? 3-4

3 Image formation 3-5 SEM, signals Backscattered electrons photons IR,UV,vis. inelastic elastic e-beam Secondary electrons X-rays Absorbed current, EBIC Auger electrons Secondary electrons (~0-30eV), SE Backscattered electrons (~evo), BSE Auger electrons Photons: visible, UV, IR, X-rays Phonons, Heating Absorbtion of incident electrons (EBIC-Current) 3-6

4 SEM imaging with electrons Energy spectrum of electrons leaving the sample SE BSE Auger electrons SE: secondary electrons 0-50eV BSE: backscattered electrons E>50eV 3-7 Electron detectors Photomultiplier Everhart-Thornley detector Collects and detects lower energy (<100eV) electrons: SEM backscattered electrons 3-8

5 Electron detectors semiconductor BSE semiconductor detector: a silicon diode with a p-n junction close to its surface collects the BSE (3.8eV/ehole pair) large collection angle slow (poor at TV frequency) some diodes are split in 2 or 4 quadrants to bring spatial BSE distribution info Detects higher energy (>5kV) electrons: SEM backscattered electrons 3-9 SEM, secondary electrons Electrons with low energy (0-50eV) leaving the sample surface Intensity depends on inclination of the surface topography 3-10

6 SEM, backscattered electrons Electrons with high energy (~Eo) backscattered from below the surface Intensity depends on density (atomic weight) ~composition Nb 3 Sn in Cu matrix 3-11 Some typical SEM Zeiss Ultra HR-SEM Resolution kv, kv, kv At CIME: Zeiss NVision40 (FIB) Magnification12-900,000x in SE mode Acceleration Voltage kv Probe Current4 pa - 10 na Standard Detectors: EsB Detector with filtering grid High efficiency In-lens SE Detector Everhart-Thornley Secondary Electron Detector 3-12

7 Resolution Gun and lens design define the smallest probe size = resolution..? Other parameters: Rayleigh criterium Screen resolution, pixel size (at low mag) Interaction volume (delocalization) Signal to noise ratio Smallest probe size 3-13 SEM: Limiting parameters on resolving power 1. High magnification The probe size (generation of SE1) r d probe 2. The volume of interaction (generation of SE2+SE3 from BSE) 3. Low magnification The screen (or recording media) pixel size d screen r d screen /magnification 3-14

8 The interaction volume: Monte-Carlo simulations Electron Flight Simulator ($$$ Small World / D. Joy) old DOS!!!! Single Scattering Monte Carlo Simulation (Freeware) "Monte Carlo Simulation" Mc_w95.zip by Kimio KANDA CASINO (Freeware) " monte CArlo SImulation of electron trajectory in solids " by P. Hovongton and D. Drouin Number/Energy of backscattered electrons by Monte-Carlo simulations W BSE 41% BSE 43% BSE 52% energy energy energy 1 kv 3 kv 30 kv C BSE 10% BSE 8% BSE 5% energy energy energy 3-16

9 BSE=6% Penetration and backscattering vs elements (Z) 1 C 20keV V acc = 20kV = cte Depth of electron penetration vs Z and yield of electron backscattering BSE (Monte- Carlo simulation): BSE=33% 1 BSE=50% Cu 20keV 1 U 20keV BSE=32% Z = cte Depth of electron penetration in Cu vs energy E 0 and yield of electron backscattering BSE (Monte-Carlo simulation): Cu 20keV 1 Cu 5keV BSE=33% 1 BSE=35% Cu 1keV Cu 1keV 3-18

10 10nm BSE=14% Penetration and backscattering V acc = 1kV = cte C 1keV Depth of electron penetration vs Z and yield of electron backscattering BSE (Monte- Carlo simulation): BSE=34% 10nm BSE=44% Cu 1keV 10nm U 1keV nm BSE=8% Penetration and backscattering V acc = 5kV = cte C 5keV Depth of electron penetration vs Z and yield of electron backscattering BSE (Monte- Carlo simulation): 200nm BSE=33% Cu 5keV 200nm U 5keV BSE=47% 3-20

11 SEM: "true" secondary electrons SE1 and "converted BSE" secondaries SE2+SE3 Different types of SE from SE1: incident probe SE2: BSE leaving the sample SE3: BSE hitting the surroundings although this signal is gathered around the probe, its intensity is only attributed to the pixel corresponding to the actual probe position (from L. Reimer, Scanning Electron Microscopy) x 0,y 0 intensity and delocalisation of SE stemming from the probe at x 0,y 0 (leading to the X 0,Y 0 pixel intensity on the image) The SE signal always contain a high resolution part (SE1 from the probe) and an average (low resolution) part from SE2+SE3! 3-21 Relative contribution of SE1 and SE2 (+SE3) vs primary energy total total total SE2 SE1 The total intensity (green+brown) is attributed to the (x,y) pixel, here at 0 nm on this 1-D model (adapted from D.C. Joy Hitachi News ) 3-22

12 Yield for SE and BSE emission per incident electron vs atomic number Z sample surface polished (no topography) and perpendicular to the incident beam direction (intermediate energy E 0 15 kev) BSE: chemical contrast for all the elements (sensitivity Z=0.5) A fast way to phase mapping I BSE =I pe with I pe the intensity of the primary beam, the BSE yield (SE1) SE: low or no chemical contrast but for light elements the topographical contrast will dominate on rough surfaces I SE =I pe +I SE3 I pe ( pe + pe sur ) Al Ni SE1 SE2 SE3 with the total SE yield, pe the yield for SE1 and sur the SE3 yield for materials surrounding the sample (pole-pieces...) 3-23 Dust on WC (different Z materials flat material rough material low Z material low Z material thin low Z material SE 25 kv BSE 3-24

13 This image cannot currently be displayed Topographic contrast in SE mode penetration depth ("range") >>SE escape length Relative yield of SE vs angle of incidence on the sample surface 1-10nm I 0 I( ) I I pe ( ) I (0) cos (adapted from D.C. Joy Hitachi News ) 2009 Marco Cantoni 3-26

14 Size and edge effects intensity profile on image Do not forget, in SEM: The signal is displayed at the probe position, not at the actual SE production position!!! (adapted from L.Reimer, Scanning Electron Microscopy) 3-27 (From L. Reimer, Image Formation in Low-Voltage Scanning Electron Microscopy, (1993)) 3-28

15 Tin balls

16 Change in secondary electron contrast with accelerating voltage (from L.Reimer, Image formation in the low-voltage SEM) 3-31 Contraste enhancement at low voltage: less delocalization by SE2. An example: a fracture in Ni-Cr alloy SE, 5 kv SE, 30 kv 3-32

17 Backscattered and secondary electrons BSE CeO 2 particles in a Na(Ce)La(MoO 4 ) 2 matrix are revealed by BSE even from slightly below the surface (blue circles). They also appear in the SE image thanks to the SE2 (produced by BSE). Small SiO 2, remaining from polishing, are light and nearly transparent to primary e -. They weakly backscatter but emit SE on all their surface and give the main contribution to SE signal. SE 3-33 SEM low kv imaging No specimen preparation needed: Low kv imaging of non-conducting, low density samples Al2O3 Nano-crystals FEI Magellan Operator: Ingo Gestmann Samples: 3-34

18 SEM low kv imaging No specimen preparation needed: Low kv imaging of non-conducting, low density samples Al2O3 Nano-crystals FEI Magellan Operator: Ingo Gestmann Samples: 3-35 SEM low kv imaging No specimen preparation needed: Low kv imaging of non-conducting, low density samples Carbon nano-tubes (MWCT) FEI Magellan Operator: Ingo Gestmann Samples: 3-36

19 SEM low kv imaging No specimen preparation needed: Low kv imaging of non-conducting samples Liquid filled organic membranes Zeiss Nvision SEM low kv imaging No specimen preparation needed: Low kv imaging of non-conducting samples Liquid filled organic membranes Zeiss Nvision

20 SEM low kv imaging Purely organic specimen: non-conductive, low density: Metal coating 15nm Ag/Pd coating 3nm Os coating HeLa Cells, Graham Knott, Nvision SEM low kv imaging Easy samples: SC wire Nb 3 Sn in Cu matrix 3-40

21 SEM low kv imaging classical conditions: 20kV Everhard-Thornley detector (SE) Solid state BSE detector 3-41 SEM low kv imaging SE and BSE imaging 3-42

22 SEM low kv imaging Contamination 3-43

Electron Microscopy 3. SEM. Image formation, detection, resolution, signal to noise ratio, interaction volume, contrasts

Electron Microscopy 3. SEM. Image formation, detection, resolution, signal to noise ratio, interaction volume, contrasts Electron Microscopy 3. SEM Image formation, detection, resolution, signal to noise ratio, interaction volume, contrasts SEM is easy! Just focus and shoot "Photo"!!! Please comment this picture... Any idea

More information

7. advanced SEM. Latest generation of SEM SEM

7. advanced SEM. Latest generation of SEM SEM 7. advanced SEM SEM Low voltage SE imaging Condition of the surface, coatings, plasma cleaning Low voltage BSE imaging Polishing for BSE, EDX and EBSD, effect of ion beam etching/polishing 1 Latest generation

More information

The Basics of Scanning Electron Microscopy

The Basics of Scanning Electron Microscopy The Basics of Scanning Electron Microscopy The small scanning electron microscope is easy to use because almost every variable is pre-set: the acceleration voltage is always 15kV, it has only a single

More information

Electron Microscopy SEM and TEM

Electron Microscopy SEM and TEM Electron Microscopy SEM and TEM Content 1. Introduction: Motivation for electron microscopy 2. Interaction with matter 3. SEM: Scanning Electron Microscopy 3.1 Functional Principle 3.2 Examples 3.3 EDX

More information

Nanometer-scale imaging and metrology, nano-fabrication with the Orion Helium Ion Microscope

Nanometer-scale imaging and metrology, nano-fabrication with the Orion Helium Ion Microscope andras@nist.gov Nanometer-scale imaging and metrology, nano-fabrication with the Orion Helium Ion Microscope Bin Ming, András E. Vladár and Michael T. Postek National Institute of Standards and Technology

More information

View of ΣIGMA TM (Ref. 1)

View of ΣIGMA TM (Ref. 1) Overview of the FESEM system 1. Electron optical column 2. Specimen chamber 3. EDS detector [Electron Dispersive Spectroscopy] 4. Monitors 5. BSD (Back scatter detector) 6. Personal Computer 7. ON/STANDBY/OFF

More information

Scanning Electron Microscopy: an overview on application and perspective

Scanning Electron Microscopy: an overview on application and perspective Scanning Electron Microscopy: an overview on application and perspective Elvio Carlino Center for Electron Microscopy - IOM-CNR Laboratorio Nazionale TASC - Trieste, Italy Location of the Center for Electron

More information

Name: Due: September 21 st 2012. Physics 7230 Laboratory 3: High Resolution SEM Imaging

Name: Due: September 21 st 2012. Physics 7230 Laboratory 3: High Resolution SEM Imaging Name: Due: September 21 st 2012 Physics 7230 Laboratory 3: High Resolution SEM Imaging 1. What is meant by the term resolution? How does this differ from other image variables, such as signal to noise

More information

Scanning Electron Microscopy Primer

Scanning Electron Microscopy Primer Scanning Electron Microscopy Primer Bob Hafner This primer is intended as background for the Introductory Scanning Electron Microscopy training offered by the University of Minnesota s Characterization

More information

12. FIB. Marco Cantoni 021/693.48.16. Centre Interdisciplinaire de Microscopie Electronique CIME. Focused Ion Beam

12. FIB. Marco Cantoni 021/693.48.16. Centre Interdisciplinaire de Microscopie Electronique CIME. Focused Ion Beam 12. FIB Marco Cantoni 021/693.48.16 Centre Interdisciplinaire de Microscopie Electronique CIME 1 Focused Ion Beam a) Principles How does it work..? Ion source, optics, interaction with the sample b) Basic

More information

h e l p s y o u C O N T R O L

h e l p s y o u C O N T R O L contamination analysis for compound semiconductors ANALYTICAL SERVICES B u r i e d d e f e c t s, E v a n s A n a l y t i c a l g r o u p h e l p s y o u C O N T R O L C O N T A M I N A T I O N Contamination

More information

Scanning He + Ion Beam Microscopy and Metrology. David C Joy University of Tennessee, and Oak Ridge National Laboratory

Scanning He + Ion Beam Microscopy and Metrology. David C Joy University of Tennessee, and Oak Ridge National Laboratory Scanning He + Ion Beam Microscopy and Metrology David C Joy University of Tennessee, and Oak Ridge National Laboratory The CD-SEM For thirty years the CD-SEM has been the tool for metrology But now, as

More information

The Focused Ion Beam Scanning Electron Microscope: A tool for sample preparation, two and three dimensional imaging. Jacob R.

The Focused Ion Beam Scanning Electron Microscope: A tool for sample preparation, two and three dimensional imaging. Jacob R. The Focused Ion Beam Scanning Electron Microscope: A tool for sample preparation, two and three dimensional imaging Jacob R. Bowen Contents Components of a FIB-SEM Ion interactions Deposition & patterns

More information

bulk 5. Surface Analysis Why surface Analysis? Introduction Methods: XPS, AES, RBS

bulk 5. Surface Analysis Why surface Analysis? Introduction Methods: XPS, AES, RBS 5. Surface Analysis Introduction Methods: XPS, AES, RBS Autumn 2011 Experimental Methods in Physics Marco Cantoni Why surface Analysis? Bulk: structural function Electrical/thermal conduction Volume increases

More information

CASINO V2.42 A Fast and Easy-to-use Modeling Tool for Scanning Electron Microscopy and Microanalysis Users

CASINO V2.42 A Fast and Easy-to-use Modeling Tool for Scanning Electron Microscopy and Microanalysis Users SCANNING VOL. 29, 92 11 (27) Wiley Periodicals, Inc. CASINO V2.42 A Fast and Easy-to-use Modeling Tool for Scanning Electron Microscopy and Microanalysis Users DOMINIQUE DROUIN 1,ALEXANDRE RÉAL COUTURE

More information

Micro-CT for SEM Non-destructive Measurement and Volume Visualization of Specimens Internal Microstructure in SEM Micro-CT Innovation with Integrity

Micro-CT for SEM Non-destructive Measurement and Volume Visualization of Specimens Internal Microstructure in SEM Micro-CT Innovation with Integrity Micro-CT for SEM Non-destructive Measurement and Volume Visualization of Specimens Internal Microstructure in SEM Innovation with Integrity Micro-CT 3D Microscopy Using Micro-CT for SEM Micro-CT for SEM

More information

3D EDX MICROANALYSIS IN A FIB/SEM:

3D EDX MICROANALYSIS IN A FIB/SEM: 3D EDX MICROANALYSIS IN A FIB/SEM: WHAT CAN WE EXPECT, WHERE ARE THE LIMITS...? Marco Cantoni, Pierre Burdet Centre Interdisciplinaire de Microscopie Electronique (EPFL-CIME) CIME Since August 2008: Nvision

More information

CSCI 4974 / 6974 Hardware Reverse Engineering. Lecture 8: Microscopy and Imaging

CSCI 4974 / 6974 Hardware Reverse Engineering. Lecture 8: Microscopy and Imaging CSCI 4974 / 6974 Hardware Reverse Engineering Lecture 8: Microscopy and Imaging Data Acquisition for RE Microscopy Imaging Registration and stitching Microscopy Optical Electron Scanning Transmission Scanning

More information

Nanoelectronics 09. Atsufumi Hirohata Department of Electronics. Quick Review over the Last Lecture

Nanoelectronics 09. Atsufumi Hirohata Department of Electronics. Quick Review over the Last Lecture Nanoelectronics 09 Atsufumi Hirohata Department of Electronics 12:00 Wednesday, 4/February/2015 (P/L 006) Quick Review over the Last Lecture ( Field effect transistor (FET) ): ( Drain ) current increases

More information

Introduction to EDX. Energy Dispersive X-ray Microanalysis (EDS, Energy dispersive Spectroscopy) Basics of EDX

Introduction to EDX. Energy Dispersive X-ray Microanalysis (EDS, Energy dispersive Spectroscopy) Basics of EDX Introduction to EDX Energy Dispersive X-ray Microanalysis (EDS, Energy dispersive Spectroscopy) EDX Marco Cantoni 1 Basics of EDX a) Generation of X-rays b) Detection Si(Li) Detector, SDD Detector, EDS

More information

Introduction to Energy Dispersive X-ray Spectrometry (EDS)

Introduction to Energy Dispersive X-ray Spectrometry (EDS) Introduction to Energy Dispersive X-ray Spectrometry (EDS) 1. Introduction 1.1 Principles of the technique EDS makes use of the X-ray spectrum emitted by a solid sample bombarded with a focused beam of

More information

1. Photon Beam Damage and Charging at Solid Surfaces John H. Thomas III

1. Photon Beam Damage and Charging at Solid Surfaces John H. Thomas III 1. Photon Beam Damage and Charging at Solid Surfaces John H. Thomas III 1. Introduction............................. 2. Electrostatic Charging of Samples in Photoemission Experiments............................

More information

PHYSICAL METHODS, INSTRUMENTS AND MEASUREMENTS Vol. III - Surface Characterization - Marie-Geneviève Barthés-Labrousse

PHYSICAL METHODS, INSTRUMENTS AND MEASUREMENTS Vol. III - Surface Characterization - Marie-Geneviève Barthés-Labrousse SURFACE CHARACTERIZATION Marie-Geneviève Centre d Etudes de Chimie Métallurgique, CNRS, Vitry-sur-Seine, France Keywords: Surface Analysis, Surface imaging, Surface composition, Surface chemical analysis,

More information

EDS system. CRF Oxford Instruments INCA CRF EDAX Genesis EVEX- NanoAnalysis Table top system

EDS system. CRF Oxford Instruments INCA CRF EDAX Genesis EVEX- NanoAnalysis Table top system EDS system Most common X-Ray measurement system in the SEM lab. Major elements (10 wt% or greater) identified in ~10 secs. Minor elements identifiable in ~100 secs. Rapid qualitative and accurate quantitative

More information

Basics of Image and data analysis in 3D

Basics of Image and data analysis in 3D Basics of Image and data analysis in 3D outline Why image processing, and how? Image processing in 2D What is an ideal image? Histogram tells stories! Before taking the image: the right imaging conditions!

More information

Ion Beam Sputtering: Practical Applications to Electron Microscopy

Ion Beam Sputtering: Practical Applications to Electron Microscopy Ion Beam Sputtering: Practical Applications to Electron Microscopy Applications Laboratory Report Introduction Electron microscope specimens, both scanning (SEM) and transmission (TEM), often require a

More information

Near-field scanning optical microscopy (SNOM)

Near-field scanning optical microscopy (SNOM) Adviser: dr. Maja Remškar Institut Jožef Stefan January 2010 1 2 3 4 5 6 Fluorescence Raman and surface enhanced Raman 7 Conventional optical microscopy-limited resolution Two broad classes of techniques

More information

Project 2B Building a Solar Cell (2): Solar Cell Performance

Project 2B Building a Solar Cell (2): Solar Cell Performance April. 15, 2010 Due April. 29, 2010 Project 2B Building a Solar Cell (2): Solar Cell Performance Objective: In this project we are going to experimentally measure the I-V characteristics, energy conversion

More information

Displays. Cathode Ray Tube. Semiconductor Elements. Basic applications. Oscilloscope TV Old monitors. 2009, Associate Professor PhD. T.

Displays. Cathode Ray Tube. Semiconductor Elements. Basic applications. Oscilloscope TV Old monitors. 2009, Associate Professor PhD. T. Displays Semiconductor Elements 1 Cathode Ray Tube Basic applications Oscilloscope TV Old monitors 2 1 Idea of Electrostatic Deflection 3 Inside an Electrostatic Deflection Cathode Ray Tube Gun creates

More information

(Amplifying) Photo Detectors: Avalanche Photodiodes Silicon Photomultiplier

(Amplifying) Photo Detectors: Avalanche Photodiodes Silicon Photomultiplier (Amplifying) Photo Detectors: Avalanche Photodiodes Silicon Photomultiplier (no PiN and pinned Diodes) Peter Fischer P. Fischer, ziti, Uni Heidelberg, Seite 1 Overview Reminder: Classical Photomultiplier

More information

CALCULATION METHODS OF X-RAY SPECTRA: A COMPARATIVE STUDY

CALCULATION METHODS OF X-RAY SPECTRA: A COMPARATIVE STUDY 243 CALCULATION METHODS OF X-RAY SPECTRA: A COMPARATIVE STUDY B. Chyba, M. Mantler, H. Ebel, R. Svagera Technische Universit Vienna, Austria ABSTRACT The accurate characterization of the spectral distribution

More information

Lecture 6 Scanning Tunneling Microscopy (STM) General components of STM; Tunneling current; Feedback system; Tip --- the probe.

Lecture 6 Scanning Tunneling Microscopy (STM) General components of STM; Tunneling current; Feedback system; Tip --- the probe. Lecture 6 Scanning Tunneling Microscopy (STM) General components of STM; Tunneling current; Feedback system; Tip --- the probe. Brief Overview of STM Inventors of STM The Nobel Prize in Physics 1986 Nobel

More information

Vacuum Evaporation Recap

Vacuum Evaporation Recap Sputtering Vacuum Evaporation Recap Use high temperatures at high vacuum to evaporate (eject) atoms or molecules off a material surface. Use ballistic flow to transport them to a substrate and deposit.

More information

Application Note # EDS-10 Advanced light element and low energy X-ray analysis of a TiB 2 TiC SiC ceramic material using EDS spectrum imaging

Application Note # EDS-10 Advanced light element and low energy X-ray analysis of a TiB 2 TiC SiC ceramic material using EDS spectrum imaging Quantitative analysis Ceramics sample Peak deconvolution EDS map Phase analysis Application Note # EDS-10 Advanced light element and low energy X-ray analysis of a TiB 2 TiC SiC ceramic material using

More information

Preface Light Microscopy X-ray Diffraction Methods

Preface Light Microscopy X-ray Diffraction Methods Preface xi 1 Light Microscopy 1 1.1 Optical Principles 1 1.1.1 Image Formation 1 1.1.2 Resolution 3 1.1.3 Depth of Field 5 1.1.4 Aberrations 6 1.2 Instrumentation 8 1.2.1 Illumination System 9 1.2.2 Objective

More information

Amptek Application Note XRF-1: XRF Spectra and Spectra Analysis Software By R.Redus, Chief Scientist, Amptek Inc, 2008.

Amptek Application Note XRF-1: XRF Spectra and Spectra Analysis Software By R.Redus, Chief Scientist, Amptek Inc, 2008. Amptek Application Note XRF-1: XRF Spectra and Spectra Analysis Software By R.Redus, Chief Scientist, Amptek Inc, 2008. X-Ray Fluorescence (XRF) is a very simple analytical technique: X-rays excite atoms

More information

Evaluation of combined EBIC/FIB methods for solar cell characterization

Evaluation of combined EBIC/FIB methods for solar cell characterization Evaluation of combined EBIC/FIB methods for solar cell characterization Frank Altmann*, Jan Schischka*, Vinh Van Ngo**, Laurens F. Tz. Kwakman**, Ralf Lehmann** *Fraunhofer Insitute for Mechanics of Materials

More information

LASER ENGRAVING REFLECTIVE METALS TO CREATE SCANNER READABLE BARCODES Paper P516

LASER ENGRAVING REFLECTIVE METALS TO CREATE SCANNER READABLE BARCODES Paper P516 LASER ENGRAVING REFLECTIVE METALS TO CREATE SCANNER READABLE BARCODES Paper P516 Paul M Harrison, Jozef Wendland, Matthew Henry Powerlase Ltd, Imperial House, Link 10, Napier Way, Crawley, West Sussex,

More information

Microscopy. MICROSCOPY Light Electron Tunnelling Atomic Force RESOLVE: => INCREASE CONTRAST BIODIVERSITY I BIOL1051 MAJOR FUNCTIONS OF MICROSCOPES

Microscopy. MICROSCOPY Light Electron Tunnelling Atomic Force RESOLVE: => INCREASE CONTRAST BIODIVERSITY I BIOL1051 MAJOR FUNCTIONS OF MICROSCOPES BIODIVERSITY I BIOL1051 Microscopy Professor Marc C. Lavoie marc.lavoie@cavehill.uwi.edu MAJOR FUNCTIONS OF MICROSCOPES MAGNIFY RESOLVE: => INCREASE CONTRAST Microscopy 1. Eyepieces 2. Diopter adjustment

More information

The Physics of Energy sources Renewable sources of energy. Solar Energy

The Physics of Energy sources Renewable sources of energy. Solar Energy The Physics of Energy sources Renewable sources of energy Solar Energy B. Maffei Bruno.maffei@manchester.ac.uk Renewable sources 1 Solar power! There are basically two ways of using directly the radiative

More information

Raman spectroscopy Lecture

Raman spectroscopy Lecture Raman spectroscopy Lecture Licentiate course in measurement science and technology Spring 2008 10.04.2008 Antti Kivioja Contents - Introduction - What is Raman spectroscopy? - The theory of Raman spectroscopy

More information

Laboratory #3 Guide: Optical and Electrical Properties of Transparent Conductors -- September 23, 2014

Laboratory #3 Guide: Optical and Electrical Properties of Transparent Conductors -- September 23, 2014 Laboratory #3 Guide: Optical and Electrical Properties of Transparent Conductors -- September 23, 2014 Introduction Following our previous lab exercises, you now have the skills and understanding to control

More information

CREOL, College of Optics & Photonics, University of Central Florida

CREOL, College of Optics & Photonics, University of Central Florida OSE6650 - Optical Properties of Nanostructured Materials Optical Properties of Nanostructured Materials Fall 2013 Class 3 slide 1 Challenge: excite and detect the near field Thus far: Nanostructured materials

More information

Graphical displays are generally of two types: vector displays and raster displays. Vector displays

Graphical displays are generally of two types: vector displays and raster displays. Vector displays Display technology Graphical displays are generally of two types: vector displays and raster displays. Vector displays Vector displays generally display lines, specified by their endpoints. Vector display

More information

University of California at Santa Cruz Electrical Engineering Department EE-145L: Properties of Materials Laboratory

University of California at Santa Cruz Electrical Engineering Department EE-145L: Properties of Materials Laboratory University of California at Santa Cruz Electrical Engineering Department EE-145L: Properties of Materials Laboratory Lab 8: Optical Absorption Spring 2002 Yan Zhang and Ali Shakouri, 05/22/2002 (Based

More information

Lectures about XRF (X-Ray Fluorescence)

Lectures about XRF (X-Ray Fluorescence) 1 / 38 Lectures about XRF (X-Ray Fluorescence) Advanced Physics Laboratory Laurea Magistrale in Fisica year 2013 - Camerino 2 / 38 X-ray Fluorescence XRF is an acronym for X-Ray Fluorescence. The XRF technique

More information

Usage of Carbon Nanotubes in Scanning Probe Microscopes as Probe. Keywords: Carbon Nanotube, Scanning Probe Microscope

Usage of Carbon Nanotubes in Scanning Probe Microscopes as Probe. Keywords: Carbon Nanotube, Scanning Probe Microscope International Journal of Arts and Sciences 3(1): 18-26 (2009) CD-ROM. ISSN: 1944-6934 InternationalJournal.org Usage of Carbon Nanotubes in Scanning Probe Microscopes as Probe Bedri Onur Kucukyildirim,

More information

Scanning Near-Field Optical Microscopy for Measuring Materials Properties at the Nanoscale

Scanning Near-Field Optical Microscopy for Measuring Materials Properties at the Nanoscale Scanning Near-Field Optical Microscopy for Measuring Materials Properties at the Nanoscale Outline Background Research Design Detection of Near-Field Signal Submonolayer Chemical Sensitivity Conclusions

More information

Use the BET (after Brunauer, Emmett and Teller) equation is used to give specific surface area from the adsorption

Use the BET (after Brunauer, Emmett and Teller) equation is used to give specific surface area from the adsorption Number of moles of N 2 in 0.129dm 3 = 0.129/22.4 = 5.76 X 10-3 moles of N 2 gas Module 8 : Surface Chemistry Objectives Lecture 37 : Surface Characterization Techniques After studying this lecture, you

More information

THERMO NORAN SYSTEM SIX ENERGY DISPERSIVE X- RAY SPECTROMETER. Insert Nickname Here. Operating Instructions

THERMO NORAN SYSTEM SIX ENERGY DISPERSIVE X- RAY SPECTROMETER. Insert Nickname Here. Operating Instructions THERMO NORAN SYSTEM SIX ENERGY DISPERSIVE X- RAY SPECTROMETER Insert Nickname Here Operating Instructions Table of Contents 1 INTRODUCTION Safety 1 Samples 1 2 BACKGROUND Background Information 3 References

More information

STM and AFM Tutorial. Katie Mitchell January 20, 2010

STM and AFM Tutorial. Katie Mitchell January 20, 2010 STM and AFM Tutorial Katie Mitchell January 20, 2010 Overview Scanning Probe Microscopes Scanning Tunneling Microscopy (STM) Atomic Force Microscopy (AFM) Contact AFM Non-contact AFM RHK UHV350 AFM/STM

More information

Radiation Detection and Measurement

Radiation Detection and Measurement Radiation Detection and Measurement June 2008 Tom Lewellen Tkldog@u.washington.edu Types of radiation relevant to Nuclear Medicine Particle Symbol Mass (MeV/c 2 ) Charge Electron e-,! - 0.511-1 Positron

More information

Properties of Electrons, their Interactions with Matter and Applications in Electron Microscopy

Properties of Electrons, their Interactions with Matter and Applications in Electron Microscopy Properties of Electrons, their Interactions with Matter and Applications in Electron Microscopy By Frank Krumeich Laboratory of Inorganic Chemistry, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland

More information

Scanning Surface Inspection System with Defect-review SEM and Analysis System Solutions

Scanning Surface Inspection System with Defect-review SEM and Analysis System Solutions Scanning Surface Inspection System with -review SEM and Analysis System Solutions 78 Scanning Surface Inspection System with -review SEM and Analysis System Solutions Hideo Ota Masayuki Hachiya Yoji Ichiyasu

More information

Coating Technology: Evaporation Vs Sputtering

Coating Technology: Evaporation Vs Sputtering Satisloh Italy S.r.l. Coating Technology: Evaporation Vs Sputtering Gianni Monaco, PhD R&D project manager, Satisloh Italy 04.04.2016 V1 The aim of this document is to provide basic technical information

More information

07 - Cherenkov and transition radiation detectors

07 - Cherenkov and transition radiation detectors 07 - Cherenkov and transition radiation detectors Jaroslav Adam Czech Technical University in Prague Version 1.0 Jaroslav Adam (CTU, Prague) DPD_07, Cherenkov and transition radiation Version 1.0 1 / 30

More information

EDXRF of Used Automotive Catalytic Converters

EDXRF of Used Automotive Catalytic Converters EDXRF of Used Automotive Catalytic Converters Energy Dispersive X-Ray Fluorescence (EDXRF) is a very powerful technique for measuring the concentration of elements in a sample. It is fast, nondestructive,

More information

Demonstration of sub-4 nm nanoimprint lithography using a template fabricated by helium ion beam lithography

Demonstration of sub-4 nm nanoimprint lithography using a template fabricated by helium ion beam lithography Demonstration of sub-4 nm nanoimprint lithography using a template fabricated by helium ion beam lithography Wen-Di Li*, Wei Wu** and R. Stanley Williams Hewlett-Packard Labs *Current address: University

More information

Confocal Microscopy and Atomic Force Microscopy (AFM) A very brief primer...

Confocal Microscopy and Atomic Force Microscopy (AFM) A very brief primer... Confocal Microscopy and Atomic Force Microscopy (AFM) of biofilms A very brief primer... Fundamentals of Confocal Microscopy Based on a conventional fluorescence microscope Fluorescent Microscope Confocal

More information

Physics 441/2: Transmission Electron Microscope

Physics 441/2: Transmission Electron Microscope Physics 441/2: Transmission Electron Microscope Introduction In this experiment we will explore the use of transmission electron microscopy (TEM) to take us into the world of ultrasmall structures. This

More information

DOE Solar Energy Technologies Program Peer Review. Denver, Colorado April 17-19, 2007

DOE Solar Energy Technologies Program Peer Review. Denver, Colorado April 17-19, 2007 DOE Solar Energy Technologies Program Peer Review Evaluation of Nanocrystalline Silicon Thin Film by Near-Field Scanning Optical Microscopy AAT-2-31605-05 Magnus Wagener and George Rozgonyi North Carolina

More information

Introduction to the Scanning Electron Microscope

Introduction to the Scanning Electron Microscope Introduction to the Scanning Electron Microscope Theory, Practice, & Procedures Prepared by Michael Dunlap & Dr. J. E. Adaskaveg Presented by the FACILITY FOR ADVANCED INSTRUMENTATION, U. C. Davis 1997

More information

Mass production, R&D Failure analysis. Fault site pin-pointing (EM, OBIRCH, FIB, etc. ) Bottleneck Physical science analysis (SEM, TEM, Auger, etc.

Mass production, R&D Failure analysis. Fault site pin-pointing (EM, OBIRCH, FIB, etc. ) Bottleneck Physical science analysis (SEM, TEM, Auger, etc. Failure Analysis System for Submicron Semiconductor Devices 68 Failure Analysis System for Submicron Semiconductor Devices Munetoshi Fukui Yasuhiro Mitsui, Ph. D. Yasuhiko Nara Fumiko Yano, Ph. D. Takashi

More information

Spectroscopy. Biogeochemical Methods OCN 633. Rebecca Briggs

Spectroscopy. Biogeochemical Methods OCN 633. Rebecca Briggs Spectroscopy Biogeochemical Methods OCN 633 Rebecca Briggs Definitions of Spectrometry Defined by the method used to prepare the sample 1. Optical spectrometry Elements are converted to gaseous atoms or

More information

Energy Dispersive Spectroscopy on the SEM: A Primer

Energy Dispersive Spectroscopy on the SEM: A Primer Energy Dispersive Spectroscopy on the SEM: A Primer Bob Hafner This primer is intended as background for the EDS Analysis on the SEM course offered by the University of Minnesota s Characterization Facility.

More information

Optical Microscope; Scanning Electron Microscope (SEM); Transmission Electron Microscope (TEM);

Optical Microscope; Scanning Electron Microscope (SEM); Transmission Electron Microscope (TEM); Lecture 3 Brief Overview of Traditional Microscopes Optical Microscope; Scanning Electron Microscope (SEM); Transmission Electron Microscope (TEM); Comparison with scanning probe microscope (SPM) General

More information

Coating Thickness and Composition Analysis by Micro-EDXRF

Coating Thickness and Composition Analysis by Micro-EDXRF Application Note: XRF Coating Thickness and Composition Analysis by Micro-EDXRF www.edax.com Coating Thickness and Composition Analysis by Micro-EDXRF Introduction: The use of coatings in the modern manufacturing

More information

Three-Dimensional Electron Microscopy Simulation with the CASINO Monte Carlo Software

Three-Dimensional Electron Microscopy Simulation with the CASINO Monte Carlo Software SCANNING VOL. 33, 135 146 (2011) & Wiley Periodicals, Inc. Three-Dimensional Electron Microscopy Simulation with the CASINO Monte Carlo Software HENDRIX DEMERS 1,NICOLAS POIRIER-DEMERS 1,ALEXANDRE RE AL

More information

Chapter 8. Low energy ion scattering study of Fe 4 N on Cu(100)

Chapter 8. Low energy ion scattering study of Fe 4 N on Cu(100) Low energy ion scattering study of 4 on Cu(1) Chapter 8. Low energy ion scattering study of 4 on Cu(1) 8.1. Introduction For a better understanding of the reconstructed 4 surfaces one would like to know

More information

Solar Energy. Outline. Solar radiation. What is light?-- Electromagnetic Radiation. Light - Electromagnetic wave spectrum. Electromagnetic Radiation

Solar Energy. Outline. Solar radiation. What is light?-- Electromagnetic Radiation. Light - Electromagnetic wave spectrum. Electromagnetic Radiation Outline MAE 493R/593V- Renewable Energy Devices Solar Energy Electromagnetic wave Solar spectrum Solar global radiation Solar thermal energy Solar thermal collectors Solar thermal power plants Photovoltaics

More information

2 Absorbing Solar Energy

2 Absorbing Solar Energy 2 Absorbing Solar Energy 2.1 Air Mass and the Solar Spectrum Now that we have introduced the solar cell, it is time to introduce the source of the energy the sun. The sun has many properties that could

More information

Lateral Resolution of EDX Analysis with Low Acceleration Voltage SEM

Lateral Resolution of EDX Analysis with Low Acceleration Voltage SEM Original Paper Lateral Resolution of EDX Analysis with Low Acceleration Voltage SEM Satoshi Hashimoto 1, Tsuguo Sakurada 1, and Minoru Suzuki 2 1 JFE-Techno research corporation, 1-1 Minamiwatarida, Kawasaki,

More information

Cathode Ray Tube. Introduction. Functional principle

Cathode Ray Tube. Introduction. Functional principle Introduction The Cathode Ray Tube or Braun s Tube was invented by the German physicist Karl Ferdinand Braun in 897 and is today used in computer monitors, TV sets and oscilloscope tubes. The path of the

More information

Microscopy and Nanoindentation. Combining Orientation Imaging. to investigate localized. deformation behaviour. Felix Reinauer

Microscopy and Nanoindentation. Combining Orientation Imaging. to investigate localized. deformation behaviour. Felix Reinauer Combining Orientation Imaging Microscopy and Nanoindentation to investigate localized deformation behaviour Felix Reinauer René de Kloe Matt Nowell Introduction Anisotropy in crystalline materials Presentation

More information

Nanoscale Resolution Options for Optical Localization Techniques. C. Boit TU Berlin Chair of Semiconductor Devices

Nanoscale Resolution Options for Optical Localization Techniques. C. Boit TU Berlin Chair of Semiconductor Devices berlin Nanoscale Resolution Options for Optical Localization Techniques C. Boit TU Berlin Chair of Semiconductor Devices EUFANET Workshop on Optical Localization Techniques Toulouse, Jan 26, 2009 Jan 26,

More information

Overview. What is EMR? Electromagnetic Radiation (EMR) LA502 Special Studies Remote Sensing

Overview. What is EMR? Electromagnetic Radiation (EMR) LA502 Special Studies Remote Sensing LA502 Special Studies Remote Sensing Electromagnetic Radiation (EMR) Dr. Ragab Khalil Department of Landscape Architecture Faculty of Environmental Design King AbdulAziz University Room 103 Overview What

More information

Katharina Lückerath (AG Dr. Martin Zörnig) adapted from Dr. Jörg Hildmann BD Biosciences,Customer Service

Katharina Lückerath (AG Dr. Martin Zörnig) adapted from Dr. Jörg Hildmann BD Biosciences,Customer Service Introduction into Flow Cytometry Katharina Lückerath (AG Dr. Martin Zörnig) adapted from Dr. Jörg Hildmann BD Biosciences,Customer Service How does a FACS look like? FACSCalibur FACScan What is Flow Cytometry?

More information

Production of X-rays. Radiation Safety Training for Analytical X-Ray Devices Module 9

Production of X-rays. Radiation Safety Training for Analytical X-Ray Devices Module 9 Module 9 This module presents information on what X-rays are and how they are produced. Introduction Module 9, Page 2 X-rays are a type of electromagnetic radiation. Other types of electromagnetic radiation

More information

High Resolution Spatial Electroluminescence Imaging of Photovoltaic Modules

High Resolution Spatial Electroluminescence Imaging of Photovoltaic Modules High Resolution Spatial Electroluminescence Imaging of Photovoltaic Modules Abstract J.L. Crozier, E.E. van Dyk, F.J. Vorster Nelson Mandela Metropolitan University Electroluminescence (EL) is a useful

More information

X-ray diffraction techniques for thin films

X-ray diffraction techniques for thin films X-ray diffraction techniques for thin films Rigaku Corporation Application Laboratory Takayuki Konya 1 Today s contents (PM) Introduction X-ray diffraction method Out-of-Plane In-Plane Pole figure Reciprocal

More information

Comp 410/510. Computer Graphics Spring 2016. Introduction to Graphics Systems

Comp 410/510. Computer Graphics Spring 2016. Introduction to Graphics Systems Comp 410/510 Computer Graphics Spring 2016 Introduction to Graphics Systems Computer Graphics Computer graphics deals with all aspects of creating images with a computer Hardware (PC with graphics card)

More information

How To Understand Light And Color

How To Understand Light And Color PRACTICE EXAM IV P202 SPRING 2004 1. In two separate double slit experiments, an interference pattern is observed on a screen. In the first experiment, violet light (λ = 754 nm) is used and a second-order

More information

Chemical Synthesis. Overview. Chemical Synthesis of Nanocrystals. Self-Assembly of Nanocrystals. Example: Cu 146 Se 73 (PPh 3 ) 30

Chemical Synthesis. Overview. Chemical Synthesis of Nanocrystals. Self-Assembly of Nanocrystals. Example: Cu 146 Se 73 (PPh 3 ) 30 Chemical Synthesis Spontaneous organization of molecules into stable, structurally well-defined aggregates at the nanometer length scale. Overview The 1-100 nm nanoscale length is in between traditional

More information

Chapter 6 Metal Films and Filters

Chapter 6 Metal Films and Filters Chapter 6 Metal Films and Filters 6.1 Mirrors The first films produced by vacuum deposition as we know it were aluminum films for mirrors made by John Strong in the 1930s; he coated mirrors for astronomical

More information

Fundamentals of Scanning Electron Microscopy

Fundamentals of Scanning Electron Microscopy 1 Fundamentals of Scanning Electron Microscopy Weilie Zhou, Robert P. Apkarian, Zhong Lin Wang, and David Joy 1. Introduction The scanning electron microscope (SEM) is one of the most versatile instruments

More information

Atomic Force Microscopy. Long Phan Nanotechnology Summer Series May 15, 2013

Atomic Force Microscopy. Long Phan Nanotechnology Summer Series May 15, 2013 Atomic Force Microscopy Long Phan Nanotechnology Summer Series May 15, 2013 1 World s Smallest Movie 2 Outline What is AFM? How does AFM Work? 3 Modes: Contact mode Non contact mode Tapping mode Imaging

More information

Metrics of resolution and performance for CD-SEMs

Metrics of resolution and performance for CD-SEMs Metrics of resolution and performance for CD-SEMs David C Joy a,b, Yeong-Uk Ko a, and Justin J Hwu a a EM Facility, University of Tennessee, Knoxville, TN 37996 b Oak Ridge National Laboratory, Oak Ridge,

More information

Forensic Science: The Basics. Microscopy

Forensic Science: The Basics. Microscopy Forensic Science: The Basics Microscopy Chapter 6 Jay A. Siegel,Ph.D. Power point presentation by Greg Galardi, Peru State College, Peru Nebraska Presentation by Greg Galardi, Peru State College CRC Press,

More information

Usage of AFM, SEM and TEM for the research of carbon nanotubes

Usage of AFM, SEM and TEM for the research of carbon nanotubes Usage of AFM, SEM and TEM for the research of carbon nanotubes K.Safarova *1, A.Dvorak 2, R. Kubinek 1, M.Vujtek 1, A. Rek 3 1 Department of Experimental Physics, Faculty of Science, Palacky University,

More information

BNG 331 Cell-Tissue Material Interactions. Biomaterial Surfaces

BNG 331 Cell-Tissue Material Interactions. Biomaterial Surfaces BNG 331 Cell-Tissue Material Interactions Biomaterial Surfaces Course update Updated syllabus Homework 4 due today LBL 5 Friday Schedule for today: Chapter 8 Biomaterial surface characterization Surface

More information

Solid State Detectors = Semi-Conductor based Detectors

Solid State Detectors = Semi-Conductor based Detectors Solid State Detectors = Semi-Conductor based Detectors Materials and their properties Energy bands and electronic structure Charge transport and conductivity Boundaries: the p-n junction Charge collection

More information

Chemical Sputtering. von Kohlenstoff durch Wasserstoff. W. Jacob

Chemical Sputtering. von Kohlenstoff durch Wasserstoff. W. Jacob Chemical Sputtering von Kohlenstoff durch Wasserstoff W. Jacob Centre for Interdisciplinary Plasma Science Max-Planck-Institut für Plasmaphysik, 85748 Garching Content: Definitions: Chemical erosion, physical

More information

Luminescence study of structural changes induced by laser cutting in diamond films

Luminescence study of structural changes induced by laser cutting in diamond films Luminescence study of structural changes induced by laser cutting in diamond films A. Cremades and J. Piqueras Departamento de Fisica de Materiales, Facultad de Fisicas, Universidad Complutense, 28040

More information

Scanning Electron Microscopy tools for material characterization

Scanning Electron Microscopy tools for material characterization 5th International Workshop on Mechanisms of Vacuum Arcs 02-04/09/2015 Scanning Electron Microscopy tools for material characterization Focus on EBSD for characterisation of dislocation structures Floriane

More information

Section 6 Raman Scattering (lecture 10)

Section 6 Raman Scattering (lecture 10) Section 6 Scattering (lecture 10) Previously: Quantum theory of atoms / molecules Quantum Mechanics Valence Atomic and Molecular Spectroscopy Scattering The scattering process Elastic (Rayleigh) and inelastic

More information

Carl Zeiss NTS - Nano Technology System Division. ΣIGMA Field Emission Scanning Electron Microscope. Instruction Manual. Enabling the Nano-Age World

Carl Zeiss NTS - Nano Technology System Division. ΣIGMA Field Emission Scanning Electron Microscope. Instruction Manual. Enabling the Nano-Age World Carl Zeiss NTS - Nano Technology System Division ΣIGMA Field Emission Scanning Electron Microscope Instruction Manual Enabling the Nano-Age World Operator s User Guide ΣIGMA FESEM Original instructions

More information

Hello and Welcome to this presentation on LED Basics. In this presentation we will look at a few topics in semiconductor lighting such as light

Hello and Welcome to this presentation on LED Basics. In this presentation we will look at a few topics in semiconductor lighting such as light Hello and Welcome to this presentation on LED Basics. In this presentation we will look at a few topics in semiconductor lighting such as light generation from a semiconductor material, LED chip technology,

More information

Sensors & Instruments for station. returned samples. Chun Chia Tan

Sensors & Instruments for station. returned samples. Chun Chia Tan Sensors & Instruments for station based materials characterization of returned samples Chun Chia Tan 04/01/2009 Outline Introduction to materials characterization General overview of the equipment used

More information

Construction of an Alpha- Beta and Gamma-Sensitive Radiation Detector on the Basis of a Low-Cost PIN-Diode

Construction of an Alpha- Beta and Gamma-Sensitive Radiation Detector on the Basis of a Low-Cost PIN-Diode Construction of an Alpha- Beta and Gamma-Sensitive Radiation Detector on the Basis of a Low-Cost PIN-Diode Bernd Laquai, 12.6.2012 Encouraged by the observation, that the Am241 alpha source of an old smoke

More information

Photons. ConcepTest 27.1. 1) red light 2) yellow light 3) green light 4) blue light 5) all have the same energy. Which has more energy, a photon of:

Photons. ConcepTest 27.1. 1) red light 2) yellow light 3) green light 4) blue light 5) all have the same energy. Which has more energy, a photon of: ConcepTest 27.1 Photons Which has more energy, a photon of: 1) red light 2) yellow light 3) green light 4) blue light 5) all have the same energy 400 nm 500 nm 600 nm 700 nm ConcepTest 27.1 Photons Which

More information