Chapters 2 and 6 in Waseda. Lesson 8 Lattice Planes and Directions. Suggested Reading

Size: px
Start display at page:

Download "Chapters 2 and 6 in Waseda. Lesson 8 Lattice Planes and Directions. Suggested Reading"

Transcription

1 Analytical Methods for Materials Chapters 2 and 6 in Waseda Lesson 8 Lattice Planes and Directions Suggested Reading 192

2 Directions and Miller Indices Draw vector and define the tail as the origin. z Determine the length of the vector projection in unit cell dimensions a, b, and c. Remove fractions by multiplying by the smallest possible factor. [201] O [111] P a c y Enclose in square brackets Negative indices are written with a bar over the number.. b [110] x a b c [ 3 6 2] Point P Origin 193

3 Families of Directions (i.e., directions of a form) In cubic systems, directions that have the same indices are equivalent regardless of their order or sign. z y [010] [001] [100] x [010] [100] [001] We enclose indices in carats rather than brackets to indicate a family of directions The family of <100> directions is: [10 0], [100] [010], [0 10] [001], [001] All of these vectors have the same size and # lattice points/length 194

4 <100> CUBIC <aaa> [100] [010] [001] [100] [010] [001] TETRAGONAL <aac> [100] [010] [100] [010] In non-cubic systems, directions with [100] [100] the same indices may not be equivalent. ORTHORHOMBIC <abc> 195

5 Directions in Crystals Directions and their multiples are identical [110] Ex.: z y [030] [020] [220] [220] 2 [110] x [010] Vectors and multiples of vectors have the same # lattice points/length 196

6 Miller Indices for Planes Specific crystallographic plane: (hkl) Family of crystallographic planes: {hkl} Ex.: (hkl), (lkh), (hlk) etc. In cubic systems, planes having the same indices are equivalent regardless of order or sign. In hexagonal crystals, we use a four index system (hkil) k i l). We can convert from three to four indices h+k = -i 197

7 FAMILY OF PLANES ALL MEMBERS HAVE SAME ARRANGEMENT OF LATTICE POINTS {hkl} k We use Miller indices to denote planes 198

8 PROCEDURES FOR INDICES OF PLANES (Miller indices) 1. Identify the coordinate intercepts of the plane (i.e., the coordinates at which the plane intersects the x, y, and z axes). If plane is parallel to an axis, the intercept is taken as infinity (). If the plane passes through the origin, consider an equivalent plane in an adjacent unit cell or select a different origin for the same plane. 2. Take reciprocals of the intercepts. 3. Clear fractions to the lowest integers. 4. Cite specific planes in parentheses,(hkl), placing bars over negative indices. 199

9 MILLER INDICES FOR A SINGLE PLANE z x y z Intercept 1 1 Reciprocal 1/1 1/1 1/ Clear INDICES y (110) x Slide 200 The {110} family of planes (110), (011), (101), (110), (011), (101) (110), (1 10), (101), (10 1), (01 1), (0 11) 200

10 MILLER INDICES FOR A SINGLE PLANE cont d x y z z Intercept Reciprocal 1/1 1/1 1/1 Clear INDICES y x y z Intercept x Reciprocal -1/1-1/1-1/1 Clear ( 1 INDICES ( 111 ) 11 ) Slide

11 MILLER INDICES FOR A SINGLE PLANE cont d z x y z Intercept Reciprocal Clear INDICES 1/2 1/2 2/1 2/1 1/ (220) x y Planes and their multiples are not identical ( 220) (110) 202

12 Planes in Unit Cells Some important aspects of Miller indices for planes: 1. Planes and their negatives are identical. This was NOT the case for directions. 2. Planes and their multiples are NOT identical. This is opposite to the case for directions. 3. In cubic systems,, a direction that has the same indices as a plane is to that plane. This is not always true for non-cubic systems. 203

13 204

14 Planes of a Zone A zone is a direction [uvw] z (1 10) ZONE AXIS [uvw] = [001] (220) Planes belonging to a particular zone are parallel to one direction known as the zone axis. hkl uvw 0 (010) lies on lies on 220 y 205

15 How to Determine the Zone Axis Take the cross product of the intersecting planes. z (1 10) ZONE AXIS [uvw] = [001] (220) (010) (h 1 k 1 l 1 ) (h 2 k 2 l 2 ) = [uvw] y u v w u v u 1 0 v 0 2 w 1 2 v 1 0 u 0 2 w 1 2 [0 04] [ 01] 0 206

16 Indexing in Hexagonal Systems The regular 3 index system is not suitable. c a Planes with the same a 1 indices do not necessarily look like. a 3 a 2 [1 10] [001] (0001) c 4 index system introduced. Miller-Bravais indices (1100) a 1 (10 11) [100] (1210) a 2 [010] 207

17 Indexing in Hexagonal Systems Planes: (hkl) becomes (hkil) i = -(h+k) Directions: [UVW] becomes [uvtw] U = u-t ; u = (2U V)/3 V = v-t ; v = (2V U)/3 W=w ; t=-(u+v) 208

18 PLANES Miller Indices Miller-Bravais Indices a 3 (hkl) a 3 (hkil) (100) (1010) (010) (110) (0 110) (1100) a 2 a 2 (110) (010) (1 100) (0110) a 1 (100) a 1 (10 10) DIRECTIONS (UVW) (uvtw) a 3 a 3 [120] [110] [1100] [0 110] a 2 a 2 [110] [100] [1120] [2110] a 1 [210] a 1 [1010] 209

19 c a 3 a a 2 a Some typical directions in an HCP unit cell using three- and four-axis systems. 210

20 Inter-planar Spacings z y (100) (110) x Assuming no intercept on z-axis (210) d 210 The inter-planar spacing in a particular direction is the distance between equivalent planes of atoms. Each material has a set of characteristic inter-planar spacings. They are directly related to crystal size (i.e. lattice parameters) and atom location. a 211

21 Interplanar Spacing cont d 1 h k l CUBIC: 2 2 d a HEXAGONAL: TETRAGONAL: RHOMBOHEDRAL: ORTHORHOMBIC: h hk k l d 3 a c h k l d a c 1 d h hk k sin 2hk kl hlcos cos a 1 3cos 2cos h k l d a b c h k sin l 2hlcos a b c ac MONOCLINIC: 2 d sin TRICLINIC*: S h S22k S3l 2S12hk 2S23kl2S13hl d V S b c sin ; S a c sin ; S a b sin cos cos cos ; cos cos cos ; cos cos cos S abc S a bc S ab c V abc 1 cos cos cos 2 cos cos cos 212

Relevant Reading for this Lecture... Pages 83-87.

Relevant Reading for this Lecture... Pages 83-87. LECTURE #06 Chapter 3: X-ray Diffraction and Crystal Structure Determination Learning Objectives To describe crystals in terms of the stacking of planes. How to use a dot product to solve for the angles

More information

Solid State Theory Physics 545

Solid State Theory Physics 545 Solid State Theory Physics 545 CRYSTAL STRUCTURES Describing periodic structures Terminology Basic Structures Symmetry Operations Ionic crystals often have a definite habit which gives rise to particular

More information

12.524 2003 Lec 17: Dislocation Geometry and Fabric Production 1. Crystal Geometry

12.524 2003 Lec 17: Dislocation Geometry and Fabric Production 1. Crystal Geometry 12.524 2003 Lec 17: Dislocation Geometry and Fabric Production 1. Bibliography: Crystal Geometry Assigned Reading: [Poirier, 1985]Chapter 2, 4. General References: [Kelly and Groves, 1970] Chapter 1. [Hirth

More information

Chapter Outline. How do atoms arrange themselves to form solids?

Chapter Outline. How do atoms arrange themselves to form solids? Chapter Outline How do atoms arrange themselves to form solids? Fundamental concepts and language Unit cells Crystal structures Simple cubic Face-centered cubic Body-centered cubic Hexagonal close-packed

More information

X-Ray Diffraction HOW IT WORKS WHAT IT CAN AND WHAT IT CANNOT TELL US. Hanno zur Loye

X-Ray Diffraction HOW IT WORKS WHAT IT CAN AND WHAT IT CANNOT TELL US. Hanno zur Loye X-Ray Diffraction HOW IT WORKS WHAT IT CAN AND WHAT IT CANNOT TELL US Hanno zur Loye X-rays are electromagnetic radiation of wavelength about 1 Å (10-10 m), which is about the same size as an atom. The

More information

Crystal Structure Determination I

Crystal Structure Determination I Crystal Structure Determination I Dr. Falak Sher Pakistan Institute of Engineering and Applied Sciences National Workshop on Crystal Structure Determination using Powder XRD, organized by the Khwarzimic

More information

LMB Crystallography Course, 2013. Crystals, Symmetry and Space Groups Andrew Leslie

LMB Crystallography Course, 2013. Crystals, Symmetry and Space Groups Andrew Leslie LMB Crystallography Course, 2013 Crystals, Symmetry and Space Groups Andrew Leslie Many of the slides were kindly provided by Erhard Hohenester (Imperial College), several other illustrations are from

More information

rotation,, axis of rotoinversion,, center of symmetry, and mirror planes can be

rotation,, axis of rotoinversion,, center of symmetry, and mirror planes can be Crystal Symmetry The external shape of a crystal reflects the presence or absence of translation-free symmetry y elements in its unit cell. While not always immediately obvious, in most well formed crystal

More information

LECTURE #05. Learning Objective. To describe the geometry in and around a unit cell in terms of directions and planes.

LECTURE #05. Learning Objective. To describe the geometry in and around a unit cell in terms of directions and planes. LECTURE #05 Chpter 3: Lttice Positions, Directions nd Plnes Lerning Objective To describe the geometr in nd round unit cell in terms of directions nd plnes. 1 Relevnt Reding for this Lecture... Pges 64-83.

More information

Chapter 3. 1. 3 types of materials- amorphous, crystalline, and polycrystalline. 5. Same as #3 for the ceramic and diamond crystal structures.

Chapter 3. 1. 3 types of materials- amorphous, crystalline, and polycrystalline. 5. Same as #3 for the ceramic and diamond crystal structures. Chapter Highlights: Notes: 1. types of materials- amorphous, crystalline, and polycrystalline.. Understand the meaning of crystallinity, which refers to a regular lattice based on a repeating unit cell..

More information

Part 4-32 point groups

Part 4-32 point groups Part 4-32 point groups 4.1 Subgroups 4.2 32 point groups 4.2 Crystal forms The 32 point groups The point groups are made up from point symmetry operations and their combinations. A point group is defined

More information

L 2 : x = s + 1, y = s, z = 4s + 4. 3. Suppose that C has coordinates (x, y, z). Then from the vector equality AC = BD, one has

L 2 : x = s + 1, y = s, z = 4s + 4. 3. Suppose that C has coordinates (x, y, z). Then from the vector equality AC = BD, one has The line L through the points A and B is parallel to the vector AB = 3, 2, and has parametric equations x = 3t + 2, y = 2t +, z = t Therefore, the intersection point of the line with the plane should satisfy:

More information

Geometric description of the cross product of the vectors u and v. The cross product of two vectors is a vector! u x v is perpendicular to u and v

Geometric description of the cross product of the vectors u and v. The cross product of two vectors is a vector! u x v is perpendicular to u and v 12.4 Cross Product Geometric description of the cross product of the vectors u and v The cross product of two vectors is a vector! u x v is perpendicular to u and v The length of u x v is uv u v sin The

More information

Explain the ionic bonds, covalent bonds and metallic bonds and give one example for each type of bonds.

Explain the ionic bonds, covalent bonds and metallic bonds and give one example for each type of bonds. Problem 1 Explain the ionic bonds, covalent bonds and metallic bonds and give one example for each type of bonds. Ionic Bonds Two neutral atoms close to each can undergo an ionization process in order

More information

Crystalline Structures Crystal Lattice Structures

Crystalline Structures Crystal Lattice Structures Jewelry Home Page Crystalline Structures Crystal Lattice Structures Crystal Habit Refractive Index Crystal Forms Mohs Scale Mineral Classification Crystal Healing Extensive information on healing crystals,

More information

Lecture Outline Crystallography

Lecture Outline Crystallography Lecture Outline Crystallography Short and long range Order Poly- and single crystals, anisotropy, polymorphy Allotropic and Polymorphic Transitions Lattice, Unit Cells, Basis, Packing, Density, and Crystal

More information

www.sakshieducation.com

www.sakshieducation.com LENGTH OF THE PERPENDICULAR FROM A POINT TO A STRAIGHT LINE AND DISTANCE BETWEEN TWO PAPALLEL LINES THEOREM The perpendicular distance from a point P(x 1, y 1 ) to the line ax + by + c 0 is ax1+ by1+ c

More information

EQUATIONS and INEQUALITIES

EQUATIONS and INEQUALITIES EQUATIONS and INEQUALITIES Linear Equations and Slope 1. Slope a. Calculate the slope of a line given two points b. Calculate the slope of a line parallel to a given line. c. Calculate the slope of a line

More information

Introduction to Powder X-Ray Diffraction History Basic Principles

Introduction to Powder X-Ray Diffraction History Basic Principles Introduction to Powder X-Ray Diffraction History Basic Principles Folie.1 History: Wilhelm Conrad Röntgen Wilhelm Conrad Röntgen discovered 1895 the X-rays. 1901 he was honoured by the Noble prize for

More information

Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any.

Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any. Algebra 2 - Chapter Prerequisites Vocabulary Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any. P1 p. 1 1. counting(natural) numbers - {1,2,3,4,...}

More information

Vocabulary Words and Definitions for Algebra

Vocabulary Words and Definitions for Algebra Name: Period: Vocabulary Words and s for Algebra Absolute Value Additive Inverse Algebraic Expression Ascending Order Associative Property Axis of Symmetry Base Binomial Coefficient Combine Like Terms

More information

Chapter 8 Geometry We will discuss following concepts in this chapter.

Chapter 8 Geometry We will discuss following concepts in this chapter. Mat College Mathematics Updated on Nov 5, 009 Chapter 8 Geometry We will discuss following concepts in this chapter. Two Dimensional Geometry: Straight lines (parallel and perpendicular), Rays, Angles

More information

International Tables for Crystallography (2006). Vol. A, Section 10.1.2, pp. 763 795.

International Tables for Crystallography (2006). Vol. A, Section 10.1.2, pp. 763 795. International Tables for Crystallography (2006). Vol. A, Section 10.1.2, pp. 763 795. 10.1. CRYSTALLOGRAPHIC AND NONCRYSTALLOGRAPHIC POINT GROUPS Table 10.1.1.2. The 32 three-dimensional crystallographic

More information

Lectures notes on orthogonal matrices (with exercises) 92.222 - Linear Algebra II - Spring 2004 by D. Klain

Lectures notes on orthogonal matrices (with exercises) 92.222 - Linear Algebra II - Spring 2004 by D. Klain Lectures notes on orthogonal matrices (with exercises) 92.222 - Linear Algebra II - Spring 2004 by D. Klain 1. Orthogonal matrices and orthonormal sets An n n real-valued matrix A is said to be an orthogonal

More information

One advantage of this algebraic approach is that we can write down

One advantage of this algebraic approach is that we can write down . Vectors and the dot product A vector v in R 3 is an arrow. It has a direction and a length (aka the magnitude), but the position is not important. Given a coordinate axis, where the x-axis points out

More information

9.4. The Scalar Product. Introduction. Prerequisites. Learning Style. Learning Outcomes

9.4. The Scalar Product. Introduction. Prerequisites. Learning Style. Learning Outcomes The Scalar Product 9.4 Introduction There are two kinds of multiplication involving vectors. The first is known as the scalar product or dot product. This is so-called because when the scalar product of

More information

POWDER X-RAY DIFFRACTION: STRUCTURAL DETERMINATION OF ALKALI HALIDE SALTS

POWDER X-RAY DIFFRACTION: STRUCTURAL DETERMINATION OF ALKALI HALIDE SALTS EXPERIMENT 4 POWDER X-RAY DIFFRACTION: STRUCTURAL DETERMINATION OF ALKALI HALIDE SALTS I. Introduction The determination of the chemical structure of molecules is indispensable to chemists in their effort

More information

FURTHER VECTORS (MEI)

FURTHER VECTORS (MEI) Mathematics Revision Guides Further Vectors (MEI) (column notation) Page of MK HOME TUITION Mathematics Revision Guides Level: AS / A Level - MEI OCR MEI: C FURTHER VECTORS (MEI) Version : Date: -9-7 Mathematics

More information

Algebra 2 Chapter 1 Vocabulary. identity - A statement that equates two equivalent expressions.

Algebra 2 Chapter 1 Vocabulary. identity - A statement that equates two equivalent expressions. Chapter 1 Vocabulary identity - A statement that equates two equivalent expressions. verbal model- A word equation that represents a real-life problem. algebraic expression - An expression with variables.

More information

5.3 The Cross Product in R 3

5.3 The Cross Product in R 3 53 The Cross Product in R 3 Definition 531 Let u = [u 1, u 2, u 3 ] and v = [v 1, v 2, v 3 ] Then the vector given by [u 2 v 3 u 3 v 2, u 3 v 1 u 1 v 3, u 1 v 2 u 2 v 1 ] is called the cross product (or

More information

4. How many integers between 2004 and 4002 are perfect squares?

4. How many integers between 2004 and 4002 are perfect squares? 5 is 0% of what number? What is the value of + 3 4 + 99 00? (alternating signs) 3 A frog is at the bottom of a well 0 feet deep It climbs up 3 feet every day, but slides back feet each night If it started

More information

Equations Involving Lines and Planes Standard equations for lines in space

Equations Involving Lines and Planes Standard equations for lines in space Equations Involving Lines and Planes In this section we will collect various important formulas regarding equations of lines and planes in three dimensional space Reminder regarding notation: any quantity

More information

Review of Fundamental Mathematics

Review of Fundamental Mathematics Review of Fundamental Mathematics As explained in the Preface and in Chapter 1 of your textbook, managerial economics applies microeconomic theory to business decision making. The decision-making tools

More information

The Structure of solids.

The Structure of solids. Chapter S. The Structure of solids. After having studied this chapter, the student will be able to: 1. Distinguish between a crystal structure and an amorphous structure. 2. Describe the concept of a unit

More information

Use order of operations to simplify. Show all steps in the space provided below each problem. INTEGER OPERATIONS

Use order of operations to simplify. Show all steps in the space provided below each problem. INTEGER OPERATIONS ORDER OF OPERATIONS In the following order: 1) Work inside the grouping smbols such as parenthesis and brackets. ) Evaluate the powers. 3) Do the multiplication and/or division in order from left to right.

More information

MATH-0910 Review Concepts (Haugen)

MATH-0910 Review Concepts (Haugen) Unit 1 Whole Numbers and Fractions MATH-0910 Review Concepts (Haugen) Exam 1 Sections 1.5, 1.6, 1.7, 1.8, 2.1, 2.2, 2.3, 2.4, and 2.5 Dividing Whole Numbers Equivalent ways of expressing division: a b,

More information

3.3. Solving Polynomial Equations. Introduction. Prerequisites. Learning Outcomes

3.3. Solving Polynomial Equations. Introduction. Prerequisites. Learning Outcomes Solving Polynomial Equations 3.3 Introduction Linear and quadratic equations, dealt within Sections 3.1 and 3.2, are members of a class of equations, called polynomial equations. These have the general

More information

Algebra Cheat Sheets

Algebra Cheat Sheets Sheets Algebra Cheat Sheets provide you with a tool for teaching your students note-taking, problem-solving, and organizational skills in the context of algebra lessons. These sheets teach the concepts

More information

Section 1.1 Linear Equations: Slope and Equations of Lines

Section 1.1 Linear Equations: Slope and Equations of Lines Section. Linear Equations: Slope and Equations of Lines Slope The measure of the steepness of a line is called the slope of the line. It is the amount of change in y, the rise, divided by the amount of

More information

Structure Factors 59-553 78

Structure Factors 59-553 78 78 Structure Factors Until now, we have only typically considered reflections arising from planes in a hypothetical lattice containing one atom in the asymmetric unit. In practice we will generally deal

More information

Chapter 2: Crystal Structures and Symmetry

Chapter 2: Crystal Structures and Symmetry Chapter 2: Crystal Structures and Symmetry Laue, ravais December 28, 2001 Contents 1 Lattice Types and Symmetry 3 1.1 Two-Dimensional Lattices................. 3 1.2 Three-Dimensional Lattices................

More information

Experiment: Crystal Structure Analysis in Engineering Materials

Experiment: Crystal Structure Analysis in Engineering Materials Experiment: Crystal Structure Analysis in Engineering Materials Objective The purpose of this experiment is to introduce students to the use of X-ray diffraction techniques for investigating various types

More information

Fractions and Linear Equations

Fractions and Linear Equations Fractions and Linear Equations Fraction Operations While you can perform operations on fractions using the calculator, for this worksheet you must perform the operations by hand. You must show all steps

More information

MAC 1114. Learning Objectives. Module 10. Polar Form of Complex Numbers. There are two major topics in this module:

MAC 1114. Learning Objectives. Module 10. Polar Form of Complex Numbers. There are two major topics in this module: MAC 1114 Module 10 Polar Form of Complex Numbers Learning Objectives Upon completing this module, you should be able to: 1. Identify and simplify imaginary and complex numbers. 2. Add and subtract complex

More information

Symmetry-operations, point groups, space groups and crystal structure

Symmetry-operations, point groups, space groups and crystal structure 1 Symmetry-operations, point groups, space groups and crystal structure KJ/MV 210 Helmer Fjellvåg, Department of Chemistry, University of Oslo 1994 This compendium replaces chapter 5.3 and 6 in West. Sections

More information

Each grain is a single crystal with a specific orientation. Imperfections

Each grain is a single crystal with a specific orientation. Imperfections Crystal Structure / Imperfections Almost all materials crystallize when they solidify; i.e., the atoms are arranged in an ordered, repeating, 3-dimensional pattern. These structures are called crystals

More information

LECTURE SUMMARY September 30th 2009

LECTURE SUMMARY September 30th 2009 LECTURE SUMMARY September 30 th 2009 Key Lecture Topics Crystal Structures in Relation to Slip Systems Resolved Shear Stress Using a Stereographic Projection to Determine the Active Slip System Slip Planes

More information

Crystal Optics of Visible Light

Crystal Optics of Visible Light Crystal Optics of Visible Light This can be a very helpful aspect of minerals in understanding the petrographic history of a rock. The manner by which light is transferred through a mineral is a means

More information

The Dot and Cross Products

The Dot and Cross Products The Dot and Cross Products Two common operations involving vectors are the dot product and the cross product. Let two vectors =,, and =,, be given. The Dot Product The dot product of and is written and

More information

Figure 1.1 Vector A and Vector F

Figure 1.1 Vector A and Vector F CHAPTER I VECTOR QUANTITIES Quantities are anything which can be measured, and stated with number. Quantities in physics are divided into two types; scalar and vector quantities. Scalar quantities have

More information

13 MATH FACTS 101. 2 a = 1. 7. The elements of a vector have a graphical interpretation, which is particularly easy to see in two or three dimensions.

13 MATH FACTS 101. 2 a = 1. 7. The elements of a vector have a graphical interpretation, which is particularly easy to see in two or three dimensions. 3 MATH FACTS 0 3 MATH FACTS 3. Vectors 3.. Definition We use the overhead arrow to denote a column vector, i.e., a linear segment with a direction. For example, in three-space, we write a vector in terms

More information

Analytical Geometry (4)

Analytical Geometry (4) Analytical Geometry (4) Learning Outcomes and Assessment Standards Learning Outcome 3: Space, shape and measurement Assessment Standard As 3(c) and AS 3(a) The gradient and inclination of a straight line

More information

The Force Table Introduction: Theory:

The Force Table Introduction: Theory: 1 The Force Table Introduction: "The Force Table" is a simple tool for demonstrating Newton s First Law and the vector nature of forces. This tool is based on the principle of equilibrium. An object is

More information

n 2 + 4n + 3. The answer in decimal form (for the Blitz): 0, 75. Solution. (n + 1)(n + 3) = n + 3 2 lim m 2 1

n 2 + 4n + 3. The answer in decimal form (for the Blitz): 0, 75. Solution. (n + 1)(n + 3) = n + 3 2 lim m 2 1 . Calculate the sum of the series Answer: 3 4. n 2 + 4n + 3. The answer in decimal form (for the Blitz):, 75. Solution. n 2 + 4n + 3 = (n + )(n + 3) = (n + 3) (n + ) = 2 (n + )(n + 3) ( 2 n + ) = m ( n

More information

Chapter 3: Structure of Metals and Ceramics. Chapter 3: Structure of Metals and Ceramics. Learning Objective

Chapter 3: Structure of Metals and Ceramics. Chapter 3: Structure of Metals and Ceramics. Learning Objective Chapter 3: Structure of Metals and Ceramics Chapter 3: Structure of Metals and Ceramics Goals Define basic terms and give examples of each: Lattice Basis Atoms (Decorations or Motifs) Crystal Structure

More information

Linear Programming. Solving LP Models Using MS Excel, 18

Linear Programming. Solving LP Models Using MS Excel, 18 SUPPLEMENT TO CHAPTER SIX Linear Programming SUPPLEMENT OUTLINE Introduction, 2 Linear Programming Models, 2 Model Formulation, 4 Graphical Linear Programming, 5 Outline of Graphical Procedure, 5 Plotting

More information

A program for phase identification using diffractograms obtained from TEM structure images

A program for phase identification using diffractograms obtained from TEM structure images INVESTIGACIÓN Revista Mexicana de Física 59 (2013) 102 106 MARCH APRIL 2013 A program for phase identification using diffractograms obtained from TEM structure images R. Galicia a, R. Herrera a,, J. L.

More information

Radicals - Multiply and Divide Radicals

Radicals - Multiply and Divide Radicals 8. Radicals - Multiply and Divide Radicals Objective: Multiply and divide radicals using the product and quotient rules of radicals. Multiplying radicals is very simple if the index on all the radicals

More information

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION INTEGRATED ALGEBRA. Thursday, August 16, 2012 8:30 to 11:30 a.m.

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION INTEGRATED ALGEBRA. Thursday, August 16, 2012 8:30 to 11:30 a.m. INTEGRATED ALGEBRA The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION INTEGRATED ALGEBRA Thursday, August 16, 2012 8:30 to 11:30 a.m., only Student Name: School Name: Print your name

More information

Section 9.1 Vectors in Two Dimensions

Section 9.1 Vectors in Two Dimensions Section 9.1 Vectors in Two Dimensions Geometric Description of Vectors A vector in the plane is a line segment with an assigned direction. We sketch a vector as shown in the first Figure below with an

More information

12.5 Equations of Lines and Planes

12.5 Equations of Lines and Planes Instructor: Longfei Li Math 43 Lecture Notes.5 Equations of Lines and Planes What do we need to determine a line? D: a point on the line: P 0 (x 0, y 0 ) direction (slope): k 3D: a point on the line: P

More information

Fundamentals of grain boundaries and grain boundary migration

Fundamentals of grain boundaries and grain boundary migration 1. Fundamentals of grain boundaries and grain boundary migration 1.1. Introduction The properties of crystalline metallic materials are determined by their deviation from a perfect crystal lattice, which

More information

discuss how to describe points, lines and planes in 3 space.

discuss how to describe points, lines and planes in 3 space. Chapter 2 3 Space: lines and planes In this chapter we discuss how to describe points, lines and planes in 3 space. introduce the language of vectors. discuss various matters concerning the relative position

More information

Mathematics Placement

Mathematics Placement Mathematics Placement The ACT COMPASS math test is a self-adaptive test, which potentially tests students within four different levels of math including pre-algebra, algebra, college algebra, and trigonometry.

More information

Lecture 2 Matrix Operations

Lecture 2 Matrix Operations Lecture 2 Matrix Operations transpose, sum & difference, scalar multiplication matrix multiplication, matrix-vector product matrix inverse 2 1 Matrix transpose transpose of m n matrix A, denoted A T or

More information

Lesson 33: Example 1 (5 minutes)

Lesson 33: Example 1 (5 minutes) Student Outcomes Students understand that the Law of Sines can be used to find missing side lengths in a triangle when you know the measures of the angles and one side length. Students understand that

More information

Math 0980 Chapter Objectives. Chapter 1: Introduction to Algebra: The Integers.

Math 0980 Chapter Objectives. Chapter 1: Introduction to Algebra: The Integers. Math 0980 Chapter Objectives Chapter 1: Introduction to Algebra: The Integers. 1. Identify the place value of a digit. 2. Write a number in words or digits. 3. Write positive and negative numbers used

More information

28 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE. v x. u y v z u z v y u y u z. v y v z

28 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE. v x. u y v z u z v y u y u z. v y v z 28 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE 1.4 Cross Product 1.4.1 Definitions The cross product is the second multiplication operation between vectors we will study. The goal behind the definition

More information

CRYSTALLINE SOLIDS IN 3D

CRYSTALLINE SOLIDS IN 3D CRYSTALLINE SOLIDS IN 3D Andrew Baczewski PHY 491, October 7th, 2011 OVERVIEW First - are there any questions from the previous lecture? Today, we will answer the following questions: Why should we care

More information

Elements of a graph. Click on the links below to jump directly to the relevant section

Elements of a graph. Click on the links below to jump directly to the relevant section Click on the links below to jump directly to the relevant section Elements of a graph Linear equations and their graphs What is slope? Slope and y-intercept in the equation of a line Comparing lines on

More information

SAT Subject Math Level 1 Facts & Formulas

SAT Subject Math Level 1 Facts & Formulas Numbers, Sequences, Factors Integers:..., -3, -2, -1, 0, 1, 2, 3,... Reals: integers plus fractions, decimals, and irrationals ( 2, 3, π, etc.) Order Of Operations: Aritmetic Sequences: PEMDAS (Parenteses

More information

Answer Key for California State Standards: Algebra I

Answer Key for California State Standards: Algebra I Algebra I: Symbolic reasoning and calculations with symbols are central in algebra. Through the study of algebra, a student develops an understanding of the symbolic language of mathematics and the sciences.

More information

CAHSEE on Target UC Davis, School and University Partnerships

CAHSEE on Target UC Davis, School and University Partnerships UC Davis, School and University Partnerships CAHSEE on Target Mathematics Curriculum Published by The University of California, Davis, School/University Partnerships Program 006 Director Sarah R. Martinez,

More information

X-ray Diffraction (XRD)

X-ray Diffraction (XRD) X-ray Diffraction (XRD) 1.0 What is X-ray Diffraction 2.0 Basics of Crystallography 3.0 Production of X-rays 4.0 Applications of XRD 5.0 Instrumental Sources of Error 6.0 Conclusions Bragg s Law n l =2dsinq

More information

Quick Guide for Data Collection on the NIU Bruker Smart CCD

Quick Guide for Data Collection on the NIU Bruker Smart CCD Quick Guide for Data Collection on the NIU Bruker Smart CCD 1. Create a new project 2. Optically align the crystal 3. Take rotation picture 4. Collect matrix to determine unit cell 5. Refine unit cell

More information

Exam 1 Sample Question SOLUTIONS. y = 2x

Exam 1 Sample Question SOLUTIONS. y = 2x Exam Sample Question SOLUTIONS. Eliminate the parameter to find a Cartesian equation for the curve: x e t, y e t. SOLUTION: You might look at the coordinates and notice that If you don t see it, we can

More information

1.5 Equations of Lines and Planes in 3-D

1.5 Equations of Lines and Planes in 3-D 40 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE Figure 1.16: Line through P 0 parallel to v 1.5 Equations of Lines and Planes in 3-D Recall that given a point P = (a, b, c), one can draw a vector from

More information

Theory of X-Ray Diffraction. Kingshuk Majumdar

Theory of X-Ray Diffraction. Kingshuk Majumdar Theory of X-Ray Diffraction Kingshuk Majumdar Contents Introduction to X-Rays Crystal Structures: Introduction to Lattices Different types of lattices Reciprocal Lattice Index Planes X-Ray Diffraction:

More information

Applications of Fermat s Little Theorem and Congruences

Applications of Fermat s Little Theorem and Congruences Applications of Fermat s Little Theorem and Congruences Definition: Let m be a positive integer. Then integers a and b are congruent modulo m, denoted by a b mod m, if m (a b). Example: 3 1 mod 2, 6 4

More information

1.3. DOT PRODUCT 19. 6. If θ is the angle (between 0 and π) between two non-zero vectors u and v,

1.3. DOT PRODUCT 19. 6. If θ is the angle (between 0 and π) between two non-zero vectors u and v, 1.3. DOT PRODUCT 19 1.3 Dot Product 1.3.1 Definitions and Properties The dot product is the first way to multiply two vectors. The definition we will give below may appear arbitrary. But it is not. It

More information

Useful Mathematical Symbols

Useful Mathematical Symbols 32 Useful Mathematical Symbols Symbol What it is How it is read How it is used Sample expression + * ddition sign OR Multiplication sign ND plus or times and x Multiplication sign times Sum of a few disjunction

More information

AP CALCULUS AB 2008 SCORING GUIDELINES

AP CALCULUS AB 2008 SCORING GUIDELINES AP CALCULUS AB 2008 SCORING GUIDELINES Question 1 Let R be the region bounded by the graphs of y = sin( π x) and y = x 4 x, as shown in the figure above. (a) Find the area of R. (b) The horizontal line

More information

PLANE TRUSSES. Definitions

PLANE TRUSSES. Definitions Definitions PLANE TRUSSES A truss is one of the major types of engineering structures which provides a practical and economical solution for many engineering constructions, especially in the design of

More information

a.) Write the line 2x - 4y = 9 into slope intercept form b.) Find the slope of the line parallel to part a

a.) Write the line 2x - 4y = 9 into slope intercept form b.) Find the slope of the line parallel to part a Bellwork a.) Write the line 2x - 4y = 9 into slope intercept form b.) Find the slope of the line parallel to part a c.) Find the slope of the line perpendicular to part b or a May 8 7:30 AM 1 Day 1 I.

More information

521493S Computer Graphics. Exercise 2 & course schedule change

521493S Computer Graphics. Exercise 2 & course schedule change 521493S Computer Graphics Exercise 2 & course schedule change Course Schedule Change Lecture from Wednesday 31th of March is moved to Tuesday 30th of March at 16-18 in TS128 Question 2.1 Given two nonparallel,

More information

Example SECTION 13-1. X-AXIS - the horizontal number line. Y-AXIS - the vertical number line ORIGIN - the point where the x-axis and y-axis cross

Example SECTION 13-1. X-AXIS - the horizontal number line. Y-AXIS - the vertical number line ORIGIN - the point where the x-axis and y-axis cross CHAPTER 13 SECTION 13-1 Geometry and Algebra The Distance Formula COORDINATE PLANE consists of two perpendicular number lines, dividing the plane into four regions called quadrants X-AXIS - the horizontal

More information

Trigonometric Functions and Triangles

Trigonometric Functions and Triangles Trigonometric Functions and Triangles Dr. Philippe B. Laval Kennesaw STate University August 27, 2010 Abstract This handout defines the trigonometric function of angles and discusses the relationship between

More information

Review Sheet for Test 1

Review Sheet for Test 1 Review Sheet for Test 1 Math 261-00 2 6 2004 These problems are provided to help you study. The presence of a problem on this handout does not imply that there will be a similar problem on the test. And

More information

x(x + 5) x 2 25 (x + 5)(x 5) = x 6(x 4) x ( x 4) + 3

x(x + 5) x 2 25 (x + 5)(x 5) = x 6(x 4) x ( x 4) + 3 CORE 4 Summary Notes Rational Expressions Factorise all expressions where possible Cancel any factors common to the numerator and denominator x + 5x x(x + 5) x 5 (x + 5)(x 5) x x 5 To add or subtract -

More information

Unit 3: Circles and Volume

Unit 3: Circles and Volume Unit 3: Circles and Volume This unit investigates the properties of circles and addresses finding the volume of solids. Properties of circles are used to solve problems involving arcs, angles, sectors,

More information

TWO-DIMENSIONAL TRANSFORMATION

TWO-DIMENSIONAL TRANSFORMATION CHAPTER 2 TWO-DIMENSIONAL TRANSFORMATION 2.1 Introduction As stated earlier, Computer Aided Design consists of three components, namely, Design (Geometric Modeling), Analysis (FEA, etc), and Visualization

More information

Geometric Transformation CS 211A

Geometric Transformation CS 211A Geometric Transformation CS 211A What is transformation? Moving points (x,y) moves to (x+t, y+t) Can be in any dimension 2D Image warps 3D 3D Graphics and Vision Can also be considered as a movement to

More information

6. Vectors. 1 2009-2016 Scott Surgent (surgent@asu.edu)

6. Vectors. 1 2009-2016 Scott Surgent (surgent@asu.edu) 6. Vectors For purposes of applications in calculus and physics, a vector has both a direction and a magnitude (length), and is usually represented as an arrow. The start of the arrow is the vector s foot,

More information

Section 1.1. Introduction to R n

Section 1.1. Introduction to R n The Calculus of Functions of Several Variables Section. Introduction to R n Calculus is the study of functional relationships and how related quantities change with each other. In your first exposure to

More information

Integers, I, is a set of numbers that include positive and negative numbers and zero.

Integers, I, is a set of numbers that include positive and negative numbers and zero. Grade 9 Math Unit 3: Rational Numbers Section 3.1: What is a Rational Number? Integers, I, is a set of numbers that include positive and negative numbers and zero. Imagine a number line These numbers are

More information

CHAPTER 7 DISLOCATIONS AND STRENGTHENING MECHANISMS PROBLEM SOLUTIONS

CHAPTER 7 DISLOCATIONS AND STRENGTHENING MECHANISMS PROBLEM SOLUTIONS 7-1 CHAPTER 7 DISLOCATIONS AND STRENGTHENING MECHANISMS PROBLEM SOLUTIONS Basic Concepts of Dislocations Characteristics of Dislocations 7.1 The dislocation density is just the total dislocation length

More information

Adding and Subtracting Positive and Negative Numbers

Adding and Subtracting Positive and Negative Numbers Adding and Subtracting Positive and Negative Numbers Absolute Value For any real number, the distance from zero on the number line is the absolute value of the number. The absolute value of any real number

More information

Operations with positive and negative numbers - see first chapter below. Rules related to working with fractions - see second chapter below

Operations with positive and negative numbers - see first chapter below. Rules related to working with fractions - see second chapter below INTRODUCTION If you are uncomfortable with the math required to solve the word problems in this class, we strongly encourage you to take a day to look through the following links and notes. Some of them

More information