Normal Distribution as an Approximation to the Binomial Distribution


 Shon Goodwin
 1 years ago
 Views:
Transcription
1 Chapter 1 Student Lecture Notes 11 Normal Distribution as an Approximation to the Binomial Distribution : Goals ONE TWO THREE 2 Review Binomial Probability Distribution applies to a discrete random variable has these requirements: 1. The experiment must have fixed number of trials. 2. The trials must be independent. 3. Each trial must have all outcomes classified into two categories. 4. The probabilities must remain constant for each trial. solve by P(x) formula, computer software, or Table in the Annex
2 Chapter 1 Student Lecture Notes 12 The Normal Approximation to the Binomial Using the normal distribution (a continuous distribution) as a substitute for a binomial distribution (a discrete distribution) for large values of n seems reasonable because as n increases, a binomial distribution gets closer and closer to a normal distribution. The normal probability distribution is generally deemed a good approximation to the binomial probability distribution when nπ and n(1 π ) are both greater than 5. 4 The Normal Approximation continued Recall for the binomial experiment: There are only two mutually exclusive outcomes (success or failure) on each trial. A binomial distribution results from counting the number of successes. Each trial is independent. The probability is fixed from trial to trial, and the number of trials n is also fixed. 5 Approximate a Binomial Distribution with a Normal Distribution if: 1. np 5 2. nq 5
3 Chapter 1 Student Lecture Notes 13 Approximate a Binomial Distribution with a Normal Distribution if: 1. np 5 2. nq 5 Then µ = np and σ = npq and the random variable has a (normal) distribution. Binomial Distribution for an n of 3 and 20, where π =. n=3 n=20 P(x) number of occurences P(x) n u m b e r o f o c c u r e n c e s 8 Solving Binomial Probability Problems Using a Normal Approximation
4 Chapter 1 Student Lecture Notes 14 Solving Binomial Probability Problems Using a Normal Approximation Start After verifying that we have a binomial probability problem, identify n, p, q Is Computer Software Available? Use the Computer Software No Can the problem be solved by using Table A1? No Can the problem be easily solved with the binomial probability formula? Use the Table A1 Use binomial probability formula n! P(x) = p x q (n x)!x! n x Solving Binomial Probability Problems Using a Normal Approximation Can the problem be easily solved with the binomial probability formula? Use binomial probability formula n! P(x) = p x (n x)!x! q n x No Are np 5 and nq 5 both true? No Compute µ = np and σ = npq Draw the normal curve, and identify the region representing the probability to be found. Be sure to include the continuity correction. (Remember, the discrete value x is adjusted for continuity by adding and subtracting 0.5) Solving Binomial Probability Problems Using a Normal Approximation Draw the normal curve, and identify the region representing the probability to be found. Be sure to include the continuity correction. (Remember, the discrete value x is adjusted for continuity by adding and subtracting 0.5) Calculate z = x µ σ where µ and σ are the values already found and x is adjusted for continuity. Refer to Table A2 to find the area between µ and the value of x adjusted for continuity. Use that area to determine the probability being sought.
5 Chapter 1 Student Lecture Notes 15 Normal Approximation to the Binomial: Continuity Correction Factor The value.5 subtracted or added, depending on the problem, to a selected value when a binomial probability distribution (a discrete probability distribution) is being approximated by a continuous probability distribution (the normal distribution). 13 Continuity Corrections Procedures 1. When using the normal distribution as an approximation to the binomial distribution, always use the continuity correction. 2. In using the continuity correction, first identify the discrete whole number x that is relevant to the binomial probability problem. 3. Draw a normal distribution centered about µ, then draw a vertical strip area centered over x. Mark the left side of the strip with the number x 0.5, and mark the right side with x For x =, draw a strip from to.5. Consider the area of the strip to represent the probability of discrete number x. continued continued Continuity Corrections Procedures 4. Now determine whether the value of x itself should be included in the probability you want. Next, determine whether you want the probability of at least x, at most x, more than x, fewer than x, or exactly x. Shade the area to the right of left of the strip, as appropriate; also shade the interior of the strip itself if and only if x itself is to be included, The total shaded region corresponds to probability being sought.
6 Chapter 1 Student Lecture Notes 16 x = at least =, 65, 66,.... x = at least =, 65, 66,... x = more than = 65, 66, 67, x = at least =, 65, 66,... x = more than = 65, 66, 67,... x = at most = 0, 1,... 62, 63,
7 Chapter 1 Student Lecture Notes 17 x = at least =, 65, 66,... x = more than = 65, 66, 67,... x = at most = 0, 1,... 62, 63, x = fewer than = 0, 1,... 62, x = exactly x = exactly
8 Chapter 1 Student Lecture Notes 18 x = exactly.5 Interval represents discrete number Normal Approximation to the Binomial Example: Video camera A recent study by a marketing research firm showed that 15% of Canadian households owned a video camera. A sample of 200 homes is obtained. Of the 200 homes sampled how many would you expect to have video cameras? µ = n π = (. 15)( 200) = Normal Approximation to the Binomial Example: Video camera What is the variance? 2 σ = n π ( 1 π ) = ( 30)( 1. 15) = What is the standard deviation? σ = 255. = What is the probability that less than 40 homes in the sample have video cameras? We need P(X<40)=P(X<39). So, using the normal approximation, P(X<39.5) P[Z ( )/5.0498] = P(Z ) P(Z<1.88)=
9 Chapter 1 Student Lecture Notes 19 r a l i t r b u i o n : µ = 0, σ Normal Approximation to the Binomial 2 = 1 Example: Video camera f ( x Z= P(Z=1.88) = = Summary 26
Review the following from Chapter 5
Bluman, Chapter 6 1 Review the following from Chapter 5 A surgical procedure has an 85% chance of success and a doctor performs the procedure on 10 patients, find the following: a) The probability that
More informationChapter 5: Normal Probability Distributions  Solutions
Chapter 5: Normal Probability Distributions  Solutions Note: All areas and zscores are approximate. Your answers may vary slightly. 5.2 Normal Distributions: Finding Probabilities If you are given that
More informationDepartment of Civil EngineeringI.I.T. Delhi CEL 899: Environmental Risk Assessment Statistics and Probability Example Part 1
Department of Civil EngineeringI.I.T. Delhi CEL 899: Environmental Risk Assessment Statistics and Probability Example Part Note: Assume missing data (if any) and mention the same. Q. Suppose X has a normal
More informationSOLUTIONS: 4.1 Probability Distributions and 4.2 Binomial Distributions
SOLUTIONS: 4.1 Probability Distributions and 4.2 Binomial Distributions 1. The following table contains a probability distribution for a random variable X. a. Find the expected value (mean) of X. x 1 2
More informationThe normal approximation to the binomial
The normal approximation to the binomial The binomial probability function is not useful for calculating probabilities when the number of trials n is large, as it involves multiplying a potentially very
More informationNormal distribution. ) 2 /2σ. 2π σ
Normal distribution The normal distribution is the most widely known and used of all distributions. Because the normal distribution approximates many natural phenomena so well, it has developed into a
More informationThe normal approximation to the binomial
The normal approximation to the binomial In order for a continuous distribution (like the normal) to be used to approximate a discrete one (like the binomial), a continuity correction should be used. There
More informationProbability Distributions
Learning Objectives Probability Distributions Section 1: How Can We Summarize Possible Outcomes and Their Probabilities? 1. Random variable 2. Probability distributions for discrete random variables 3.
More informationThe Binomial Probability Distribution
The Binomial Probability Distribution MATH 130, Elements of Statistics I J. Robert Buchanan Department of Mathematics Fall 2015 Objectives After this lesson we will be able to: determine whether a probability
More informationNormal Approximation. Contents. 1 Normal Approximation. 1.1 Introduction. Anthony Tanbakuchi Department of Mathematics Pima Community College
Introductory Statistics Lectures Normal Approimation To the binomial distribution Department of Mathematics Pima Community College Redistribution of this material is prohibited without written permission
More informationSampling Distributions
Sampling Distributions You have seen probability distributions of various types. The normal distribution is an example of a continuous distribution that is often used for quantitative measures such as
More informationLecture 10: Depicting Sampling Distributions of a Sample Proportion
Lecture 10: Depicting Sampling Distributions of a Sample Proportion Chapter 5: Probability and Sampling Distributions 2/10/12 Lecture 10 1 Sample Proportion 1 is assigned to population members having a
More informationChapter 5. Random variables
Random variables random variable numerical variable whose value is the outcome of some probabilistic experiment; we use uppercase letters, like X, to denote such a variable and lowercase letters, like
More informationSample Questions for Mastery #5
Name: Class: Date: Sample Questions for Mastery #5 Multiple Choice Identify the choice that best completes the statement or answers the question.. For which of the following binomial experiments could
More information5/31/2013. 6.1 Normal Distributions. Normal Distributions. Chapter 6. Distribution. The Normal Distribution. Outline. Objectives.
The Normal Distribution C H 6A P T E R The Normal Distribution Outline 6 1 6 2 Applications of the Normal Distribution 6 3 The Central Limit Theorem 6 4 The Normal Approximation to the Binomial Distribution
More information16. THE NORMAL APPROXIMATION TO THE BINOMIAL DISTRIBUTION
6. THE NORMAL APPROXIMATION TO THE BINOMIAL DISTRIBUTION It is sometimes difficult to directly compute probabilities for a binomial (n, p) random variable, X. We need a different table for each value of
More informationChapter 4. Probability and Probability Distributions
Chapter 4. robability and robability Distributions Importance of Knowing robability To know whether a sample is not identical to the population from which it was selected, it is necessary to assess the
More informationChapter 6 Continuous Probability Distributions
Continuous Probability Distributions Learning Objectives 1. Understand the difference between how probabilities are computed for discrete and continuous random variables. 2. Know how to compute probability
More informationComputing Binomial Probabilities
The Binomial Model The binomial probability distribution is a discrete probability distribution function Useful in many situations where you have numerical variables that are counts or whole numbers Classic
More informationChapter 3: DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS
Chapter 3: DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS Part 4: Geometric Distribution Negative Binomial Distribution Hypergeometric Distribution Sections 37, 38 The remaining discrete random
More informationCh5: Discrete Probability Distributions Section 51: Probability Distribution
Recall: Ch5: Discrete Probability Distributions Section 51: Probability Distribution A variable is a characteristic or attribute that can assume different values. o Various letters of the alphabet (e.g.
More informationAn Introduction to Basic Statistics and Probability
An Introduction to Basic Statistics and Probability Shenek Heyward NCSU An Introduction to Basic Statistics and Probability p. 1/4 Outline Basic probability concepts Conditional probability Discrete Random
More informationSection 6.1 Discrete Random variables Probability Distribution
Section 6.1 Discrete Random variables Probability Distribution Definitions a) Random variable is a variable whose values are determined by chance. b) Discrete Probability distribution consists of the values
More informationMAT 155. Key Concept. September 27, 2010. 155S5.5_3 Poisson Probability Distributions. Chapter 5 Probability Distributions
MAT 155 Dr. Claude Moore Cape Fear Community College Chapter 5 Probability Distributions 5 1 Review and Preview 5 2 Random Variables 5 3 Binomial Probability Distributions 5 4 Mean, Variance and Standard
More informationThe Normal Curve. The Normal Curve and The Sampling Distribution
Discrete vs Continuous Data The Normal Curve and The Sampling Distribution We have seen examples of probability distributions for discrete variables X, such as the binomial distribution. We could use it
More informationExercises  The Normal Curve
Exercises  The Normal Curve 1. Find e following proportions under e Normal curve: a) P(z>2.05) b) P(z>2.5) c) P(1.25
More informationDETERMINE whether the conditions for a binomial setting are met. COMPUTE and INTERPRET probabilities involving binomial random variables
1 Section 7.B Learning Objectives After this section, you should be able to DETERMINE whether the conditions for a binomial setting are met COMPUTE and INTERPRET probabilities involving binomial random
More informationChapter 4. Probability Distributions
Chapter 4 Probability Distributions Lesson 41/42 Random Variable Probability Distributions This chapter will deal the construction of probability distribution. By combining the methods of descriptive
More informationCh. 6.1 #749 odd. The area is found by looking up z= 0.75 in Table E and subtracting 0.5. Area = 0.77340.5= 0.2734
Ch. 6.1 #749 odd The area is found by looking up z= 0.75 in Table E and subtracting 0.5. Area = 0.77340.5= 0.2734 The area is found by looking up z= 2.07 in Table E and subtracting from 0.5. Area = 0.50.0192
More informationThe Normal Distribution. Alan T. Arnholt Department of Mathematical Sciences Appalachian State University
The Normal Distribution Alan T. Arnholt Department of Mathematical Sciences Appalachian State University arnholt@math.appstate.edu Spring 2006 R Notes 1 Copyright c 2006 Alan T. Arnholt 2 Continuous Random
More information4.1 4.2 Probability Distribution for Discrete Random Variables
4.1 4.2 Probability Distribution for Discrete Random Variables Key concepts: discrete random variable, probability distribution, expected value, variance, and standard deviation of a discrete random variable.
More information39.2. The Normal Approximation to the Binomial Distribution. Introduction. Prerequisites. Learning Outcomes
The Normal Approximation to the Binomial Distribution 39.2 Introduction We have already seen that the Poisson distribution can be used to approximate the binomial distribution for large values of n and
More informationSection 5 3 The Mean and Standard Deviation of a Binomial Distribution
Section 5 3 The Mean and Standard Deviation of a Binomial Distribution Previous sections required that you to find the Mean and Standard Deviation of a Binomial Distribution by using the values from a
More informationCHAPTER 6: Continuous Uniform Distribution: 6.1. Definition: The density function of the continuous random variable X on the interval [A, B] is.
Some Continuous Probability Distributions CHAPTER 6: Continuous Uniform Distribution: 6. Definition: The density function of the continuous random variable X on the interval [A, B] is B A A x B f(x; A,
More informationTree Diagrams. on time. The man. by subway. From above tree diagram, we can get
1 Tree Diagrams Example: A man takes either a bus or the subway to work with probabilities 0.3 and 0.7, respectively. When he takes the bus, he is late 30% of the days. When he takes the subway, he is
More informationM 1313 Review Test 4 1
M 1313 Review Test 4 1 Review for test 4: 1. Let E and F be two events of an experiment, P (E) =. 3 and P (F) =. 2, and P (E F) =.35. Find the following probabilities: a. P(E F) b. P(E c F) c. P (E F)
More informationBayes Theorem. Bayes Theorem Example. Evaluation of Medical Screening Procedure. Evaluation of Medical Screening Procedure
Bayes Theorem P(C A) P(A) P(A C) = P(C A) P(A) + P(C B) P(B) P(E B) P(B) P(B E) = P(E B) P(B) + P(E A) P(A) P(D A) P(A) P(A D) = P(D A) P(A) + P(D B) P(B) Cost of procedure is $1,000,000 Data regarding
More informationAP STATISTICS 2010 SCORING GUIDELINES
2010 SCORING GUIDELINES Question 4 Intent of Question The primary goals of this question were to (1) assess students ability to calculate an expected value and a standard deviation; (2) recognize the applicability
More informationRandom Variable: A function that assigns numerical values to all the outcomes in the sample space.
STAT 509 Section 3.2: Discrete Random Variables Random Variable: A function that assigns numerical values to all the outcomes in the sample space. Notation: Capital letters (like Y) denote a random variable.
More informationSTT315 Chapter 4 Random Variables & Probability Distributions KM. Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables
Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables Discrete vs. continuous random variables Examples of continuous distributions o Uniform o Exponential o Normal Recall: A random
More informationLecture 5 : The Poisson Distribution
Lecture 5 : The Poisson Distribution Jonathan Marchini November 10, 2008 1 Introduction Many experimental situations occur in which we observe the counts of events within a set unit of time, area, volume,
More information4. Continuous Random Variables, the Pareto and Normal Distributions
4. Continuous Random Variables, the Pareto and Normal Distributions A continuous random variable X can take any value in a given range (e.g. height, weight, age). The distribution of a continuous random
More informationImportant Probability Distributions OPRE 6301
Important Probability Distributions OPRE 6301 Important Distributions... Certain probability distributions occur with such regularity in reallife applications that they have been given their own names.
More informationChapter 4. iclicker Question 4.4 Prelecture. Part 2. Binomial Distribution. J.C. Wang. iclicker Question 4.4 Prelecture
Chapter 4 Part 2. Binomial Distribution J.C. Wang iclicker Question 4.4 Prelecture iclicker Question 4.4 Prelecture Outline Computing Binomial Probabilities Properties of a Binomial Distribution Computing
More informationExperimental Design. Power and Sample Size Determination. Proportions. Proportions. Confidence Interval for p. The Binomial Test
Experimental Design Power and Sample Size Determination Bret Hanlon and Bret Larget Department of Statistics University of Wisconsin Madison November 3 8, 2011 To this point in the semester, we have largely
More informationMath 141. Lecture 7: Variance, Covariance, and Sums. Albyn Jones 1. 1 Library 304. jones/courses/141
Math 141 Lecture 7: Variance, Covariance, and Sums Albyn Jones 1 1 Library 304 jones@reed.edu www.people.reed.edu/ jones/courses/141 Last Time Variance: expected squared deviation from the mean: Standard
More informationThe Normal Distribution
The Normal Distribution Continuous Distributions A continuous random variable is a variable whose possible values form some interval of numbers. Typically, a continuous variable involves a measurement
More informationLecture 2: Discrete Distributions, Normal Distributions. Chapter 1
Lecture 2: Discrete Distributions, Normal Distributions Chapter 1 Reminders Course website: www. stat.purdue.edu/~xuanyaoh/stat350 Office Hour: Mon 3:304:30, Wed 45 Bring a calculator, and copy Tables
More informationExpectations. Expectations. (See also Hays, Appendix B; Harnett, ch. 3).
Expectations Expectations. (See also Hays, Appendix B; Harnett, ch. 3). A. The expected value of a random variable is the arithmetic mean of that variable, i.e. E() = µ. As Hays notes, the idea of the
More informationBinomial Probability Distribution
Binomial Probability Distribution In a binomial setting, we can compute probabilities of certain outcomes. This used to be done with tables, but with graphing calculator technology, these problems are
More informationReview. March 21, 2011. 155S7.1 2_3 Estimating a Population Proportion. Chapter 7 Estimates and Sample Sizes. Test 2 (Chapters 4, 5, & 6) Results
MAT 155 Statistical Analysis Dr. Claude Moore Cape Fear Community College Chapter 7 Estimates and Sample Sizes 7 1 Review and Preview 7 2 Estimating a Population Proportion 7 3 Estimating a Population
More informationYou flip a fair coin four times, what is the probability that you obtain three heads.
Handout 4: Binomial Distribution Reading Assignment: Chapter 5 In the previous handout, we looked at continuous random variables and calculating probabilities and percentiles for those type of variables.
More informationSampling Distribution of a Sample Proportion
Sampling Distribution of a Sample Proportion From earlier material remember that if X is the count of successes in a sample of n trials of a binomial random variable then the proportion of success is given
More informationUNIT I: RANDOM VARIABLES PART A TWO MARKS
UNIT I: RANDOM VARIABLES PART A TWO MARKS 1. Given the probability density function of a continuous random variable X as follows f(x) = 6x (1x) 0
More informationgiven that among year old boys, carbohydrate intake is normally distributed, with a mean of 124 and a standard deviation of 20...
Probability  Chapter 5 given that among 1214 year old boys, carbohydrate intake is normally distributed, with a mean of 124 and a standard deviation of 20... 5.6 What percentage of boys in this age range
More informationChapter 2, part 2. Petter Mostad
Chapter 2, part 2 Petter Mostad mostad@chalmers.se Parametrical families of probability distributions How can we solve the problem of learning about the population distribution from the sample? Usual procedure:
More information6.4 Normal Distribution
Contents 6.4 Normal Distribution....................... 381 6.4.1 Characteristics of the Normal Distribution....... 381 6.4.2 The Standardized Normal Distribution......... 385 6.4.3 Meaning of Areas under
More informationP (x) 0. Discrete random variables Expected value. The expected value, mean or average of a random variable x is: xp (x) = v i P (v i )
Discrete random variables Probability mass function Given a discrete random variable X taking values in X = {v 1,..., v m }, its probability mass function P : X [0, 1] is defined as: P (v i ) = Pr[X =
More information6.1. Construct and Interpret Binomial Distributions. p Study probability distributions. Goal VOCABULARY. Your Notes.
6.1 Georgia Performance Standard(s) MM3D1 Your Notes Construct and Interpret Binomial Distributions Goal p Study probability distributions. VOCABULARY Random variable Discrete random variable Continuous
More informationTopic 8 The Expected Value
Topic 8 The Expected Value Functions of Random Variables 1 / 12 Outline Names for Eg(X ) Variance and Standard Deviation Independence Covariance and Correlation 2 / 12 Names for Eg(X ) If g(x) = x, then
More informationWHERE DOES THE 10% CONDITION COME FROM?
1 WHERE DOES THE 10% CONDITION COME FROM? The text has mentioned The 10% Condition (at least) twice so far: p. 407 Bernoulli trials must be independent. If that assumption is violated, it is still okay
More informationSection 5 Part 2. Probability Distributions for Discrete Random Variables
Section 5 Part 2 Probability Distributions for Discrete Random Variables Review and Overview So far we ve covered the following probability and probability distribution topics Probability rules Probability
More informationMATH 10: Elementary Statistics and Probability Chapter 7: The Central Limit Theorem
MATH 10: Elementary Statistics and Probability Chapter 7: The Central Limit Theorem Tony Pourmohamad Department of Mathematics De Anza College Spring 2015 Objectives By the end of this set of slides, you
More information6 PROBABILITY GENERATING FUNCTIONS
6 PROBABILITY GENERATING FUNCTIONS Certain derivations presented in this course have been somewhat heavy on algebra. For example, determining the expectation of the Binomial distribution (page 5.1 turned
More informationChapter 5. Discrete Probability Distributions
Chapter 5. Discrete Probability Distributions Chapter Problem: Did Mendel s result from plant hybridization experiments contradicts his theory? 1. Mendel s theory says that when there are two inheritable
More informationtable to see that the probability is 0.8413. (b) What is the probability that x is between 16 and 60? The zscores for 16 and 60 are: 60 38 = 1.
Review Problems for Exam 3 Math 1040 1 1. Find the probability that a standard normal random variable is less than 2.37. Looking up 2.37 on the normal table, we see that the probability is 0.9911. 2. Find
More informationIntroduction to the Practice of Statistics Sixth Edition Moore, McCabe Section 5.1 Homework Answers
Introduction to the Practice of Statistics Sixth Edition Moore, McCabe Section 5.1 Homework Answers 5.18 Attitudes toward drinking and behavior studies. Some of the methods in this section are approximations
More informationChapter 1: Looking at Data Section 1.1: Displaying Distributions with Graphs
Types of Variables Chapter 1: Looking at Data Section 1.1: Displaying Distributions with Graphs Quantitative (numerical)variables: take numerical values for which arithmetic operations make sense (addition/averaging)
More informationWeek 3&4: Z tables and the Sampling Distribution of X
Week 3&4: Z tables and the Sampling Distribution of X 2 / 36 The Standard Normal Distribution, or Z Distribution, is the distribution of a random variable, Z N(0, 1 2 ). The distribution of any other normal
More informationTHE BINOMIAL DISTRIBUTION & PROBABILITY
REVISION SHEET STATISTICS 1 (MEI) THE BINOMIAL DISTRIBUTION & PROBABILITY The main ideas in this chapter are Probabilities based on selecting or arranging objects Probabilities based on the binomial distribution
More informationMT426 Notebook 3 Fall 2012 prepared by Professor Jenny Baglivo. 3 MT426 Notebook 3 3. 3.1 Definitions... 3. 3.2 Joint Discrete Distributions...
MT426 Notebook 3 Fall 2012 prepared by Professor Jenny Baglivo c Copyright 20042012 by Jenny A. Baglivo. All Rights Reserved. Contents 3 MT426 Notebook 3 3 3.1 Definitions............................................
More informationChapter 6 Random Variables
Chapter 6 Random Variables Day 1: 6.1 Discrete Random Variables Read 340344 What is a random variable? Give some examples. A numerical variable that describes the outcomes of a chance process. Examples:
More information6.1 Graphs of Normal Probability Distributions. Normal Curve aka Probability Density Function
Normal Distributions (Page 1 of 23) 6.1 Graphs of Normal Probability Distributions Normal Curve aka Probability Density Function Normal Probability Distribution TP TP µ! " µ µ +! x xaxis Important Properties
More information3.4. The Binomial Probability Distribution. Copyright Cengage Learning. All rights reserved.
3.4 The Binomial Probability Distribution Copyright Cengage Learning. All rights reserved. The Binomial Probability Distribution There are many experiments that conform either exactly or approximately
More informationMATHEMATICS FOR ENGINEERS STATISTICS TUTORIAL 4 PROBABILITY DISTRIBUTIONS
MATHEMATICS FOR ENGINEERS STATISTICS TUTORIAL 4 PROBABILITY DISTRIBUTIONS CONTENTS Sample Space Accumulative Probability Probability Distributions Binomial Distribution Normal Distribution Poisson Distribution
More informationNotes on Continuous Random Variables
Notes on Continuous Random Variables Continuous random variables are random quantities that are measured on a continuous scale. They can usually take on any value over some interval, which distinguishes
More informationJoint Exam 1/P Sample Exam 1
Joint Exam 1/P Sample Exam 1 Take this practice exam under strict exam conditions: Set a timer for 3 hours; Do not stop the timer for restroom breaks; Do not look at your notes. If you believe a question
More informationNormal and Binomial. Distributions
Normal and Binomial Distributions Library, Teaching and Learning 14 By now, you know about averages means in particular and are familiar with words like data, standard deviation, variance, probability,
More informationSummary of Formulas and Concepts. Descriptive Statistics (Ch. 14)
Summary of Formulas and Concepts Descriptive Statistics (Ch. 14) Definitions Population: The complete set of numerical information on a particular quantity in which an investigator is interested. We assume
More informationChapter 5 Discrete Probability Distribution. Learning objectives
Chapter 5 Discrete Probability Distribution Slide 1 Learning objectives 1. Understand random variables and probability distributions. 1.1. Distinguish discrete and continuous random variables. 2. Able
More informationLecture 8. Confidence intervals and the central limit theorem
Lecture 8. Confidence intervals and the central limit theorem Mathematical Statistics and Discrete Mathematics November 25th, 2015 1 / 15 Central limit theorem Let X 1, X 2,... X n be a random sample of
More informationChapter 6 Discrete Probability Distributions
Chapter 6 Discrete Probability Distributions 40. From recent experience, 5 percent of the computer keyboards produced by an automatic, highspeed machine are defective. What is the probability that out
More informationQuadratic Equations and Inequalities
MA 134 Lecture Notes August 20, 2012 Introduction The purpose of this lecture is to... Introduction The purpose of this lecture is to... Learn about different types of equations Introduction The purpose
More informationKey Concept. Density Curve
MAT 155 Statistical Analysis Dr. Claude Moore Cape Fear Community College Chapter 6 Normal Probability Distributions 6 1 Review and Preview 6 2 The Standard Normal Distribution 6 3 Applications of Normal
More informationCharacteristics of Binomial Distributions
Lesson2 Characteristics of Binomial Distributions In the last lesson, you constructed several binomial distributions, observed their shapes, and estimated their means and standard deviations. In Investigation
More informationREPEATED TRIALS. The probability of winning those k chosen times and losing the other times is then p k q n k.
REPEATED TRIALS Suppose you toss a fair coin one time. Let E be the event that the coin lands heads. We know from basic counting that p(e) = 1 since n(e) = 1 and 2 n(s) = 2. Now suppose we play a game
More informationTEACHER NOTES MATH NSPIRED
Math Objectives Students will understand that normal distributions can be used to approximate binomial distributions whenever both np and n(1 p) are sufficiently large. Students will understand that when
More informationStats on the TI 83 and TI 84 Calculator
Stats on the TI 83 and TI 84 Calculator Entering the sample values STAT button Left bracket { Right bracket } Store (STO) List L1 Comma Enter Example: Sample data are {5, 10, 15, 20} 1. Press 2 ND and
More informationDensity Curve. A density curve is the graph of a continuous probability distribution. It must satisfy the following properties:
Density Curve A density curve is the graph of a continuous probability distribution. It must satisfy the following properties: 1. The total area under the curve must equal 1. 2. Every point on the curve
More informationContents. TTM4155: Teletraffic Theory (Teletrafikkteori) Probability Theory Basics. Yuming Jiang. Basic Concepts Random Variables
TTM4155: Teletraffic Theory (Teletrafikkteori) Probability Theory Basics Yuming Jiang 1 Some figures taken from the web. Contents Basic Concepts Random Variables Discrete Random Variables Continuous Random
More information2WB05 Simulation Lecture 8: Generating random variables
2WB05 Simulation Lecture 8: Generating random variables Marko Boon http://www.win.tue.nl/courses/2wb05 January 7, 2013 Outline 2/36 1. How do we generate random variables? 2. Fitting distributions Generating
More informationChapter 3: DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS. Part 3: Discrete Uniform Distribution Binomial Distribution
Chapter 3: DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS Part 3: Discrete Uniform Distribution Binomial Distribution Sections 35, 36 Special discrete random variable distributions we will cover
More informationLecture 6: Discrete & Continuous Probability and Random Variables
Lecture 6: Discrete & Continuous Probability and Random Variables D. Alex Hughes Math Camp September 17, 2015 D. Alex Hughes (Math Camp) Lecture 6: Discrete & Continuous Probability and Random September
More informationb) All outcomes are equally likely with probability = 1/6. The probabilities do add up to 1, as they must.
10. a. if you roll a single die and count the number of dots on top, what is the sample space of all possible outcomes? b. assign probabilities to the outcomes of the sample space of part (a). Do the possibilities
More informationMATH 10: Elementary Statistics and Probability Chapter 4: Discrete Random Variables
MATH 10: Elementary Statistics and Probability Chapter 4: Discrete Random Variables Tony Pourmohamad Department of Mathematics De Anza College Spring 2015 Objectives By the end of this set of slides, you
More informationPROBLEM SET 1. For the first three answer true or false and explain your answer. A picture is often helpful.
PROBLEM SET 1 For the first three answer true or false and explain your answer. A picture is often helpful. 1. Suppose the significance level of a hypothesis test is α=0.05. If the pvalue of the test
More informationProbability Distributions
CHAPTER 5 Probability Distributions CHAPTER OUTLINE 5.1 Probability Distribution of a Discrete Random Variable 5.2 Mean and Standard Deviation of a Probability Distribution 5.3 The Binomial Distribution
More informationChapter 8. Hypothesis Testing
Chapter 8 Hypothesis Testing Hypothesis In statistics, a hypothesis is a claim or statement about a property of a population. A hypothesis test (or test of significance) is a standard procedure for testing
More informationExample 1. so the Binomial Distrubtion can be considered normal
Chapter 6 8B: Examples of Using a Normal Distribution to Approximate a Binomial Probability Distribution Example 1 The probability of having a boy in any single birth is 50%. Use a normal distribution
More informationProbability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur
Probability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur Module No. #01 Lecture No. #15 Special DistributionsVI Today, I am going to introduce
More information