Schlieren and Shadowgraph Techniques
|
|
|
- Bruno Norman
- 9 years ago
- Views:
Transcription
1 G. S. Settles Schlieren and Shadowgraph Techniques Visualizing Phenomena in Transparent Media With 208 Figures and 48 Color Plates Springer
2 Table of Contents List of Nomenclature, XV 1 Historical Background The 17 th Century The 18 th Century The 19 th Century The 20 th Century 15 2 Basic Concepts Light Propagation Through Inhomogeneous Media Definition of a Schliere Distinction Between Schlieren and Shadowgraph Methods Direct Shadowgraphy Simple Lens-Type Schlieren System Point Light Source Extended Light Source On the Aspect of a Schlieren Image 37 3 Toepler's Schlieren Technique Lens- and Mirror-Type Systems Lens Systems Mirror Systems Sensitivity Definition and Geometrical Theory Sensitivity Examples The Limits of Sensitivity Sensitivity Enhancement by Post-Processing Measuring Range Definition of Measuring Range Adjustment of Measuring Range Estimating the Sensitivity and Range Required Resolving Power Diffraction Effects Diffraction Halos Due to Opaque Edges in the Test Area 66
3 XII Table of Contents Diffraction at the Knife-Edge Magnification and Depth of Field Image Magnification and the Focusing Lens Depth of Field 74 4 Large-Field and Focusing Schlieren Methods Large Single- and Double-Mirror Systems Availability of Large Schlieren Mirrors Examples of Large-Mirror Systems Perm State's 1-Meter Coincident Schlieren System Traditional Schlieren Systems with Large Light Sources Lens-and-Grid Techniques Simple Background Distortion Background Grid Distortion Large Colored Grid Background The Modern Focusing/Large-Field Schlieren System Penn State's Full-Scale Schlieren System Large-Field Scanning Schlieren Systems : Scanning Schlieren Systems for Moving Objects Schlieren Systems with Scanning Light Source and Cutoff Moire-Fringe Methods Holographic and Tomographic Schlieren Specialized Schlieren Techniques Ill 5.1 Special Schlieren Cutoffs Ill Graded Filters Exponential Cutoffs and Source Filters Matched Spatial Filters at Source and Cutoff Phase Contrast Photochromic and Photorefractive Cutoffs Color Schlieren Methods Reasons for Introducing Color Conversion from Monochrome to Color Schlieren Classification of Color Schlieren Techniques Recent Developments Stereoscopic Schlieren Schlieren Interferometry The Wollaston-Prism Shearing (Differential) Interferometer Diffraction-Based Schlieren Interferometers Computer-Simulated Schlieren Various Specialized Techniques Resonant Refractivity and the Visualization of Sound Anamorphic Schlieren Systems Schlieren Observation of Tracers Two-View Schlieren 140
4 Table of Contents XHI Immersion Methods Infrared Schlieren Shadowgraph Techniques Background Historical Development The Role of Shadowgraphy Advantages and Limitations Direct Shadowgraphy Direct Shadowgraphy in Diverging Light Direct Shadowgraphy in Parallel Light "Focused" Shadowgraphy Principle of Operation History and Terminology Advantages and Limitations Magnification, Illuminance, and the Virtual Shadow Effect "Focused" Shadowgraphy in Ballistic Ranges Specialized Shadowgraph Techniques Large-Scale Shadowgraphy Microscopic, Stereoscopic, and Holographic Shadowgraphy Computed Shadowgraphy Conical Shadowgraphy Practical Issues Optical Components Light Sources Mirrors Schlieren Cutoffs and Source Filters Condensers and Source Slits L5 The Required Optical Quality Equipment Fabrication, Alignment, and Operation Schlieren System Design Using Ray Tracing Codes Fabrication of Apparatus Setup, Alignment, and Adjustment Vibration and Mechanical Stability Stray Light, Self-Luminous Events, and Secondary Images Interference from Ambient Airflows Capturing Schlieren Images and Shadowgrams Photography and Cinematography Videography High-Speed imaging Front-Lighting Commercial and Portable Schlieren Instruments Soviet Instruments Western Instruments Portable Schlieren Apparatus 198
5 XIV Table of Contents 8 Setting Up Your Own Simple Schlieren and Shadowgraph System Designing the Schlieren System Determining the Cost Choosing a Setup Location Aligning the Optics Troubleshooting Recording the Schlieren Image or Shadowgram Conclusion Applications Phenomena in Solids Glass Technology Polymer-Film Characterization Fracture Mechanics and Terminal Ballistics Specular Reflection from Surfaces Phenomena in Liquids Convective Heat and Mass Transfer Liquid Surface Waves Liquid Atomization and Sprays Ultrasonics Water Tunnel Testing and Terminal Ballistics Phenomena in Gases Agricultural Airflows Aero-Optics Architectural Acoustics Boundary Layers Convective Heat and Mass Transfer Heating, Ventilation, and Air-Conditioning Gas Leak Detection Electrical Breakdown and Discharge Explosions, Blasts, Shock Waves, and Shock Tubes Ballistics Gas Dynamics and High-Speed Wind Tunnel Testing Supersonic Jets and Jet Noise Turbomachinery and Rotorcraft Other Applications Art and music Biomedical Applications Combustion Geophysics Industrial Applications Materials Processing Microscopy Optical Processing Optical Shop Testing Outdoor Schlieren and Shadowgraphy 254
6 Table of Contents XV Plasma Dynamics Television Light Valve Projection Turbulence Quantitative Evaluation Quantitative Schlieren Evaluation by Photometry Absolute Photometric Methods Standard Photometric Methods Grid-Cutoff Methods Focal Grids Defocused Grids Defocused Filament Cutoff Quantitative Image Velocimetry Background Multiple-Exposure Eddy and Shock Velocimetry Schlieren Image Correlation Velocimetry Focusing Schlieren Deflectometry The Background-Oriented Schlieren System Quantitative Shadowgraphy Double Integration of d^dy Turbulence Research Shock-Wave Strength Quantitation Grid Shadowgraphy Methods Summary and Outlook Summary Perceptions Outside the Scientific Community Other Lessons Learned Further Comments on Historical Development Further Comments on Images and Visualization Renewed Vitality Outlook: Issues for the Future Predictions Opportunities Recommendations Closing Remarks 289 References 291 Appendix A Optical Fundamentals 333 A.I Radiometry and Photometry 333 A.2 Refraction Angle E 334 A.2.1 Small Optical Angles and Paraxial Space 334 A.2.2 Huygens' Principle and Refraction 334 A.3 Optical Components and Devices 335 A.3.1 Conjugate Optical Planes 335
7 XVI Table of Contents A.3.2 Lens f/number 335 A.3.3 The Thin-Lens Approximation 335 A.3.4 Viewing Screens and Ground Glass 336 A.3.5 Optical Density 336 A.4 Optical Aberrations 336 A.5 Light and the Human Eye 337 A.6 Geometric Theory of Light Refraction by a Schliere 338 Appendix B The Schlieren System as a Fourier Optical Processor 341 B.I The Basic Fourier Processor with no Schlieren Present 341 B.2 The Addition of a Schlieren Test Object 344 B.3 The Schlieren Cutoff. 345 B.4 Other Spatial Filters 347 B.5 Partially-Coherent and Polychromatic Illumination 350 Appendix C Parts List for a Simple Schlieren/ Shadowgraph System 353 C.I Optics 353 C.2 Illumination 354 C.3 Miscellaneous Components 354 C.4 Optical Mounts 354 Appendix D Suppliers of Schlieren Systems and Components 355 D.I Complete Schlieren Systems 355 D.2 Schlieren Field Mirrors 356 D.3 Light Sources 357 D.4 Components 358 D.5 Focusing Schlieren Lenses 359 D.6 Miscellaneous 359 Index 361 Color Plates 367
Introduction to Optics
Second Edition Introduction to Optics FRANK L. PEDROTTI, S.J. Marquette University Milwaukee, Wisconsin Vatican Radio, Rome LENO S. PEDROTTI Center for Occupational Research and Development Waco, Texas
Optical Metrology. Third Edition. Kjell J. Gasvik Spectra Vision AS, Trondheim, Norway JOHN WILEY & SONS, LTD
2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Optical Metrology Third Edition Kjell J. Gasvik Spectra Vision AS,
PHYS 39a Lab 3: Microscope Optics
PHYS 39a Lab 3: Microscope Optics Trevor Kafka December 15, 2014 Abstract In this lab task, we sought to use critical illumination and Köhler illumination techniques to view the image of a 1000 lines-per-inch
Understanding astigmatism Spring 2003
MAS450/854 Understanding astigmatism Spring 2003 March 9th 2003 Introduction Spherical lens with no astigmatism Crossed cylindrical lenses with astigmatism Horizontal focus Vertical focus Plane of sharpest
RAY TRACING UNIFIED FIELD TRACING
RAY TRACING Start to investigate the performance of your optical system using 3D ray distributions, dot diagrams of ray positions and directions, and optical path length. GEOMETRIC FIELD TRACING Switch
Procedure: Geometrical Optics. Theory Refer to your Lab Manual, pages 291 294. Equipment Needed
Theory Refer to your Lab Manual, pages 291 294. Geometrical Optics Equipment Needed Light Source Ray Table and Base Three-surface Mirror Convex Lens Ruler Optics Bench Cylindrical Lens Concave Lens Rhombus
Modern Classical Optics
Modern Classical Optics GEOFFREY BROOKER Department of Physics University of Oxford OXPORD UNIVERSITY PRESS Contents 1 Electromagnetism and basic optics 1 1.1 Introduction 1 1.2 The Maxwell equations 1
AP Physics B Ch. 23 and Ch. 24 Geometric Optics and Wave Nature of Light
AP Physics B Ch. 23 and Ch. 24 Geometric Optics and Wave Nature of Light Name: Period: Date: MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Reflection,
Optical System Design
Optical System Design Robert E. Fischer CEO, OPTICS 1, Incorporated Biljana Tadic-Galeb Panavision Paul R. Yoder Consultant With contributions by Ranko Galeb Bernard C.Kress, Ph.D. Stephen C. McClain,
Physics 10. Lecture 29A. "There are two ways of spreading light: to be the candle or the mirror that reflects it." --Edith Wharton
Physics 10 Lecture 29A "There are two ways of spreading light: to be the candle or the mirror that reflects it." --Edith Wharton Converging Lenses What if we wanted to use refraction to converge parallel
Bio 321 Lightmicroscopy Electronmicrosopy Image Processing
Bio 321 Lightmicroscopy Electronmicrosopy Image Processing Urs Ziegler Center for Microscopy and Image Analysis Light microscopy (Confocal Laser Scanning Microscopy) Light microscopy (Confocal Laser Scanning
Preface Light Microscopy X-ray Diffraction Methods
Preface xi 1 Light Microscopy 1 1.1 Optical Principles 1 1.1.1 Image Formation 1 1.1.2 Resolution 3 1.1.3 Depth of Field 5 1.1.4 Aberrations 6 1.2 Instrumentation 8 1.2.1 Illumination System 9 1.2.2 Objective
Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect
Objectives: PS-7.1 Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect Illustrate ways that the energy of waves is transferred by interaction with
View of ΣIGMA TM (Ref. 1)
Overview of the FESEM system 1. Electron optical column 2. Specimen chamber 3. EDS detector [Electron Dispersive Spectroscopy] 4. Monitors 5. BSD (Back scatter detector) 6. Personal Computer 7. ON/STANDBY/OFF
Chapter 4. Microscopy, Staining, and Classification. Lecture prepared by Mindy Miller-Kittrell North Carolina State University
Chapter 4 Microscopy, Staining, and Classification 2012 Pearson Education Inc. Lecture prepared by Mindy Miller-Kittrell North Carolina State University Microscopy and Staining 2012 Pearson Education Inc.
Forensic Science: The Basics. Microscopy
Forensic Science: The Basics Microscopy Chapter 6 Jay A. Siegel,Ph.D. Power point presentation by Greg Galardi, Peru State College, Peru Nebraska Presentation by Greg Galardi, Peru State College CRC Press,
Holographically corrected microscope with a large working distance (as appears in Applied Optics, Vol. 37, No. 10, 1849-1853, 1 April 1998)
Holographically corrected microscope with a large working distance (as appears in Applied Optics, Vol. 37, No. 10, 1849-1853, 1 April 1998) Geoff Andersen and R. J. Knize Laser and Optics Research Center
C) D) As object AB is moved from its present position toward the left, the size of the image produced A) decreases B) increases C) remains the same
1. For a plane mirror, compared to the object distance, the image distance is always A) less B) greater C) the same 2. Which graph best represents the relationship between image distance (di) and object
1 of 9 2/9/2010 3:38 PM
1 of 9 2/9/2010 3:38 PM Chapter 23 Homework Due: 8:00am on Monday, February 8, 2010 Note: To understand how points are awarded, read your instructor's Grading Policy. [Return to Standard Assignment View]
Principles of Microscopy and Confocal and Fluorescence Microscopy
Principles of Microscopy and Confocal and Fluorescence Microscopy Content This course in Light Microscopy follows the series of successful courses in Light Microscopy, Confocal and Fluorescence Microscopy
Experiment 3 Lenses and Images
Experiment 3 Lenses and Images Who shall teach thee, unless it be thine own eyes? Euripides (480?-406? BC) OBJECTIVES To examine the nature and location of images formed by es. THEORY Lenses are frequently
Imaging techniques with refractive beam shaping optics
Imaging techniques with refractive beam shaping optics Alexander Laskin, Vadim Laskin AdlOptica GmbH, Rudower Chaussee 29, 12489 Berlin, Germany ABSTRACT Applying of the refractive beam shapers in real
EXPERIMENT 6 OPTICS: FOCAL LENGTH OF A LENS
EXPERIMENT 6 OPTICS: FOCAL LENGTH OF A LENS The following website should be accessed before coming to class. Text reference: pp189-196 Optics Bench a) For convenience of discussion we assume that the light
Diffraction of a Circular Aperture
Diffraction of a Circular Aperture Diffraction can be understood by considering the wave nature of light. Huygen's principle, illustrated in the image below, states that each point on a propagating wavefront
Chapter 1 Parts C. Robert Bagnell, Jr., Ph.D., 2012
Chapter 1 Parts C. Robert Bagnell, Jr., Ph.D., 2012 Figure 1.1 illustrates the parts of an upright compound microscope and indicates the terminology that I use in these notes. Figure 1.1. Parts of a Compound
ME6130 An introduction to CFD 1-1
ME6130 An introduction to CFD 1-1 What is CFD? Computational fluid dynamics (CFD) is the science of predicting fluid flow, heat and mass transfer, chemical reactions, and related phenomena by solving numerically
Rutgers Analytical Physics 750:228, Spring 2016 ( RUPHY228S16 )
1 of 13 2/17/2016 5:28 PM Signed in as Weida Wu, Instructor Help Sign Out Rutgers Analytical Physics 750:228, Spring 2016 ( RUPHY228S16 ) My Courses Course Settings University Physics with Modern Physics,
2) A convex lens is known as a diverging lens and a concave lens is known as a converging lens. Answer: FALSE Diff: 1 Var: 1 Page Ref: Sec.
Physics for Scientists and Engineers, 4e (Giancoli) Chapter 33 Lenses and Optical Instruments 33.1 Conceptual Questions 1) State how to draw the three rays for finding the image position due to a thin
PHYSICAL PROPERTIES: GLASS. Forensic Science CC 30.07 Spring 2007 Prof. Nehru
PHYSICAL PROPERTIES: GLASS Physical vs. Chemical Properties The forensic scientist must constantly determine those properties that impart distinguishing characteristics to matter, giving it a unique identity.
Revision problem. Chapter 18 problem 37 page 612. Suppose you point a pinhole camera at a 15m tall tree that is 75m away.
Revision problem Chapter 18 problem 37 page 612 Suppose you point a pinhole camera at a 15m tall tree that is 75m away. 1 Optical Instruments Thin lens equation Refractive power Cameras The human eye Combining
Chapter 6 Telescopes: Portals of Discovery. How does your eye form an image? Refraction. Example: Refraction at Sunset.
Chapter 6 Telescopes: Portals of Discovery 6.1 Eyes and Cameras: Everyday Light Sensors Our goals for learning:! How does your eye form an image?! How do we record images? How does your eye form an image?
Study Guide for Exam on Light
Name: Class: Date: Study Guide for Exam on Light Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which portion of the electromagnetic spectrum is used
TS-E24mm f/3.5l TS-E45mm f/2.8 TS-E90mm f/2.8 Instructions
TS-E24mm f/3.5l TS-E45mm f/2.8 TS-E90mm f/2.8 ENG Instructions Thank you for purchasing a Canon product. Canon s TS-E lenses are tilt-shift lenses designed for EOS cameras. The tilt-shift mechanism enables
Waves Sound and Light
Waves Sound and Light r2 c:\files\courses\1710\spr12\wavetrans.doc Ron Robertson The Nature of Waves Waves are a type of energy transmission that results from a periodic disturbance (vibration). They are
Free Convection Film Flows and Heat Transfer
Deyi Shang Free Convection Film Flows and Heat Transfer With 109 Figures and 69 Tables < J Springer Contents 1 Introduction 1 1.1 Scope 1 1.2 Application Backgrounds 1 1.3 Previous Developments 2 1.3.1
Chapter 17: Light and Image Formation
Chapter 17: Light and Image Formation 1. When light enters a medium with a higher index of refraction it is A. absorbed. B. bent away from the normal. C. bent towards from the normal. D. continues in the
Science In Action 8 Unit C - Light and Optical Systems. 1.1 The Challenge of light
1.1 The Challenge of light 1. Pythagoras' thoughts about light were proven wrong because it was impossible to see A. the light beams B. dark objects C. in the dark D. shiny objects 2. Sir Isaac Newton
RAY OPTICS II 7.1 INTRODUCTION
7 RAY OPTICS II 7.1 INTRODUCTION This chapter presents a discussion of more complicated issues in ray optics that builds on and extends the ideas presented in the last chapter (which you must read first!)
Development of Optical Wave Microphone Measuring Sound Waves with No Diaphragm
Progress In Electromagnetics Research Symposium Proceedings, Taipei, March 5 8, 3 359 Development of Optical Wave Microphone Measuring Sound Waves with No Diaphragm Yoshito Sonoda, Takashi Samatsu, and
Light and its effects
Light and its effects Light and the speed of light Shadows Shadow films Pinhole camera (1) Pinhole camera (2) Reflection of light Image in a plane mirror An image in a plane mirror is: (i) the same size
9/16 Optics 1 /11 GEOMETRIC OPTICS
9/6 Optics / GEOMETRIC OPTICS PURPOSE: To review the basics of geometric optics and to observe the function of some simple and compound optical devices. APPARATUS: Optical bench, lenses, mirror, target
FSI Machine Vision Training Programs
FSI Machine Vision Training Programs Table of Contents Introduction to Machine Vision (Course # MVC-101) Machine Vision and NeuroCheck overview (Seminar # MVC-102) Machine Vision, EyeVision and EyeSpector
PERFORMANCE EVALUATION OF WATER-FLOW WINDOW GLAZING
PERFORMANCE EVALUATION OF WATER-FLOW WINDOW GLAZING LI CHUNYING DOCTOR OF PHILOSOPHY CITY UNIVERSITY OF HONG KONG FEBRUARY 2012 CITY UNIVERSITY OF HONG KONG 香 港 城 市 大 學 Performance Evaluation of Water-flow
Efficiency, Dispersion and Straylight Performance Tests of Immersed Gratings for High Resolution Spectroscopy in the Near Infra-red
Changing the economics of space Efficiency, Dispersion and Straylight Performance Tests of Immersed Gratings for High Resolution Spectroscopy in the Near Infra-red J. Fernandez-Saldivar 1, F. Culfaz 1,
Convex Mirrors. Ray Diagram for Convex Mirror
Convex Mirrors Center of curvature and focal point both located behind mirror The image for a convex mirror is always virtual and upright compared to the object A convex mirror will reflect a set of parallel
Thin Lenses Drawing Ray Diagrams
Drawing Ray Diagrams Fig. 1a Fig. 1b In this activity we explore how light refracts as it passes through a thin lens. Eyeglasses have been in use since the 13 th century. In 1610 Galileo used two lenses
Refraction of Light at a Plane Surface. Object: To study the refraction of light from water into air, at a plane surface.
Refraction of Light at a Plane Surface Object: To study the refraction of light from water into air, at a plane surface. Apparatus: Refraction tank, 6.3 V power supply. Theory: The travel of light waves
Physics 30 Worksheet # 14: Michelson Experiment
Physics 30 Worksheet # 14: Michelson Experiment 1. The speed of light found by a Michelson experiment was found to be 2.90 x 10 8 m/s. If the two hills were 20.0 km apart, what was the frequency of the
LIST OF CONTENTS CHAPTER CONTENT PAGE DECLARATION DEDICATION ACKNOWLEDGEMENTS ABSTRACT ABSTRAK
vii LIST OF CONTENTS CHAPTER CONTENT PAGE DECLARATION DEDICATION ACKNOWLEDGEMENTS ABSTRACT ABSTRAK LIST OF CONTENTS LIST OF TABLES LIST OF FIGURES LIST OF NOTATIONS LIST OF ABBREVIATIONS LIST OF APPENDICES
INTRODUCTION TO FLUID MECHANICS
INTRODUCTION TO FLUID MECHANICS SIXTH EDITION ROBERT W. FOX Purdue University ALAN T. MCDONALD Purdue University PHILIP J. PRITCHARD Manhattan College JOHN WILEY & SONS, INC. CONTENTS CHAPTER 1 INTRODUCTION
waves rays Consider rays of light from an object being reflected by a plane mirror (the rays are diverging): mirror object
PHYS1000 Optics 1 Optics Light and its interaction with lenses and mirrors. We assume that we can ignore the wave properties of light. waves rays We represent the light as rays, and ignore diffraction.
1. You stand two feet away from a plane mirror. How far is it from you to your image? a. 2.0 ft c. 4.0 ft b. 3.0 ft d. 5.0 ft
Lenses and Mirrors 1. You stand two feet away from a plane mirror. How far is it from you to your image? a. 2.0 ft c. 4.0 ft b. 3.0 ft d. 5.0 ft 2. Which of the following best describes the image from
Astrophysical Techniques. C R Kitchin
Astrophysical Techniques C R Kitchin University of Hertfordshire Observatory Third Edition SUB Gottingen 7 210 119 268 99 A 8843 Institute of Physics Publishing Bristol and Philadelphia Contents Preface
CHAPTER - 1. Chapter ONE: WAVES CHAPTER - 2. Chapter TWO: RAY OPTICS AND OPTICAL INSTRUMENTS. CHAPTER - 3 Chapter THREE: WAVE OPTICS PERIODS PERIODS
BOARD OF INTERMEDIATE EDUCATION, A.P., HYDERABAD REVISION OF SYLLABUS Subject PHYSICS-II (w.e.f 2013-14) Chapter ONE: WAVES CHAPTER - 1 1.1 INTRODUCTION 1.2 Transverse and longitudinal waves 1.3 Displacement
Mirror, mirror - Teacher Guide
Introduction Mirror, mirror - Teacher Guide In this activity, test the Law of Reflection based on experimental evidence. However, the back-silvered glass mirrors present a twist. As light travels from
INTRODUCTION TO RENDERING TECHNIQUES
INTRODUCTION TO RENDERING TECHNIQUES 22 Mar. 212 Yanir Kleiman What is 3D Graphics? Why 3D? Draw one frame at a time Model only once X 24 frames per second Color / texture only once 15, frames for a feature
1051-232 Imaging Systems Laboratory II. Laboratory 4: Basic Lens Design in OSLO April 2 & 4, 2002
05-232 Imaging Systems Laboratory II Laboratory 4: Basic Lens Design in OSLO April 2 & 4, 2002 Abstract: For designing the optics of an imaging system, one of the main types of tools used today is optical
Near-field scanning optical microscopy (SNOM)
Adviser: dr. Maja Remškar Institut Jožef Stefan January 2010 1 2 3 4 5 6 Fluorescence Raman and surface enhanced Raman 7 Conventional optical microscopy-limited resolution Two broad classes of techniques
1. Photon Beam Damage and Charging at Solid Surfaces John H. Thomas III
1. Photon Beam Damage and Charging at Solid Surfaces John H. Thomas III 1. Introduction............................. 2. Electrostatic Charging of Samples in Photoemission Experiments............................
Lenses and Apertures of A TEM
Instructor: Dr. C.Wang EMA 6518 Course Presentation Lenses and Apertures of A TEM Group Member: Anup Kr. Keshri Srikanth Korla Sushma Amruthaluri Venkata Pasumarthi Xudong Chen Outline Electron Optics
Laboratory #3 Guide: Optical and Electrical Properties of Transparent Conductors -- September 23, 2014
Laboratory #3 Guide: Optical and Electrical Properties of Transparent Conductors -- September 23, 2014 Introduction Following our previous lab exercises, you now have the skills and understanding to control
PHYSICS PAPER 1 (THEORY)
PHYSICS PAPER 1 (THEORY) (Three hours) (Candidates are allowed additional 15 minutes for only reading the paper. They must NOT start writing during this time.) ---------------------------------------------------------------------------------------------------------------------
Optical Design using Fresnel Lenses
Optical Design using Fresnel Lenses Basic principles and some practical examples Arthur Davis and Frank Kühnlenz Reflexite Optical Solutions Business Abstract The fresnel lens can be used in a wide variety
Current Staff Course Unit/ Length. Basic Outline/ Structure. Unit Objectives/ Big Ideas. Properties of Waves A simple wave has a PH: Sound and Light
Current Staff Course Unit/ Length August August September September October Unit Objectives/ Big Ideas Basic Outline/ Structure PS4- Types of Waves Because light can travel through space, it cannot be
Looking through the fish-eye the Electron Ronchigram. Duncan T.L. Alexander CIME seminar May 24, 2012
Looking through the fish-eye the Electron Ronchigram Duncan T.L. Alexander CIME seminar May 24, 2012 Introduction Aim of the seminar: open a discussion on the Electron Ronchigram How is it formed? What
Basic Optics System OS-8515C
40 50 30 60 20 70 10 80 0 90 80 10 20 70 T 30 60 40 50 50 40 60 30 C 70 20 80 10 90 90 0 80 10 70 20 60 50 40 30 Instruction Manual with Experiment Guide and Teachers Notes 012-09900B Basic Optics System
Optical Methods of Surface Measurement
Optical Methods of Surface Measurement Ted Vorburger, Guest Researcher National Institute of Standards and Technology (NIST) Measurement Science and Standards in Forensic Firearms Analysis 2012 NIST, Gaithersburg,
Holography 1 HOLOGRAPHY
Holography 1 HOLOGRAPHY Introduction and Background The aesthetic appeal and commercial usefulness of holography are both related to the ability of a hologram to store a three-dimensional image. Unlike
PHYS 222 Spring 2012 Final Exam. Closed books, notes, etc. No electronic device except a calculator.
PHYS 222 Spring 2012 Final Exam Closed books, notes, etc. No electronic device except a calculator. NAME: (all questions with equal weight) 1. If the distance between two point charges is tripled, the
Optical Communications
Optical Communications Telecommunication Engineering School of Engineering University of Rome La Sapienza Rome, Italy 2005-2006 Lecture #2, May 2 2006 The Optical Communication System BLOCK DIAGRAM OF
XXIX ENFMC - Annals of Optics 2006. 3D shadowgram projection using a simple diffractive screen José J. Lunazzi, Noemí I. Rivera Rodríguez.
3D shadowgram projection using a simple diffractive screen José J. Lunazzi, Noemí I. Rivera Rodríguez. Universidade Estadual de Campinas - Instituto de Física [email protected], [email protected]
Third Grade Light and Optics Assessment
Third Grade Light and Optics Assessment 1a. Light travels at an amazingly high speed. How fast does it travel? a. 186,000 miles per second b. 186,000 miles per hour 1b. Light travels at an amazingly high
LIGHT SECTION 6-REFRACTION-BENDING LIGHT From Hands on Science by Linda Poore, 2003.
LIGHT SECTION 6-REFRACTION-BENDING LIGHT From Hands on Science by Linda Poore, 2003. STANDARDS: Students know an object is seen when light traveling from an object enters our eye. Students will differentiate
Measuring the Point Spread Function of a Fluorescence Microscope
Frederick National Laboratory Measuring the Point Spread Function of a Fluorescence Microscope Stephen J Lockett, PhD Principal Scientist, Optical Microscopy and Analysis Laboratory Frederick National
Fraunhofer Diffraction
Physics 334 Spring 1 Purpose Fraunhofer Diffraction The experiment will test the theory of Fraunhofer diffraction at a single slit by comparing a careful measurement of the angular dependence of intensity
Introduction to CFD Analysis
Introduction to CFD Analysis 2-1 What is CFD? Computational Fluid Dynamics (CFD) is the science of predicting fluid flow, heat and mass transfer, chemical reactions, and related phenomena by solving numerically
Building Design for Advanced Technology Instruments Sensitive to Acoustical Noise
Building Design for Advanced Technology Instruments Sensitive to Acoustic Noise Michael Gendreau Colin Gordon & Associates Presentation Outline! High technology research and manufacturing instruments respond
Science Standard Articulated by Grade Level Strand 5: Physical Science
Concept 1: Properties of Objects and Materials Classify objects and materials by their observable properties. Kindergarten Grade 1 Grade 2 Grade 3 Grade 4 PO 1. Identify the following observable properties
Rodenstock Photo Optics
Rogonar Rogonar-S Rodagon Apo-Rodagon N Rodagon-WA Apo-Rodagon-D Accessories: Modular-Focus Lenses for Enlarging, CCD Photos and Video To reproduce analog photographs as pictures on paper requires two
Indiana's Academic Standards 2010 ICP Indiana's Academic Standards 2016 ICP. map) that describe the relationship acceleration, velocity and distance.
.1.1 Measure the motion of objects to understand.1.1 Develop graphical, the relationships among distance, velocity and mathematical, and pictorial acceleration. Develop deeper understanding through representations
DOING PHYSICS WITH MATLAB COMPUTATIONAL OPTICS RAYLEIGH-SOMMERFELD DIFFRACTION INTEGRAL OF THE FIRST KIND
DOING PHYSICS WITH MATLAB COMPUTATIONAL OPTICS RAYLEIGH-SOMMERFELD DIFFRACTION INTEGRAL OF THE FIRST KIND THE THREE-DIMENSIONAL DISTRIBUTION OF THE RADIANT FLUX DENSITY AT THE FOCUS OF A CONVERGENCE BEAM
This Performance Standards include four major components. They are
Eighth Grade Science Curriculum Approved July 12, 2004 The Georgia Performance Standards are designed to provide students with the knowledge and skills for proficiency in science at the eighth grade level.
INTRODUCTION SOME USES OF SPRAY NOZZLES INTRODUCTION TYPES OF SPRAY NOZZLES
SOME USES OF SPRAY NOZZLES It is important that the nozzle you select is appropriate for your particular application Liquid sprays are used in a seemingly endless variety of applications Some of the more
Biomedical & X-ray Physics Kjell Carlsson. Light Microscopy. Compendium compiled for course SK2500, Physics of Biomedical Microscopy.
Biomedical & X-ray Physics Kjell Carlsson Light Microscopy Compendium compiled for course SK2500, Physics of Biomedical Microscopy by Kjell Carlsson Applied Physics Dept., KTH, Stockholm, 2007 No part
Microlenses immersed in nematic liquid crystal with electrically. controllable focal length
Microlenses immersed in nematic liquid crystal with electrically controllable focal length L.G.Commander, S.E. Day, C.H. Chia and D.R.Selviah Dept of Electronic and Electrical Engineering, University College
Longwave IR focal-plane binary optics
Longwave IR focal-plane binary optics Z. Sikorski, H. Polakowski Institute of Optoelectronics, Military University of Technology, 2 Kaliskiego Str., -98 Warsaw, e-mail: [email protected] Abstract In
UNIT I: INTRFERENCE & DIFFRACTION Div. B Div. D Div. F INTRFERENCE
107002: EngineeringPhysics Teaching Scheme: Lectures: 4 Hrs/week Practicals-2 Hrs./week T.W.-25 marks Examination Scheme: Paper-50 marks (2 hrs) Online -50marks Prerequisite: Basics till 12 th Standard
Micro-Optical Sensor Use in Boundary Layer Flows with Polymers and Bubbles
2 nd International Symposium on Seawater Drag Reduction Busan, Korea, 23-26 MAY 2005 Micro-Optical Sensor Use in Boundary Layer Flows with Polymers and Bubbles D. Modarress, P. Svitek (Measurement Science
Lesson 29: Lenses. Double Concave. Double Convex. Planoconcave. Planoconvex. Convex meniscus. Concave meniscus
Lesson 29: Lenses Remembering the basics of mirrors puts you half ways towards fully understanding lenses as well. The same sort of rules apply, just with a few modifications. Keep in mind that for an
FIFTH GRADE TECHNOLOGY
FIFTH GRADE TECHNOLOGY 3 WEEKS LESSON PLANS AND ACTIVITIES SCIENCE AND MATH OVERVIEW OF FIFTH GRADE SCIENCE AND MATH WEEK 1. PRE: Interpreting data from a graph. LAB: Estimating data and comparing results
Solution Derivations for Capa #14
Solution Derivations for Capa #4 ) An image of the moon is focused onto a screen using a converging lens of focal length (f = 34.8 cm). The diameter of the moon is 3.48 0 6 m, and its mean distance from
Today. next two weeks
Today Temporal and spatial coherence Spatially incoherent imaging The incoherent PSF The Optical Transfer Function (OTF) and Modulation Transfer Function (MTF) MTF and contrast comparison of spatially
EXPERIMENT #1: MICROSCOPY
EXPERIMENT #1: MICROSCOPY Brightfield Compound Light Microscope The light microscope is an important tool in the study of microorganisms. The compound light microscope uses visible light to directly illuminate
Robot Perception Continued
Robot Perception Continued 1 Visual Perception Visual Odometry Reconstruction Recognition CS 685 11 Range Sensing strategies Active range sensors Ultrasound Laser range sensor Slides adopted from Siegwart
Buying Your First Telescope By Mike Usher
Buying Your First Telescope By Mike Usher The first thing to understand is that a telescope is a high quality optical device and high quality optical devices are not inexpensive. Second mortgages are not
First let us consider microscopes. Human eyes are sensitive to radiation having wavelengths between
Optical Differences Between Telescopes and Microscopes Robert R. Pavlis, Girard, Kansas USA icroscopes and telescopes are optical instruments that are designed to permit observation of objects and details
Study of the Human Eye Working Principle: An impressive high angular resolution system with simple array detectors
Study of the Human Eye Working Principle: An impressive high angular resolution system with simple array detectors Diego Betancourt and Carlos del Río Antenna Group, Public University of Navarra, Campus
Lens refractive index measurement based on fiber point-diffraction longitudinal interferometry
Lens refractive index measurement based on fiber point-diffraction longitudinal interferometry Lingfeng Chen, * Xiaofei Guo, and Jinjian Hao School of Optoelectronics, Beijing Institute of Technology,
Beam shaping to generate uniform Laser Light Sheet and Linear Laser Spots
Beam shaping to generate uniform Laser Light Sheet and Linear Laser Spots Alexander Laskin, Vadim Laskin AdlOptica GmbH, Rudower Chaussee 29, 12489 Berlin, Germany ABSTRACT Generation of Laser Light Sheet
