Free Convection Film Flows and Heat Transfer


 Shannon Reeves
 2 years ago
 Views:
Transcription
1 Deyi Shang Free Convection Film Flows and Heat Transfer With 109 Figures and 69 Tables < J Springer
2 Contents 1 Introduction Scope Application Backgrounds Previous Developments For Accelerating Boundary Layers and Film Flow of Newtonian Fluids For GravityDriven Film Flow of NonNewtonian PowerLaw Fluids Recent Development A Novel System of Analysis Models A New Approach for the Treatment of Variable Thermophysical Properties Hydrodynamics and Heat and Mass Transfer Recent Experimental Measurements of Velocity Field in Boundary Layer 12 References 13 Part I Laminar Free Convection 2 Basic Conservation Equations for Laminar Free Convection Continuity Equation Momentum Equation (NavierStokes Equations) Energy Equation Basic Equations of Free Convection Boundary Layer Continuity Equation Momentum Equations (NavierStokes Equations) Energy Equations 34
3 X Contents 3 Brief Review of Previous Method for Analysis of Laminar Free Convection FalknerSkan Transformation for Fluid Laminar Forced Convection FalknerSkan Transformation for Fluid Laminar Free Convection For Boussinesq Approximation Consideration of Variable Thermophysical Properties Some Previous Methods for Treatment of Variable Thermophysical Properties 45 References 47 4 Laminar Free Convection of Monatomic and Diatomic Gases, Air, and Water Vapor Introduction Governing Partial Differential Equations Similarity Transformation of the Governing Equations Assumed Dimensionless Variables with Velocity Component Method The Similarity Transformation Treatment of Variable Thermophysical Properties Temperature Parameters Temperature Parameter Method Heat Transfer Analysis Numerical Results Effect of Variable Thermophysical Properties on Heat Transfer Summary Remarks Calculation Example 73 References 74 5 Laminar Free Convection of Polyatomic Gas Introduction Variable Thermophysical Properties Governing Partial Differential Equations and their Similarity Transformations Heat Transfer Analysis Numerical Solutions CurveFit Formulas for Heat Transfer Summary Remarks Calculation Example 94 References 95
4 Contents 6 Laminar Free Convection of Liquid Introduction Governing Partial Deferential Equations and their Similarity Transformation Governing Partial Differential Equations Dimensionless Transformation Variables Similarity Transformation Identical Buoyancy Factor Treatment of Variable Thermophysical Properties Heat Transfer Analysis Numerical Solutions A CurveFit Formula for Heat Transfer Summary Ill 6.8 Remarks Ill 6.9 Calculation Examples 113 References Heat Transfer Deviation of Laminar Free Convection Caused by Boussinesq Approximation Introduction Governing Equations of Fluid Laminar Free Convection under Boussinesq Approximation For Fluid Laminar Free Convection For Gas Laminar Free Convection Heat Transfer Deviation of Liquid Laminar Free Convection Caused by Boussinesq Approximation Boussinesq Solutions for Laminar Free Convection Models for Predicted Deviation on Heat Transfer Caused by Boussinesq Approximation Prediction of Heat Transfer Deviation E^x for Water Laminar Free Convection Heat Transfer Deviation of Gas Laminar Free Convection Caused by Boussinesq Approximation Boussinesq Solutions for Gas Laminar Free Convection Models on Predicted Deviation of Heat Transfer of Gas Laminar Free Convection Caused by Boussinesq Approximation Prediction Results of Deviation E^x for Gas Laminar Free Convection Summary Remarks Calculation example 136 References 138 XI
5 XII Contents 8 Experimental Measurements of Free Convection with Large Temperature Difference Introduction Experimental Measurements of Velocity Field for Air Laminar Free Convection Experimental Devices and Instruments Measurement Results Governing Equations The Numerical Solutions Experimental Measurements of Velocity Field for Water Laminar Free Convection Main Experimental Apparatus The Results of Experiment Governing Equations Numerical Solutions Remarks 153 References Relationship on Laminar Free Convection and Heat Transfer Between Inclined and Vertical Cases Introduction Fluid Free Convection on inclined plate Physical Model and Basic Equations Similarity Transformation of the Basic Equations Relationships of Momentum, Heat, and Mass Transfer between Inclined and Vertical Cases Gas Free Convection on Inclined Plate Summary Remarks Calculation Example 175 Appendix A. Derivation of Equations (9.1)(9.3) Derivation of equation (9.1) Derivation of equation (9.2) Derivation of equation (9.3) 181 References 182 Part II Film Boiling and Condensation 10 Laminar Film Boiling of Saturated Liquid Introduction Governing Partial Differential Equations Similarity Transformation Similarity Transformation Variables Similarity Transformation 192
6 Contents XIII 10.4 Numerical Calculation Treatment of Variable Thermophysical Properties Numerical Calculation Numerical Results Heat Transfer Heat Transfer Analysis Curvefit Equation for Heat Transfer Mass Transfer Mass Transfer Analysis CurveFit Formulae for Mass Transfer Remarks Calculation Example 209 References Laminar Film Boiling of Subcooled Liquid Introduction Governing Partial Differential Equations Similarity Transformation Transformation Variables Similarity Transformation Numerical Calculation Treatment of Variable Thermophysical Properties Numerical Calculation Heat and Mass transfer Heat Transfer Analysis CurveFit Equations for Heat Transfer Mass Transfer Analysis Summary Remarks Calculation Example 243 References Laminar Film Condensation of Saturated Vapor Introduction Governing Partial Differential Equations Similarity Variables Similarity Transformation of Governing Equations Numerical Solutions Treatment of Variable Thermophysical Properties Calculation Procedure Solution Heat and Mass Transfer Analysis for Heat and Mass Transfer CurveFit Equations for Heat and Mass Transfer Remarks 265
7 XIV Contents 12.8 Calculation Example 265 Appendix A. Derivation of Similarity Transformation of Governing Equations (12.1)(12.5) 270 References Effects of Various Physical Conditions on Film Condensations Introduction Review of Governing Equations for Film Condensation of Saturated Vapor Partial Differential Equations Similarity Variables Transformed Dimensionless Differential Equations Different Physical Assumptions Assumption a (with Boussinesq Approximation of Condensate Film) Assumption b (Ignoring Shear Force at Liquid Vapor Interface) Assumption c (Ignoring Inertia Force of the Condensate Film) Assumption d (Ignoring Thermal Convection of the Condensate Film) Effects of Various Physical Conditions on Velocity and Temperature Fields Effects of Various Physical Conditions on Heat Transfer Effects of Various Physical Conditions on Condensate Film Thickness Effect of Various Physical Conditions on Mass Flow Rate of the Condensation Remarks Effects of Boussinesq Approximation Effects of Shear Force at the LiquidVapor Interface Effect of Inertial Force of the Condensate Film Effects of Thermal Convection of the Condensate Film. 299 References Laminar Film Condensation of Superheated Vapor Introduction Governing Partial Differential Equations with TwoPhase Film Similarity Transformation Transformation Variables Ordinary Differential Equations Treatment of Variable Thermophysical Properties Numerical Solutions Calculation Procedure 310
8 Contents Numerical Solution Heat Transfer Heat Transfer Condensate Mass Flow Rate Summary Remarks Calculation Example 326 References 329 XV Part III Falling Film Flow of NonNewtonian Fluids 15 Hydrodynamics of Falling Film Flow of NonNewtonian PowerLaw Fluids Principal Types of PowerLaw Fluids Newtonian Fluids PowerLaw Fluids Introduction of Studies on Hydrodynamics of GravityDriven Film Flow of NonNewtonian PowerLaw Fluids (FFNF) Physical Model and Governing Partial Differential Equations A New Similarity Transformation Numerical Solutions Local SkinFriction Coefficient Mass Flow Rate Length of Boundary Layer Region Critical Film Thickness Effect of Wall Inclination Summary Remarks Calculation Example 354 References Pseudosimilarity and Boundary Layer Thickness for NonNewtonian Falling Film Flow Introduction Physical Model and Governing Partial Differential Equations Similarity Transformation Local Prandtl Number Pseudosimilarity for Energy Equation Critical Local Prandtl Number Analysis of Boundary Layer Thickness Precautions for Pr x > Pr* Precautions for Pr x < Pr* Remarks 375 References 377
9 XVI Contents 17 Heat Transfer of the Falling Film Flow Introduction Governing Equations Heat Transfer Analysis Numerical Solution for Heat Transfer Local Similarity vs. Local Pseudosimilarity Summary Remarks Calculation Example 394 References 397 A Tables with Thermophysical Properties 399 References 405 Index 407
Fundamentals of Heat and Mass Transfer
2008 AGIInformation Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. SIXTH EDITION Fundamentals of Heat and Mass Transfer FRANK P. INCROPERA
More informationINTRODUCTION TO FLUID MECHANICS
INTRODUCTION TO FLUID MECHANICS SIXTH EDITION ROBERT W. FOX Purdue University ALAN T. MCDONALD Purdue University PHILIP J. PRITCHARD Manhattan College JOHN WILEY & SONS, INC. CONTENTS CHAPTER 1 INTRODUCTION
More informationBasic Equations, Boundary Conditions and Dimensionless Parameters
Chapter 2 Basic Equations, Boundary Conditions and Dimensionless Parameters In the foregoing chapter, many basic concepts related to the present investigation and the associated literature survey were
More informationDistinguished Professor George Washington University. Graw Hill
Mechanics of Fluids Fourth Edition Irving H. Shames Distinguished Professor George Washington University Graw Hill Boston Burr Ridge, IL Dubuque, IA Madison, Wl New York San Francisco St. Louis Bangkok
More informationNatural Convection. Buoyancy force
Natural Convection In natural convection, the fluid motion occurs by natural means such as buoyancy. Since the fluid velocity associated with natural convection is relatively low, the heat transfer coefficient
More informationENSC 283 Introduction and Properties of Fluids
ENSC 283 Introduction and Properties of Fluids Spring 2009 Prepared by: M. Bahrami Mechatronics System Engineering, School of Engineering and Sciences, SFU 1 Pressure Pressure is the (compression) force
More informationCFD Simulation of Subcooled Flow Boiling using OpenFOAM
Research Article International Journal of Current Engineering and Technology EISSN 2277 4106, PISSN 23475161 2014 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet CFD
More informationFundamentals of THERMALFLUID SCIENCES
Fundamentals of THERMALFLUID SCIENCES THIRD EDITION YUNUS A. CENGEL ROBERT H. TURNER Department of Mechanical JOHN M. CIMBALA Me Graw Hill Higher Education Boston Burr Ridge, IL Dubuque, IA Madison, Wl
More informationHeat and cold storage with PCM
Harald Mehling Luisa F. Cabeza Heat and cold storage with PCM An up to date introduction into basics and applications With 208 Figures and 28 Tables 4y Springer Contents 1 Basic thermodynamics of thermal
More informationCorrelations for Convective Heat Transfer
In many cases it's convenient to have simple equations for estimation of heat transfer coefficients. Below is a collection of recommended correlations for singlephase convective flow in different geometries
More informationContents. Microfluidics  Jens Ducrée Physics: NavierStokes Equation 1
Contents 1. Introduction 2. Fluids 3. Physics of Microfluidic Systems 4. Microfabrication Technologies 5. Flow Control 6. Micropumps 7. Sensors 8. InkJet Technology 9. Liquid Handling 10.Microarrays 11.Microreactors
More informationIntroduction to Fluid Mechanics. Chapter 9 External Incompressible Viscous Flow. Pritchard
Introduction to Fluid Mechanics Chapter 9 External Incompressible Viscous Flow Main Topics The BoundaryLayer Concept BoundaryLayer Thicknesses Laminar FlatPlate Boundary Layer: Exact Solution Momentum
More informationHeat Transfer From A Heated Vertical Plate
Heat Transfer From A Heated Vertical Plate Mechanical and Environmental Engineering Laboratory Department of Mechanical and Aerospace Engineering University of California at San Diego La Jolla, California
More informationEffect of Aspect Ratio on Laminar Natural Convection in Partially Heated Enclosure
Universal Journal of Mechanical Engineering (1): 833, 014 DOI: 10.13189/ujme.014.00104 http://www.hrpub.org Effect of Aspect Ratio on Laminar Natural Convection in Partially Heated Enclosure Alireza Falahat
More informationAA200 Chapter 9  Viscous flow along a wall
AA200 Chapter 9  Viscous flow along a wall 9.1 The noslip condition 9.2 The equations of motion 9.3 Plane, Compressible Couette Flow (Review) 9.4 The viscous boundary layer on a wall 9.5 The laminar
More informationNUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES
Vol. XX 2012 No. 4 28 34 J. ŠIMIČEK O. HUBOVÁ NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES Jozef ŠIMIČEK email: jozef.simicek@stuba.sk Research field: Statics and Dynamics Fluids mechanics
More informationDifferential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation
Differential Relations for Fluid Flow In this approach, we apply our four basic conservation laws to an infinitesimally small control volume. The differential approach provides point by point details of
More informationSolving Direct and Inverse Heat Conduction Problems
Jan Taler Piotr Duda Solving Direct and Inverse Heat Conduction Problems 4y Springer Part I Heat Conduction Fundamentals 1 1 Fourier Law 3 Literature 6 2 Mass and Energy Balance Equations 7 2.1 Mass Balance
More informationModel of a flow in intersecting microchannels. Denis Semyonov
Model of a flow in intersecting microchannels Denis Semyonov LUT 2012 Content Objectives Motivation Model implementation Simulation Results Conclusion Objectives A flow and a reaction model is required
More informationBasic Principles in Microfluidics
Basic Principles in Microfluidics 1 Newton s Second Law for Fluidics Newton s 2 nd Law (F= ma) : Time rate of change of momentum of a system equal to net force acting on system!f = dp dt Sum of forces
More informationA Guide to Calculate Convection Coefficients for Thermal Problems Application Note
A Guide to Calculate Convection Coefficients for Thermal Problems Application Note Keywords: Thermal analysis, convection coefficients, computational fluid dynamics, free convection, forced convection.
More informationThe Analysis of the Flow, Heat and Mass Transfer Process Inside a Cryogenic PH3 Trapper
Purdue University Purdue epubs International Refrigeration and Air Conditioning Conference School of Mechanical Engineering 2000 The Analysis of the Flow, Heat and Mass Transfer Process Inside a Cryogenic
More informationFREESTUDY HEAT TRANSFER TUTORIAL 3 ADVANCED STUDIES
FREESTUDY HEAT TRANSFER TUTORIAL ADVANCED STUDIES This is the third tutorial in the series on heat transfer and covers some of the advanced theory of convection. The tutorials are designed to bring the
More informationFluids and Solids: Fundamentals
Fluids and Solids: Fundamentals We normally recognize three states of matter: solid; liquid and gas. However, liquid and gas are both fluids: in contrast to solids they lack the ability to resist deformation.
More informationFREE CONVECTIVE HEAT AND MASS TRANSFER FLOW UNDER THE EFFECT OF SINUSOIDAL SUCTION WITH TIME DEPENDENT PERMEABILITY
FREE CONVECTIVE HEAT AND MASS TRANSFER FLOW UNDER THE EFFECT OF SINUSOIDAL SUCTION WITH TIME DEPENDENT PERMEABILITY Aarti Tiwari 1, K.K.Tiwari 2, T.S.Chauhan 3, I.S.Chauhan 4 1 Deptt. of Basic Sciences,
More informationChapter 1. Governing Equations of Fluid Flow and Heat Transfer
Chapter 1 Governing Equations of Fluid Flow and Heat Transfer Following fundamental laws can be used to derive governing differential equations that are solved in a Computational Fluid Dynamics (CFD) study
More informationChapter 3 Properties of A Pure Substance
Chapter 3 Properties of A Pure Substance Pure substance: A pure substance is one that has a homogeneous and invariable chemical composition. Air is a mixture of several gases, but it is considered to be
More informationConvection Heat Transfer From Tube Banks in Crossflow: Analytical Approach
AIAA 20050958 Convection Heat Transfer From Tube Banks in Crossflow: Analytical Approach M. M. Yovanovich, Fellow AIAA W. A. Khan J. R. Culham Microelectronics Heat Transfer Laboratory Department of Mechanical
More informationCE 204 FLUID MECHANICS
CE 204 FLUID MECHANICS Onur AKAY Assistant Professor Okan University Department of Civil Engineering Akfırat Campus 34959 TuzlaIstanbul/TURKEY Phone: +902166771630 ext.1974 Fax: +902166771486 Email:
More informationEXAMPLE: Water Flow in a Pipe
EXAMPLE: Water Flow in a Pipe P 1 > P 2 Velocity profile is parabolic (we will learn why it is parabolic later, but since friction comes from walls the shape is intuitive) The pressure drops linearly along
More informationModule 2 : Convection. Lecture 20a : Illustrative examples
Module 2 : Convection Lecture 20a : Illustrative examples Objectives In this class: Examples will be taken where the concepts discussed for heat transfer for tubular geometries in earlier classes will
More informationEntrance Conditions. Chapter 8. Islamic Azad University
Chapter 8 Convection: Internal Flow Islamic Azad University Karaj Branch Entrance Conditions Must distinguish between entrance and fully developed regions. Hydrodynamic Effects: Assume laminar flow with
More informationRavi Kumar Singh*, K. B. Sahu**, Thakur Debasis Mishra***
Ravi Kumar Singh, K. B. Sahu, Thakur Debasis Mishra / International Journal of Engineering Research and Applications (IJERA) ISSN: 4896 www.ijera.com Vol. 3, Issue 3, MayJun 3, pp.76677 Analysis of
More informationPractice Problems on the NavierStokes Equations
ns_0 A viscous, incompressible, Newtonian liquid flows in stead, laminar, planar flow down a vertical wall. The thickness,, of the liquid film remains constant. Since the liquid free surface is eposed
More informationFLUID DYNAMICS. Intrinsic properties of fluids. Fluids behavior under various conditions
FLUID DYNAMICS Intrinsic properties of fluids Fluids behavior under various conditions Methods by which we can manipulate and utilize the fluids to produce desired results TYPES OF FLUID FLOW Laminar or
More informationECH 4224L Unit Operations Lab I Thin Film Evaporator. Introduction. Objective
Introduction In this experiment, you will use thinfilm evaporator (TFE) to separate a mixture of water and ethylene glycol (EG). In a TFE a mixture of two fluids runs down a heated inner wall of a cylindrical
More informationHEAT TRANSFER ANALYSIS IN A 3D SQUARE CHANNEL LAMINAR FLOW WITH USING BAFFLES 1 Vikram Bishnoi
HEAT TRANSFER ANALYSIS IN A 3D SQUARE CHANNEL LAMINAR FLOW WITH USING BAFFLES 1 Vikram Bishnoi 2 Rajesh Dudi 1 Scholar and 2 Assistant Professor,Department of Mechanical Engineering, OITM, Hisar (Haryana)
More informationExergy Analysis of a Water Heat Storage Tank
Exergy Analysis of a Water Heat Storage Tank F. Dammel *1, J. Winterling 1, K.J. Langeheinecke 3, and P. Stephan 1,2 1 Institute of Technical Thermodynamics, Technische Universität Darmstadt, 2 Center
More informationNatural Convective Heat Transfer from Inclined Narrow Plates
Natural Convective Heat Transfer from Inclined Narrow Plates Mr. Gandu Sandeep MTech Student, Department of Mechanical Engineering, Malla Reddy College of Engineering, Maisammaguda, Secunderabad, R.R.Dist,
More informationChapter 5. Microfluidic Dynamics
Chapter 5 Thermofluid Engineering and Microsystems Microfluidic Dynamics NavierStokes equation 1. The momentum equation 2. Interpretation of the NSequation 3. Characteristics of flows in microfluidics
More informationAbaqus/CFD Sample Problems. Abaqus 6.10
Abaqus/CFD Sample Problems Abaqus 6.10 Contents 1. Oscillatory Laminar Plane Poiseuille Flow 2. Flow in Shear Driven Cavities 3. Buoyancy Driven Flow in Cavities 4. Turbulent Flow in a Rectangular Channel
More informationME 144: Heat Transfer Convection Relations for External Flows. J. M. Meyers
ME 144: Heat Transfer Convection Relations for External Flows Empirical Correlations Generally, convection correlations for external flows are determined experimentally using controlled lab conditions
More informationSimultaneous Heat and Mass Transfer in Inclined Channel with Asymmetrical Conditions
Journal of Applied Fluid Mechanics, Vol. 5, No. 3, pp. 5362, 2012. Available online at www.jafmonline.net, ISSN 17353572, EISSN 17353645. Simultaneous Heat and Mass Transfer in Inclined Channel with
More informationReview: Convection and Heat Exchangers. Reminders
CH EN 3453 Heat Transfer Review: Convection and Heat Exchangers Chapters 6, 7, 8, 9 and 11 Reminders Midterm #2 Wednesday at 8:15 AM Review tomorrow 3:30 PM in WEB L104 (I think) Project Results and Discussion
More informationLaminar Flow and Heat Transfer of HerschelBulkley Fluids in a Rectangular Duct; FiniteElement Analysis
Tamkang Journal of Science and Engineering, Vol. 12, No. 1, pp. 99 107 (2009) 99 Laminar Flow and Heat Transfer of HerschelBulkley Fluids in a Rectangular Duct; FiniteElement Analysis M. E. SayedAhmed
More informationExpress Introductory Training in ANSYS Fluent Lecture 1 Introduction to the CFD Methodology
Express Introductory Training in ANSYS Fluent Lecture 1 Introduction to the CFD Methodology Dimitrios Sofialidis Technical Manager, SimTec Ltd. Mechanical Engineer, PhD PRACE Autumn School 2013  Industry
More informationChemical Process calculation III
Chapter 7 Ideal and Real Gases Gas, Liquid, and Solid Chemical Process calculation III Gas: a substance in a form like air, relatively low in density and viscosity Liquid: a substance that flows freely
More information4.What is the appropriate dimensionless parameter to use in comparing flow types? YOUR ANSWER: The Reynolds Number, Re.
CHAPTER 08 1. What is most likely to be the main driving force in pipe flow? A. Gravity B. A pressure gradient C. Vacuum 2.What is a general description of the flow rate in laminar flow? A. Small B. Large
More informationHeat Transfer by Free Convection
Heat Transfer by Free Convection Introduction This example describes a fluid flow problem with heat transfer in the fluid. An array of heating tubes is submerged in a vessel with fluid flow entering at
More informationLecture 6  Boundary Conditions. Applied Computational Fluid Dynamics
Lecture 6  Boundary Conditions Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (20022006) Fluent Inc. (2002) 1 Outline Overview. Inlet and outlet boundaries.
More informationContents. Microfluidics  Jens Ducrée Physics: Fluid Dynamics 1
Contents 1. Introduction 2. Fluids 3. Physics of Microfluidic Systems 4. Microfabrication Technologies 5. Flow Control 6. Micropumps 7. Sensors 8. InkJet Technology 9. Liquid Handling 10.Microarrays 11.Microreactors
More informationModelling of heat transport in twophase flow and of mass transfer between phases using the levelset method
Modelling of heat transport in twophase flow and of mass transfer between phases using the levelset method TGTC3 Magnus Aashammer Gjennestad and Svend Tollak Munkejord 20140604 SINTEF Energy Research
More informationNotes on Polymer Rheology Outline
1 Why is rheology important? Examples of its importance Summary of important variables Description of the flow equations Flow regimes  laminar vs. turbulent  Reynolds number  definition of viscosity
More information240EQ014  Transportation Science
Coordinating unit: 240  ETSEIB  Barcelona School of Industrial Engineering Teaching unit: 713  EQ  Department of Chemical Engineering Academic year: Degree: 2015 MASTER'S DEGREE IN CHEMICAL ENGINEERING
More informationCh 2 Properties of Fluids  II. Ideal Fluids. Real Fluids. Viscosity (1) Viscosity (3) Viscosity (2)
Ch 2 Properties of Fluids  II Ideal Fluids 1 Prepared for CEE 3500 CEE Fluid Mechanics by Gilberto E. Urroz, August 2005 2 Ideal fluid: a fluid with no friction Also referred to as an inviscid (zero viscosity)
More informationEffective parameters on second law analysis for semicircular ducts in laminar flow and constant wall heat flux B
International Communications in Heat and Mass Transfer 32 (2005) 266 274 www.elsevier.com/locate/ichmt Effective parameters on second law analysis for semicircular ducts in laminar flow and constant wall
More informationAdaptation and validation of OpenFOAM CFDsolvers for nuclear safety related flow simulations
Adaptation and validation of OpenFOAM CFDsolvers for nuclear safety related flow simulations SAFIR2010 Seminar, 10.11.3.2011, Espoo Juho Peltola, Timo Pättikangas (VTT) Tomas Brockmann, Timo Siikonen
More informationHeat Transfer Prof. Dr. Ale Kumar Ghosal Department of Chemical Engineering Indian Institute of Technology, Guwahati
Heat Transfer Prof. Dr. Ale Kumar Ghosal Department of Chemical Engineering Indian Institute of Technology, Guwahati Module No. # 04 Convective Heat Transfer Lecture No. # 03 Heat Transfer Correlation
More informationTransactions on Engineering Sciences vol 5, 1994 WIT Press, ISSN
Heat transfer from thermally developing flow of nonnewtonian fluids in rectangular ducts B.T.F. Chung & Z.J. Zhang Department of Mechanical Engineering, The University of Akron, Akron, ABSTRACT The purpose
More informationHEAT TRANSFER IM0245 3 LECTURE HOURS PER WEEK THERMODYNAMICS  IM0237 2014_1
COURSE CODE INTENSITY PREREQUISITE COREQUISITE CREDITS ACTUALIZATION DATE HEAT TRANSFER IM05 LECTURE HOURS PER WEEK 8 HOURS CLASSROOM ON 6 WEEKS, HOURS LABORATORY, HOURS OF INDEPENDENT WORK THERMODYNAMICS
More informationHeat transfer in Flow Through Conduits
Heat transfer in Flow Through Conduits R. Shankar Suramanian Department of Chemical and Biomolecular Engineering Clarkson University A common situation encountered y the chemical engineer is heat transfer
More informationCARL HANSER VERLAG. Chris Rauwendaal. Polymer Extrusion
CARL HANSER VERLAG Chris Rauwendaal Polymer Extrusion 3446217746 www.hanser.de Contents Preface to the Fourth Edition.......................... Preface to the First Edition...........................
More informationCFD SIMULATION OF SDHW STORAGE TANK WITH AND WITHOUT HEATER
International Journal of Advancements in Research & Technology, Volume 1, Issue2, July2012 1 CFD SIMULATION OF SDHW STORAGE TANK WITH AND WITHOUT HEATER ABSTRACT (1) Mr. Mainak Bhaumik M.E. (Thermal Engg.)
More informationApplied Fluid Mechanics
Applied Fluid Mechanics Sixth Edition Robert L. Mott University of Dayton PEARSON Prentkv Pearson Education International CHAPTER 1 THE NATURE OF FLUIDS AND THE STUDY OF FLUID MECHANICS 1.1 The Big Picture
More informationINVESTIGATION OF FALLING BALL VISCOMETRY AND ITS ACCURACY GROUP R1 Evelyn Chou, Julia Glaser, Bella Goyal, Sherri Wykosky
INVESTIGATION OF FALLING BALL VISCOMETRY AND ITS ACCURACY GROUP R1 Evelyn Chou, Julia Glaser, Bella Goyal, Sherri Wykosky ABSTRACT: A falling ball viscometer and its associated equations were studied in
More informationCHEMICAL ENGINEERING AND CHEMICAL PROCESS TECHNOLOGY  Vol. I  Interphase Mass Transfer  A. Burghardt
INTERPHASE MASS TRANSFER A. Burghardt Institute of Chemical Engineering, Polish Academy of Sciences, Poland Keywords: Turbulent flow, turbulent mass flux, eddy viscosity, eddy diffusivity, Prandtl mixing
More informationME6130 An introduction to CFD 11
ME6130 An introduction to CFD 11 What is CFD? Computational fluid dynamics (CFD) is the science of predicting fluid flow, heat and mass transfer, chemical reactions, and related phenomena by solving numerically
More informationTWODIMENSIONAL FINITE ELEMENT ANALYSIS OF FORCED CONVECTION FLOW AND HEAT TRANSFER IN A LAMINAR CHANNEL FLOW
TWODIMENSIONAL FINITE ELEMENT ANALYSIS OF FORCED CONVECTION FLOW AND HEAT TRANSFER IN A LAMINAR CHANNEL FLOW Rajesh Khatri 1, 1 M.Tech Scholar, Department of Mechanical Engineering, S.A.T.I., vidisha
More informationImproved fluid control by proper nonnewtonian flow modeling
Tekna Flow Assurance 2015, Larvik Improved fluid control by proper nonnewtonian flow modeling Stein Tore Johansen, SINTEF Sjur Mo, SINTEF A general wall friction model for a nonnewtonian fluid has been
More informationBasic Fluid Mechanics. Prof. Young I Cho
Basic Fluid Mechanics MEM 220 Prof. Young I Cho Summer 2009 Chapter 1 Introduction What is fluid? Give some examples of fluids. Examples of gases: Examples of liquids: What is fluid mechanics? Mechanics
More informationMagnetohydrodynamic free convection between vertical parallel porous plates in the presence of induced magnetic field
DOI 1.1186/s464151971 RESEARCH Open Access Magnetohydrodynamic free convection between vertical parallel porous plates in the presence of induced magnetic field Sarveshanand 1,2* and A K Singh 2 *Correspondence:
More informationDifferential Balance Equations (DBE)
Differential Balance Equations (DBE) Differential Balance Equations Differential balances, although more complex to solve, can yield a tremendous wealth of information about ChE processes. General balance
More informationHeat Transfer and Energy
What is Heat? Heat Transfer and Energy Heat is Energy in Transit. Recall the First law from Thermodynamics. U = Q  W What did we mean by all the terms? What is U? What is Q? What is W? What is Heat Transfer?
More informationType: Single Date: Homework: READ 12.8, Do CONCEPT Q. # (14) Do PROBLEMS (40, 52, 81) Ch. 12
Type: Single Date: Objective: Latent Heat Homework: READ 12.8, Do CONCEPT Q. # (14) Do PROBLEMS (40, 52, 81) Ch. 12 AP Physics B Date: Mr. Mirro Heat and Phase Change When bodies are heated or cooled their
More informationTurbulence, Heat and Mass Transfer (THMT 09) Poiseuille flow of liquid methane in nanoscopic graphite channels by molecular dynamics simulation
Turbulence, Heat and Mass Transfer (THMT 09) Poiseuille flow of liquid methane in nanoscopic graphite channels by molecular dynamics simulation Sapienza Università di Roma, September 14, 2009 M. T. HORSCH,
More informationDynamic Process Modeling. Process Dynamics and Control
Dynamic Process Modeling Process Dynamics and Control 1 Description of process dynamics Classes of models What do we need for control? Modeling for control Mechanical Systems Modeling Electrical circuits
More informationLecture 3. Turbulent fluxes and TKE budgets (Garratt, Ch 2)
Lecture 3. Turbulent fluxes and TKE budgets (Garratt, Ch 2) In this lecture How does turbulence affect the ensemblemean equations of fluid motion/transport? Force balance in a quasisteady turbulent boundary
More informationHeating In Agitated & NonAgitated Vessels
Heating In Agitated & NonAgitated Vessels IBD/BFBiMidland Section Engineering Symposium on Heat Transfer and Refrigeration BurtononTrent Jan 2014 Mark Phillips Briggs of Burton Contents Heat Energy
More informationChapter 8 Steady Incompressible Flow in Pressure Conduits
Chapter 8 Steady Incompressible Flow in Pressure Conduits Outline 8.1 Laminar Flow and turbulent flow Reynolds Experiment 8.2 Reynolds number 8.3 Hydraulic Radius 8.4 Friction Head Loss in Conduits of
More informationFundamentals of Refrigeration Part 5 Refrigerants
Refrigerants PH Chart Fundamentals of Refrigeration Part 5 Refrigerants This diagram shows a simplified pressure/ enthalpy chart for a non specified refrigerant. The area contained within the envelope
More informationHeat and Mass Correlations
Heat and Mass Correlations Alexander Rattner, Jonathan Bohren November 13, 008 Contents 1 Dimensionless Parameters Boundary ayer Analogies  Require Geometric Similarity 3 External Flow 3 3.1 External
More informationENHANCEMENT OF NATURAL CONVECTION HEAT TRANSFER BY THE EFFECT OF HIGH VOLTAGE D.C. ELECTRIC FIELD
Int. J. Mech. Eng. & Rob. Res. 014 Amit Kumar and Ritesh Kumar, 014 Research Paper ISSN 78 0149 www.ijmerr.com Vol. 3, No. 1, January 014 014 IJMERR. All Rights Reserved ENHANCEMENT OF NATURAL CONVECTION
More informationDiffusion and Fluid Flow
Diffusion and Fluid Flow What determines the diffusion coefficient? What determines fluid flow? 1. Diffusion: Diffusion refers to the transport of substance against a concentration gradient. ΔS>0 Mass
More informationThe Viscosity of Fluids
Experiment #11 The Viscosity of Fluids References: 1. Your first year physics textbook. 2. D. Tabor, Gases, Liquids and Solids: and Other States of Matter (Cambridge Press, 1991). 3. J.R. Van Wazer et
More information1. Fluids Mechanics and Fluid Properties. 1.1 Objectives of this section. 1.2 Fluids
1. Fluids Mechanics and Fluid Properties What is fluid mechanics? As its name suggests it is the branch of applied mechanics concerned with the statics and dynamics of fluids  both liquids and gases.
More informationA COMPUTATIONAL FLUID DYNAMICS STUDY ON THE ACCURACY OF HEAT TRANSFER FROM A HORIZONTAL CYLINDER INTO QUIESCENT WATER
A COMPUTATIONAL FLUID DYNAMICS STUDY ON THE ACCURACY OF HEAT TRANSFER FROM A HORIZONTAL CYLINDER INTO QUIESCENT WATER William Logie and Elimar Frank Institut für Solartechnik SPF, 8640 Rapperswil (Switzerland)
More informationChapter Six. NonNewtonian Liquid
Chapter Six NonNewtonian Liquid For many fluids a plot of shear stress against shear rate does not give a straight line. These are socalled NonNewtonian Fluids. Plots of shear stress against shear rate
More informationLecture 4 Classification of Flows. Applied Computational Fluid Dynamics
Lecture 4 Classification of Flows Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (00006) Fluent Inc. (00) 1 Classification: fluid flow vs. granular flow
More informationENHANCED STEAM CONDENSATION AS A RESULT OF HEAT TRANSFER ADDITIVES
International Journal of Environmentally Conscious Design & Manufacturing, Vol. 10, No. 4, 2001 Printed in the U.S.A. ENHANCED STEAM CONDENSATION AS A RESULT OF HEAT TRANSFER ADDITIVES AARON STONE AND
More informationFLUID MECHANICS IM0235 DIFFERENTIAL EQUATIONS  CB0235 2014_1
COURSE CODE INTENSITY PREREQUISITE COREQUISITE CREDITS ACTUALIZATION DATE FLUID MECHANICS IM0235 3 LECTURE HOURS PER WEEK 48 HOURS CLASSROOM ON 16 WEEKS, 32 HOURS LABORATORY, 112 HOURS OF INDEPENDENT
More informationViscous flow in pipe
Viscous flow in pipe Henryk Kudela Contents 1 Laminar or turbulent flow 1 2 Balance of Momentum  NavierStokes Equation 2 3 Laminar flow in pipe 2 3.1 Friction factor for laminar flow...........................
More informationNUMERICAL AND EXPERIMENTAL ANALYSIS OF ICE MELTING IN WATER
0HFiQLFD&RPSXWDFLRQDO9RO;;,SS± 5,GHOVRKQ9(RQ]RJQLDQG$&DUGRQD(GV DQWD)H±3DUDQi$UJHQWLQD2FWREHU NUMERICAL AND EXPERIMENTAL ANALYSIS OF ICE MELTING IN WATER Cristian A. Peña, Marcela A. Cruchaga and Diego
More informationMHD FLOW AND HEAT TRANSFER WITH TEMPERATURE GRADIENT DEPENDENT HEAT SINK IN A POROUS MEDIUM PAST A STRETCHING SURFACE
I J C E Serials Publications MHD FLOW AND HEAT TRANSFER WITH TEMPERATURE GRADIENT DEPENDENT HEAT SINK IN A POROUS MEDIUM PAST A STRETCHING SURFACE P. H. Veena 1, V. K. Pravin & K. Ashok Kumar 3 ABSTRACT
More informationContents. Bibliografische Informationen digitalisiert durch
1 Introduction 1 1.1 Introduction to Maple 1 1.1.1 Getting Started with Maple 1 1.1.2 Plotting with Maple 3 1.1.3 Solving Linear and Nonlinear Equations 5 1.1.4 Matrix Operations 6 1.1.5 Differential Equations
More informationIn Chapters 7 and 8, we considered heat transfer by forced convection,
cen58933_ch09.qxd 9/4/2002 2:25 PM Page 459 NATURAL CONVECTION CHAPTER 9 In Chapters 7 and 8, we considered heat transfer by forced convection, where a fluid was forced to move over a surface or in a tube
More informationMASTER OF SCIENCE IN MECHANICAL ENGINEERING
MASTER OF SCIENCE IN MECHANICAL ENGINEERING Introduction There are over 22 schools in Mindanao that offer Bachelor of Science in Mechanical Engineering and majority of their faculty members do not have
More informationNUMERICAL INVESTIGATIONS ON HEAT TRANSFER IN FALLING FILMS AROUND TURBULENCE WIRES
NUMERICAL INVESTIGATIONS ON HEAT TRANSFER IN FALLING FILMS AROUND TURBULENCE WIRES Abstract H. Raach and S. Somasundaram Thermal Process Engineering, University of Paderborn, Paderborn, Germany Turbulence
More informationDimensional Analysis
Dimensional Analysis An Important Example from Fluid Mechanics: Viscous Shear Forces V d t / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / Ƭ = F/A = μ V/d More generally, the viscous
More informationHall Effects on Steady MHD Heat and Mass Transfer Free Convection Flow along an Inclined Stretching Sheet with Suction and Heat Generation
Available Online Publications J. Sci. Res. 6 (3), 457466 (4) JOURNAL OF SCIENTIFIC RESEARCH.banglajol.info/index.php/JSR Hall Effects on Steady MHD Heat and Mass Transfer Free Convection Flo along an
More informationIntroduction to CFD Analysis
Introduction to CFD Analysis 21 What is CFD? Computational Fluid Dynamics (CFD) is the science of predicting fluid flow, heat and mass transfer, chemical reactions, and related phenomena by solving numerically
More information