Shear Center in ThinWalled Beams Lab


 Joleen Harris
 1 years ago
 Views:
Transcription
1 Shear Center in ThinWalled Beams Lab Shear flow is developed in beams with thinwalled cross sections shear flow (q sx ): shear force per unit length along cross section q sx =τ sx t behaves much like a flow, especially at junctions in cross section shear flow acts along tangent (s) direction on cross section there is a normal component, τ nx, but it is very small e.g., because it must be zero at ±t/2 shear force: q sx ds (acting in s direction) Shear flow arises from presence of shear loads, V y or V z needed to counter unbalanced bending stresses, σ x to determine, must analyze equilibrium in axial (x) direction Shear center: resultant of shear flow on section must equal V y and V z moment due to q sx must be equal to moment due to V y and V z shear center: point about which moment due to shear flow is zero not applying transverse loads through shear center will cause a twisting of the beam about the x axis AE3145 Shear Center Lab (S2k) Slide 1
2 Approach for Lab Apply transverse loading to tip of a cantilever thinwalled beam use crossarm at tip to apply both a lateral force and twisting mom. measure bending deflection measure twisting vary location of load point along crossarm repeat for beam rotated 90 deg. about x axis Data analysis record deflections using LVDT plot twisting versus load position on crossarm determine location on crossarm where load produces no twisting Compare the measured shear center with theoretical location shear flow calculations used to compute shear center consider both y axis and z axis loading (rotated 90 deg) AE3145 Shear Center Lab (S2k) Slide 2
3 Review from AE2120 (2751), AE3120 Bending of beams with unsymmetrical cross sections bending stress depends on I y, I z and I yz neutral surface is no longer aligned with z or y axes Shear stresses are computed from axial force equilibrium shear stress needed to counter changing σ x analysis strictly correct for rectangular sections only Thinwalled cross sections thin walls support bending stress just like a solid section (no change) thin walls support shear stress in tangential direction transverse shear component is negligable... because it must vanish at the free surfaces (edges of cross section) shear flow: τ xs t (force/unit length along section) shear flow must be equivalent to V y and V z so it must: produce same vertical and horizontal force (V x and V y ) produce same mumoment about any point in cross section point about which no moment is developed: SHEAR CENTER lateral load must be applied through SC to avoid twisting beam twisting loads will cause section to twist about SC (center of rotation) AE3145 Shear Center Lab (S2k) Slide 3
4 Test Configuration Cantilever Cantilever with with thinwalled thinwalled C section section LVDT LVDT measures measures tip tip deflection deflection on on crossarm crossarm cross arm LVDT weight Lab Apparatus Small Small weight weight used used to to apply apply load load at at point point on on crossarm crossarm AE3145 Shear Center Lab (S2k) Slide 4
5 Lab Procedure 1. Determine the beam material properties from reference material (e.g., referenced textbooks or MIL Handbook 5 which can be found in the GT Library). 2. Find the centroid of the given beam crosssection. 3. Determine Iz, I y, I yz for the given section. 4. Determine the shear flow distribution on the crosssection for a V y shear load. 5. Determine the shear flow distribution on the crosssection for a V z shear load. 6. Determine the shear center for the crosssection. 7. Using data from the lab, determine the measured location of the shear center and compare this with the location determined in step 6 above. AE3145 Shear Center Lab (S2k) Slide 5
6 Beam Cross Section 1.353in. Use Use single single line line approx approx for for 1.330in. cross cross section section (t<<b,h) (t<<b,h) 0.420in. Centroidal Axes: 0.050in. 0 = 0 = A A zda yda Area Moments (of Inertia): 2 z da A 2 y da A AE3145 Shear Center Lab (S2k) Slide 6 I I I yy zz yz = = = yzda A
7 Bending of Beam with Unsymmetrical Cross Section q General: σ x Acts over cross section Symmetric cross section, M z =0: x ( yi zi ) M + ( yi zi ) M = σ = ym I zz A 1 yy yz z yz zz y 2 Izz Iyy Iyz z But But also also consider consider equilibrium equilibrium of of segment segment A 1 (see 1 (see next next slide!) slide!) AE3145 Shear Center Lab (S2k) Slide 7
8 Shear Stresses and Shear Flow σ x q sx s Complementary Complementary q sx acts sx acts on on A 1 in 1 in opposite opposite direction direction A 1 σ x +dσ x Axial force equilibrium for element: X F da q dx da A1 A1 0 = x = σ x + sx σ x x+ dx x AE3145 Shear Center Lab (S2k) Slide 8
9 Shear Flow Result for q sx : V y V z qsx = 2 Iyy yda Iyz zda + 2 Izz zda Iyz yda Iyy Izz I yz A1 A I 1 yy Izz I yz A1 A1 s Shear flow: q sx (s) AE3145 Shear Center Lab (S2k) Slide 9
10 Shear Center Moment Moment due due to to V y y must must be be equal equal to to M 0 0 V y s e z Shear flow: q sx (s) Therefore: Therefore: Shear Shear center center lies lies distance distance e z from z from origin origin where: where: M 0 =V 0 =V y e y z z Moment, Moment, M 0, 0, at at origin origin due due to to shear shear flow, flow, q sx sx AE3145 Shear Center Lab (S2k) Slide 10
11 Examples of Shear Centers V y V y q sx Shear Center lies on y axis Shear Center q sx Section Symmetric about about y axis: axis: Angle Angle Section: Shear Shear center center must must lie lie on on y y axis axis (similar (similar argument argument for for z z axis axis symmetry) symmetry) Shear Shear center center must must lie lie at at vertex vertex of of legs legs (regardless (regardless of of orientation orientation of of section) section) AE3145 Shear Center Lab (S2k) Slide 11
12 Shear Center Must Lie Outside C B q sx V y e q sx h/2 Shear Center A h/2 q sx Sum moments from q sx about A: =force in each flange x h/2 Must equal moment from V y about A: =V y x e e must must be be positive positive for for q sx as sx as shown shown so so shear shear center center lies lies to to left left of of section section AE3145 Shear Center Lab (S2k) Slide 12
13 Data Acquisition Use PC data acquisition program to acquire deflection and strain data and test machine load Use 2 LVDT displacement gages Measure vertical displacements at ends of cross arm Use to determine vertical deflection and cross arm rotation Use single weight but move to different locations on cross arm Cross arm Replace dial gages with LVDT s Loading system AE3145 Shear Center Lab (S2k) Slide 13
14 Data Reduction Acquired data is voltage from transducers convert to inch units Determine vertical displacement per applied load Determine rotation per applied load Plot rotation vs cross arm location: 0 point defines shear center or: plot both displacements: crossing point defines shear center Example (next slide) AE3145 Shear Center Lab (S2k) Slide 14
15 AE 3145 Lab  Fall 99 Lab name=lab#7 Shear Center Group name = Monday1 Load Position Channel 1 Channel 2 Excitation Voltage 0.00E E E E E E E E E E E E E+00 Convert 7.04E E E E+00 Convert voltages 6.15E+00 voltages to to displacement 3.75E E+00 displacement using 2.50E E+00 using LVDT LVDT 3.38E E+00 calibration 3.00E+00 calibration data 3.87E+00 data 3.67E E E E E E E E E E+00 Cal: Position LVDT 1 LVDT 2 Deflection Rotation Sample Data Reading (inch or radian) Shear Shear Center Center is is point point where where Rotation Rotation = = 0 0 or or point point where where LVDT1=LVDT2 LVDT1=LVDT2 LVDT 1 LVDT 2 Rotation Position Plot Plot your your data! data! Compute Compute avg avg deflection deflection and and rotation rotation from from geometry geometry AE3145 Shear Center Lab (S2k) Slide 15
Stress and Deformation Analysis. Representing Stresses on a Stress Element. Representing Stresses on a Stress Element con t
Stress and Deformation Analysis Material in this lecture was taken from chapter 3 of Representing Stresses on a Stress Element One main goals of stress analysis is to determine the point within a loadcarrying
More informationBEAMS: SHEAR FLOW, THIN WALLED MEMBERS
LECTURE BEAMS: SHEAR FLOW, THN WALLED MEMBERS Third Edition A. J. Clark School of Engineering Department of Civil and Environmental Engineering 15 Chapter 6.6 6.7 by Dr. brahim A. Assakkaf SPRNG 200 ENES
More informationIntroduction, Method of Sections
Lecture #1 Introduction, Method of Sections Reading: 1:12 Mechanics of Materials is the study of the relationship between external, applied forces and internal effects (stress & deformation). An understanding
More informationSection 16: Neutral Axis and Parallel Axis Theorem 161
Section 16: Neutral Axis and Parallel Axis Theorem 161 Geometry of deformation We will consider the deformation of an ideal, isotropic prismatic beam the cross section is symmetric about yaxis All parts
More informationNew approaches in Eurocode 3 efficient global structural design
New approaches in Eurocode 3 efficient global structural design Part 1: 3D model based analysis using general beamcolumn FEM Ferenc Papp* and József Szalai ** * Associate Professor, Department of Structural
More informationFigure 1 Different parts of experimental apparatus.
Objectives Determination of center of buoyancy Determination of metacentric height Investigation of stability of floating objects Apparatus The unit shown in Fig. 1 consists of a pontoon (1) and a water
More information8.2 Elastic Strain Energy
Section 8. 8. Elastic Strain Energy The strain energy stored in an elastic material upon deformation is calculated below for a number of different geometries and loading conditions. These expressions for
More informationMECHANICS OF SOLIDS  BEAMS TUTORIAL TUTORIAL 4  COMPLEMENTARY SHEAR STRESS
MECHANICS OF SOLIDS  BEAMS TUTORIAL TUTORIAL 4  COMPLEMENTARY SHEAR STRESS This the fourth and final tutorial on bending of beams. You should judge our progress b completing the self assessment exercises.
More informationEML 5526 FEA Project 1 Alexander, Dylan. Project 1 Finite Element Analysis and Design of a Plane Truss
Problem Statement: Project 1 Finite Element Analysis and Design of a Plane Truss The plane truss in Figure 1 is analyzed using finite element analysis (FEA) for three load cases: A) Axial load: 10,000
More informationMCE380: Measurements and Instrumentation Lab. Chapter 9: Force, Torque and Strain Measurements
MCE380: Measurements and Instrumentation Lab Chapter 9: Force, Torque and Strain Measurements Topics: Elastic Elements for Force Measurement Dynamometers and Brakes Resistance Strain Gages Holman, Ch.
More informationDeflections. Question: What are Structural Deflections?
Question: What are Structural Deflections? Answer: The deformations or movements of a structure and its components, such as beams and trusses, from their original positions. It is as important for the
More informationMECHANICS OF SOLIDS  BEAMS TUTORIAL 2 SHEAR FORCE AND BENDING MOMENTS IN BEAMS
MECHANICS OF SOLIDS  BEAMS TUTORIAL 2 SHEAR FORCE AND BENDING MOMENTS IN BEAMS This is the second tutorial on bending of beams. You should judge your progress by completing the self assessment exercises.
More informationStresses in Beam (Basic Topics)
Chapter 5 Stresses in Beam (Basic Topics) 5.1 Introduction Beam : loads acting transversely to the longitudinal axis the loads create shear forces and bending moments, stresses and strains due to V and
More informationChapter 2: Load, Stress and Strain
Chapter 2: Load, Stress and Strain The careful text books measure (Let all who build beware!) The load, the shock, the pressure Material can bear. So when the buckled girder Lets down the grinding span,
More informationStructural Axial, Shear and Bending Moments
Structural Axial, Shear and Bending Moments Positive Internal Forces Acting Recall from mechanics of materials that the internal forces P (generic axial), V (shear) and M (moment) represent resultants
More informationLab for Deflection and Moment of Inertia
Deflection and Moment of Inertia Subject Area(s) Associated Unit Lesson Title Physics Wind Effects on Model Building Lab for Deflection and Moment of Inertia Grade Level (1112) Part # 2 of 3 Lesson #
More informationAnalysis of Stresses and Strains
Chapter 7 Analysis of Stresses and Strains 7.1 Introduction axial load = P / A torsional load in circular shaft = T / I p bending moment and shear force in beam = M y / I = V Q / I b in this chapter, we
More informationIntroduction to Beam. Area Moments of Inertia, Deflection, and Volumes of Beams
Introduction to Beam Theory Area Moments of Inertia, Deflection, and Volumes of Beams Horizontal structural member used to support horizontal loads such as floors, roofs, and decks. Types of beam loads
More informationTorsion Testing. Objectives
Laboratory 4 Torsion Testing Objectives Students are required to understand the principles of torsion testing, practice their testing skills and interpreting the experimental results of the provided materials
More informationDesign Analysis and Review of Stresses at a Point
Design Analysis and Review of Stresses at a Point Need for Design Analysis: To verify the design for safety of the structure and the users. To understand the results obtained in FEA, it is necessary to
More informationStrength of Materials Prof: S.K.Bhattacharya Dept of Civil Engineering, IIT, Kharagpur Lecture no 23 Bending of Beams II
Strength of Materials Prof: S.K.Bhattacharya Dept of Civil Engineering, IIT, Kharagpur Lecture no 23 Bending of Beams II Welcome to the second lesson of the fifth module which is on Bending of Beams part
More informationMECHANICS OF SOLIDS  BEAMS TUTORIAL 1 STRESSES IN BEAMS DUE TO BENDING. On completion of this tutorial you should be able to do the following.
MECHANICS OF SOLIDS  BEAMS TUTOIAL 1 STESSES IN BEAMS DUE TO BENDING This is the first tutorial on bending of beams designed for anyone wishing to study it at a fairly advanced level. You should judge
More informationBending of Beams with Unsymmetrical Sections
Bending of Beams with Unsmmetrical Sections Assume that CZ is a neutral ais. C = centroid of section Hence, if > 0, da has negative stress. From the diagram below, we have: δ = α and s = αρ and δ ε = =
More informationCASE HISTORY #2. APPLICATION: Piping Movement Survey using Permalign Laser Measurement System
CASE HISTORY #2 APPLICATION: Piping Movement Survey using Permalign Laser Measurement System EQUIPMENT: DresserClark Hot Gas Expander (Turbine), 60inch Inlet Flange HISTORY: Piping support modifications
More informationMechanics of Materials Summary
Mechanics of Materials Summary 1. Stresses and Strains 1.1 Normal Stress Let s consider a fixed rod. This rod has length L. Its crosssectional shape is constant and has area. Figure 1.1: rod with a normal
More informationProblem 1: Computation of Reactions. Problem 2: Computation of Reactions. Problem 3: Computation of Reactions
Problem 1: Computation of Reactions Problem 2: Computation of Reactions Problem 3: Computation of Reactions Problem 4: Computation of forces and moments Problem 5: Bending Moment and Shear force Problem
More informationTorsion Tests. Subjects of interest
Chapter 10 Torsion Tests Subjects of interest Introduction/Objectives Mechanical properties in torsion Torsional stresses for large plastic strains Type of torsion failures Torsion test vs.tension test
More informationStructures and Stiffness
Structures and Stiffness ENGR 10 Introduction to Engineering Ken Youssefi/Thalia Anagnos Engineering 10, SJSU 1 Wind Turbine Structure The Goal The support structure should be optimized for weight and
More informationSTRESS AND DEFORMATION ANALYSIS OF LINEAR ELASTIC BARS IN TENSION
Chapter 11 STRESS AND DEFORMATION ANALYSIS OF LINEAR ELASTIC BARS IN TENSION Figure 11.1: In Chapter10, the equilibrium, kinematic and constitutive equations for a general threedimensional solid deformable
More informationNotes on the Linear Analysis of Thinwalled Beams
Notes on the Linear Analysis of Thinwalled Beams Walter D. Pilkey and Levent Kitiş Department of Mechanical Engineering University of Virginia Charlottesville, Virginia c August 1996 Contents Chapter
More informationM x (a) (b) (c) Figure 2: Lateral Buckling The positions of the beam shown in Figures 2a and 2b should be considered as two possible equilibrium posit
Lateral Stability of a Slender Cantilever Beam With End Load Erik Thompson Consider the slender cantilever beam with an end load shown in Figure 1. The bending moment at any crosssection is in the xdirection.
More informationStiffness Methods for Systematic Analysis of Structures (Ref: Chapters 14, 15, 16)
Stiffness Methods for Systematic Analysis of Structures (Ref: Chapters 14, 15, 16) The Stiffness method provides a very systematic way of analyzing determinate and indeterminate structures. Recall Force
More informationbi directional loading). Prototype ten story
NEESR SG: Behavior, Analysis and Design of Complex Wall Systems The laboratory testing presented here was conducted as part of a larger effort that employed laboratory testing and numerical simulation
More informationCertification of Discontinuous Composite Material Forms for Aircraft Structures
Certification of Discontinuous Composite Material Forms for Aircraft Structures Paolo Feraboli (UWAA), Mark Tuttle (UW), Larry Ilcewicz (FAA), Bill Avery (Boeing), Bruno Boursier, Dave Barr (Hexcel) JAMS
More informationUnit 6 Plane Stress and Plane Strain
Unit 6 Plane Stress and Plane Strain Readings: T & G 8, 9, 10, 11, 12, 14, 15, 16 Paul A. Lagace, Ph.D. Professor of Aeronautics & Astronautics and Engineering Systems There are many structural configurations
More informationIntroduction to Mechanical Behavior of Biological Materials
Introduction to Mechanical Behavior of Biological Materials Ozkaya and Nordin Chapter 7, pages 127151 Chapter 8, pages 173194 Outline Modes of loading Internal forces and moments Stiffness of a structure
More informationWhen the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid.
Fluid Statics When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid. Consider a small wedge of fluid at rest of size Δx, Δz, Δs
More informationFinite Element Formulation for Beams  Handout 2 
Finite Element Formulation for Beams  Handout 2  Dr Fehmi Cirak (fc286@) Completed Version Review of EulerBernoulli Beam Physical beam model midline Beam domain in threedimensions Midline, also called
More informationENGINEERING SCIENCE H1 OUTCOME 1  TUTORIAL 3 BENDING MOMENTS EDEXCEL HNC/D ENGINEERING SCIENCE LEVEL 4 H1 FORMERLY UNIT 21718P
ENGINEERING SCIENCE H1 OUTCOME 1  TUTORIAL 3 BENDING MOMENTS EDEXCEL HNC/D ENGINEERING SCIENCE LEVEL 4 H1 FORMERLY UNIT 21718P This material is duplicated in the Mechanical Principles module H2 and those
More informationImpact Load Factors for Static Analysis
Impact Load Factors for Static Analysis Often a designer has a mass, with a known velocity, hitting an object and thereby causing a suddenly applied impact load. Rather than conduct a dynamic analysis
More informationHydrostatic Force on a Submerged Surface
Experiment 3 Hydrostatic Force on a Submerged Surface Purpose The purpose of this experiment is to experimentally locate the center of pressure of a vertical, submerged, plane surface. The experimental
More informationShear Force and Moment Diagrams
C h a p t e r 9 Shear Force and Moment Diagrams In this chapter, you will learn the following to World Class standards: Making a Shear Force Diagram Simple Shear Force Diagram Practice Problems More Complex
More informationThe elements used in commercial codes can be classified in two basic categories:
CHAPTER 3 Truss Element 3.1 Introduction The single most important concept in understanding FEA, is the basic understanding of various finite elements that we employ in an analysis. Elements are used for
More informationHøgskolen i Narvik Sivilingeniørutdanningen
Høgskolen i Narvik Sivilingeniørutdanningen Eksamen i Faget STE66 ELASTISITETSTEORI Klasse: 4.ID Dato: 7.0.009 Tid: Kl. 09.00 1.00 Tillatte hjelpemidler under eksamen: Kalkulator Kopi av Boken Mechanics
More informationBending Stress and Strain
Bending Stress and Strain DEFLECTIONS OF BEAMS When a beam with a straight longitudinal ais is loaded by lateral forces, the ais is deformed into a curve, called the deflection curve of the beam. We will
More informationMechanics of Materials. Chapter 5 Stresses In Beams
Mechanics of Materials Chapter 5 Stresses In Beams 5.1 Introduction In previous chapters, the stresses in bars caused by axial loading and torsion. Here consider the third fundamental loading : bending.
More information22.302 Experiment 5. Strain Gage Measurements
22.302 Experiment 5 Strain Gage Measurements Introduction The design of components for many engineering systems is based on the application of theoretical models. The accuracy of these models can be verified
More informationPlaneShear Measurement with Strain Gages
MicroMeasuremeNTs Strain Gages and Instruments e TN5 Introduction Loading a specimen as shown in Figure a produces shear stresses in the material. An initially square element of the material, having
More informationChapter 5: Distributed Forces; Centroids and Centers of Gravity
CE297FA09Ch5 Page 1 Wednesday, October 07, 2009 12:39 PM Chapter 5: Distributed Forces; Centroids and Centers of Gravity What are distributed forces? Forces that act on a body per unit length, area or
More informationUnit M4.3 Statics of Beams
Unit M4.3 Statics of Beams Readings: CD 3.23.6 (CD 3.8  etension to 3D) 16.003/004  Unified Engineering Department of Aeronautics and Astronautics Massachusetts Institute of Technology EARNING OBJECTIVES
More informationMATERIALS AND MECHANICS OF BENDING
HAPTER Reinforced oncrete Design Fifth Edition MATERIALS AND MEHANIS OF BENDING A. J. lark School of Engineering Department of ivil and Environmental Engineering Part I oncrete Design and Analysis b FALL
More informationBEAMS: SHEAR AND MOMENT DIAGRAMS (GRAPHICAL)
LECTURE Third Edition BES: SHER ND OENT DIGRS (GRPHICL). J. Clark School of Engineering Department of Civil and Environmental Engineering 3 Chapter 5.3 by Dr. Ibrahim. ssakkaf SPRING 003 ENES 0 echanics
More informationLateral Buckling of Singly Symmetric Beams
Missouri University of Science and Technology Scholars' Mine International Specialty Conference on Cold Formed Steel Structures (1992)  11th International Specialty Conference on ColdFormed Steel Structures
More informationReinforced Concrete Design SHEAR IN BEAMS
CHAPTER Reinforced Concrete Design Fifth Edition SHEAR IN BEAMS A. J. Clark School of Engineering Department of Civil and Environmental Engineering Part I Concrete Design and Analysis 4a FALL 2002 By Dr.
More informationChapter 5: Tool Dynamometers
Chapter 5: Tool Dynamometers LEARNING OBJECTIVES Different types of transducers used in Dynamometers Design Requirements Types of Dynamometers 
More informationA beam is a structural member that is subjected primarily to transverse loads and negligible
Chapter. Design of Beams Flexure and Shear.1 Section forcedeformation response & Plastic Moment (M p ) A beam is a structural member that is subjected primarily to transverse loads and negligible axial
More informationINTRODUCTION TO BEAMS
CHAPTER Structural Steel Design LRFD Method INTRODUCTION TO BEAMS Third Edition A. J. Clark School of Engineering Department of Civil and Environmental Engineering Part II Structural Steel Design and Analysis
More informationCalibration and Use of a StrainGageInstrumented Beam: Density Determination and WeightFlowRate Measurement
Chapter 2 Calibration and Use of a StrainGageInstrumented Beam: Density Determination and WeightFlowRate Measurement 2.1 Introduction and Objectives This laboratory exercise involves the static calibration
More informationFLC Ch 1 & 3.1. A ray AB, denoted, is the union of and all points on such that is between and. The endpoint of the ray AB is A.
Math 335 Trigonometry Sec 1.1: Angles Definitions A line is an infinite set of points where between any two points, there is another point on the line that lies between them. Line AB, A line segment is
More informationTUTORIAL FOR RISA EDUCATIONAL
1. INTRODUCTION TUTORIAL FOR RISA EDUCATIONAL C.M. Uang and K.M. Leet The educational version of the software RISA2D, developed by RISA Technologies for the textbook Fundamentals of Structural Analysis,
More informationRear Impact Guard TEST METHOD 223. Standards and Regulations Division. Issued: December 2003
Transport Canada Safety and Security Road Safety Transports Canada Sécurité et sûreté Sécurité routière Standards and Regulations Division TEST METHOD 223 Rear Impact Guard Issued: December 2003 Standards
More information8.2 Shear and BendingMoment Diagrams: Equation Form
8.2 Shear and endingoment Diagrams: Equation Form 8.2 Shear and endingoment Diagrams: Equation Form Eample 1, page 1 of 6 1. Epress the shear and bending moment as functions of, the distance from the
More informationm i: is the mass of each particle
Center of Mass (CM): The center of mass is a point which locates the resultant mass of a system of particles or body. It can be within the object (like a human standing straight) or outside the object
More informationCourse 1 Laboratory. Second Semester. Experiment: Young s Modulus
Course 1 Laboratory Second Semester Experiment: Young s Modulus 1 Elasticity Measurements: Young Modulus Of Brass 1 Aims of the Experiment The aim of this experiment is to measure the elastic modulus with
More informationTrench Tutorial. 1. Bring soil layers to equilibrium. 2. Install a pile on the high side of the trench
Trench Tutorial 171 Trench Tutorial In this tutorial, Phase2 is used to simulate the excavation of a trench into a sloped embankment. The trench is supported by soldier piles and struts. The model is
More informationWhen a user chooses to model the surface component using plate elements, he/she is taking on the responsibility of meshing.
Concrete slab Design: Yes, you can design the concrete slab using STAAD, with plate elements and meshing it appropriately. But it is best practice to take the analysis results from the STAAD and do the
More informationStress: The stress in an axially loaded tension member is given by Equation (4.1) P (4.1) A
Chapter 4. TENSION MEMBER DESIGN 4.1 INTRODUCTORY CONCEPTS Stress: The stress in an axially loaded tension member is given by Equation (4.1) P f = (4.1) A where, P is the magnitude of load, and A is the
More informationCEEN 162  Geotechnical Engineering Laboratory Session 7  Direct Shear and Unconfined Compression Tests
PURPOSE: The parameters of the shear strength relationship provide a means of evaluating the load carrying capacity of soils, stability of slopes, and pile capacity. The direct shear test is one of the
More informationWorked Examples of mathematics used in Civil Engineering
Worked Examples of mathematics used in Civil Engineering Worked Example 1: Stage 1 Engineering Surveying (CIV_1010) Tutorial  Transition curves and vertical curves. Worked Example 1 draws from CCEA Advanced
More informationEXPERIMENT NO. 1. Aim:  To verify strain in an externally loaded beam with the help of a strain gauge indicator and to verify theoretically.
EXPERIMENT NO. 1 Aim:  To verify strain in an externally loaded beam with the help of a strain gauge indicator and to verify theoretically. Apparatus:  Strain gauge Indicator, weights, hanger, scale,
More informationResponse to Harmonic Excitation Part 2: Damped Systems
Response to Harmonic Excitation Part 2: Damped Systems Part 1 covered the response of a single degree of freedom system to harmonic excitation without considering the effects of damping. However, almost
More informationStandard Terminology for Vehicle Dynamics Simulations
Standard Terminology for Vehicle Dynamics Simulations Y v Z v X v Michael Sayers The University of Michigan Transportation Research Institute (UMTRI) February 22, 1996 Table of Contents 1. Introduction...1
More informationEnd Restraint and Effective Lengths of Columns
CHAPTER Structural Steel Design LRFD Method Third Edition INTRODUCTION TO AXIALLY LOADED COMPRESSION MEMBERS A. J. Clark School of Engineering Department of Civil and Environmental Engineering Part II
More informationComposite Sections and Steel Beam Design. Composite Design. Steel Beam Selection  ASD Composite Sections Analysis Method
Architecture 324 Structures II Composite Sections and Steel Beam Design Steel Beam Selection  ASD Composite Sections Analysis Method Photo by Mike Greenwood, 2009. Used with permission University of Michigan,
More informationEQUILIBRIUM STRESS SYSTEMS
EQUILIBRIUM STRESS SYSTEMS Definition of stress The general definition of stress is: Stress = Force Area where the area is the crosssectional area on which the force is acting. Consider the rectangular
More informationBending Stress in Beams
93673600 Bending Stress in Beams Derive a relationship for bending stress in a beam: Basic Assumptions:. Deflections are very small with respect to the depth of the beam. Plane sections before bending
More informationFinite Element Formulation for Plates  Handout 3 
Finite Element Formulation for Plates  Handout 3  Dr Fehmi Cirak (fc286@) Completed Version Definitions A plate is a three dimensional solid body with one of the plate dimensions much smaller than the
More informationW2L3. Stresses in Engineering Components (problems 14, 15, 16) (Courseware pg 4346) τda
Stresses in Engineering Components (problems 14, 15, 16) (combining elastic moduli with geometry elastic behaviour) W2L3 (Courseware pg 4346) Free Body Analysis: common technique to develop stress equations
More informationMathematics 1. Lecture 5. Pattarawit Polpinit
Mathematics 1 Lecture 5 Pattarawit Polpinit Lecture Objective At the end of the lesson, the student is expected to be able to: familiarize with the use of Cartesian Coordinate System. determine the distance
More informationIII. Compression Members. Design of Steel Structures. Introduction. Compression Members (cont.)
ENCE 455 Design of Steel Structures III. Compression Members C. C. Fu, Ph.D., P.E. Civil and Environmental Engineering Department University it of Maryland Compression Members Following subjects are covered:
More informationChapter 4: Summary and Conclusions
Chapter 4: Summary and Conclusions 4.1 Summary Three different models are presented and analyzed in this research for the purpose of studying the potential of using postbuckled or prebent elastic struts
More informationModule 6 : Design of Retaining Structures. Lecture 28 : Anchored sheet pile walls [ Section 28.1 : Introduction ]
Lecture 28 : Anchored sheet pile walls [ Section 28.1 : Introduction ] Objectives In this section you will learn the following Introduction Lecture 28 : Anchored sheet pile walls [ Section 28.1 : Introduction
More informationAdvanced Structural Analysis. Prof. Devdas Menon. Department of Civil Engineering. Indian Institute of Technology, Madras. Module  5.3.
Advanced Structural Analysis Prof. Devdas Menon Department of Civil Engineering Indian Institute of Technology, Madras Module  5.3 Lecture  29 Matrix Analysis of Beams and Grids Good morning. This is
More informationMENG 302L Lab 4: Modulus of Elasticity and Poisson s Ratio
MENG 302L Lab 4: Modulus of Elasticity and Poisson s Ratio Introduction: In Lab 4 we will measure the two fundamental elastic constants relating stress to strain: Modulus of Elasticity and Poisson s Ratio.
More information2. Axial Force, Shear Force, Torque and Bending Moment Diagrams
2. Axial Force, Shear Force, Torque and Bending Moment Diagrams In this section, we learn how to summarize the internal actions (shear force and bending moment) that occur throughout an axial member, shaft,
More informationphysics 111N rotational motion
physics 111N rotational motion rotations of a rigid body! suppose we have a body which rotates about some axis! we can define its orientation at any moment by an angle, θ (any point P will do) θ P physics
More informationLearning Module 1 Static Structural Analysis
LMST1 Learning Module 1 Static Structural Analysis What is a Learning Module? Title Page Guide A Learning Module (LM) is a structured, concise, and selfsufficient learning resource. An LM provides the
More informationA METHOD OF CALIBRATING HELMHOLTZ COILS FOR THE MEASUREMENT OF PERMANENT MAGNETS
A METHOD OF CALIBRATING HELMHOLTZ COILS FOR THE MEASUREMENT OF PERMANENT MAGNETS Joseph J. Stupak Jr, Oersted Technology Tualatin, Oregon (reprinted from IMCSD 24th Annual Proceedings 1995) ABSTRACT The
More informationUnit 3 (Review of) Language of Stress/Strain Analysis
Unit 3 (Review of) Language of Stress/Strain Analysis Readings: B, M, P A.2, A.3, A.6 Rivello 2.1, 2.2 T & G Ch. 1 (especially 1.7) Paul A. Lagace, Ph.D. Professor of Aeronautics & Astronautics and Engineering
More informationNonlinear analysis and formfinding in GSA Training Course
Nonlinear analysis and formfinding in GSA Training Course Nonlinear analysis and formfinding in GSA 1 of 47 Oasys Ltd Nonlinear analysis and formfinding in GSA 2 of 47 Using the GSA GsRelax Solver
More informationMechanics of Materials. Chapter 6 Deflection of Beams
Mechanics of Materials Chapter 6 Deflection of Beams 6.1 Introduction Because the design of beams is frequently governed by rigidity rather than strength. For example, building codes specify limits on
More informationLecture 8 Bending & Shear Stresses on Beams
Lecture 8 Bending & hear tresses on Beams Beams are almost always designed on the asis of ending stress and, to a lesser degree, shear stress. Each of these stresses will e discussed in detail as follows.
More informationEXPERIMENT: MOMENT OF INERTIA
OBJECTIVES EXPERIMENT: MOMENT OF INERTIA to familiarize yourself with the concept of moment of inertia, I, which plays the same role in the description of the rotation of a rigid body as mass plays in
More informationPrecision Miniature Load Cell. Models 8431, 8432 with Overload Protection
w Technical Product Information Precision Miniature Load Cell with Overload Protection 1. Introduction The load cells in the model 8431 and 8432 series are primarily designed for the measurement of force
More informationEQUILIBRIUM AND ELASTICITY
Chapter 12: EQUILIBRIUM AND ELASTICITY 1 A net torque applied to a rigid object always tends to produce: A linear acceleration B rotational equilibrium C angular acceleration D rotational inertia E none
More informationBEAM THEORIES The difference between EulerBernoulli and Timoschenko
BEAM THEORIES The difference between EulerBernoulli and Timoschenko Uemuet Goerguelue Two mathematical models, namely the sheardeformable (Timoshenko) model and the shearindeformable (EulerBernoulli)
More information6 1. Draw the shear and moment diagrams for the shaft. The bearings at A and B exert only vertical reactions on the shaft.
06 Solutions 46060_Part1 5/27/10 3:51 PM Page 329 6 1. Draw the shear and moment diagrams for the shaft. The bearings at and exert only vertical reactions on the shaft. 250 mm 800 mm 24 kn 6 2. Draw the
More informationOverhang Bracket Loading. Deck Issues: Design Perspective
Deck Issues: Design Perspective Overhang Bracket Loading Deck overhangs and screed rails are generally supported on cantilever brackets during the deck pour These brackets produce an overturning couple
More informationOptimising plate girder design
Optimising plate girder design NSCC29 R. Abspoel 1 1 Division of structural engineering, Delft University of Technology, Delft, The Netherlands ABSTRACT: In the design of steel plate girders a high degree
More informationLecture 8 : Coordinate Geometry. The coordinate plane The points on a line can be referenced if we choose an origin and a unit of 20
Lecture 8 : Coordinate Geometry The coordinate plane The points on a line can be referenced if we choose an origin and a unit of 0 distance on the axis and give each point an identity on the corresponding
More information