# Advanced Structural Analysis. Prof. Devdas Menon. Department of Civil Engineering. Indian Institute of Technology, Madras. Module

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Advanced Structural Analysis Prof. Devdas Menon Department of Civil Engineering Indian Institute of Technology, Madras Module Lecture - 29 Matrix Analysis of Beams and Grids Good morning. This is lecture number 29, module 5, Matrix analysis of beams and grids. Today, we will complete the application of conventional stiffness method and we will introduce the reduced element stiffness method. (Refer Slide Time: 00:32) This is covered in this book, which you need to refer to Advanced Structural Analysis. We will continue with conventional stiffness method, remember we did different types of problems. We first took a non-prismatic fixed beam. Then, we did continuous beam, remember three span continuous beam, which also had an overhang and we did not take

2 any shortcuts. We have dealt with different boundary conditions; we also dealt with internal hinges, we also dealt with intermediate supports. Now, here is some more types of supports that you can get, you can get the extreme end, as hinged or roller and you can get a guided fixed support. Now, it is possible to take advantage of reduced degree of kinematic indeterminacy. We will do that in the reduced element stiffness method, but in the conventional stiffness method, we do not take any shortcuts. Actually, it is quiet easy to deal with any situation, you have to assign the appropriate boundary conditions. (Refer Slide Time: 01:59) In the case of a hinged end support, as you see at the end A in this example, we have an active rotational degree of freedom, along with a restrained translational, deflection degree of freedom. At support C, guided fixed end support, we have an active translational degree of freedom, along with a restrained rotational degree of freedom.

3 (Refer Slide Time: 02:25) We have done this example earlier, remember, it is a symmetric continuous beam; we can take advantage of symmetry; we cut the beam at the middle at C and insert, what kind of support, do we insert there and guided fixed, guided roller support, as shown here. And let us see, how to analyze this. (Refer Slide Time: 02:52) What are the active degrees of freedom? How many of them do we have? Yeah. three. three.

4 three active and the method of analysis exactly the same, so we start with the left end rotation at A, rotation at B, deflection at C- these are the three active degrees of freedom. Then, the restrained degrees of freedom are 4 5 6, as indicated there. As far as the local coordinates are concerned, just you have two beam elements, each has four degrees of freedom and if you had to write down the In this particular problem, do we have any nodal loads? No, they are all distributed loads, there is no support settlement given now. You have to write down the transformation matrix. What does it look like? Can you try the two transformation matrices? Well, they are identity matrices. You just have to assign the linking global coordinates. What are the linking global coordinates for number one? You have to do it in that order: , for element one: for element two: You must know the sequence, because the translation must match, with the translation. Do not mix up the rotation.

5 (Refer Slide Time: 04:21) So, is this, ok , that is all-, very easy to do. (Refer Slide Time: 04:30) Next, you have to find the fixed end forces. We have done this problem earlier, so I think we can go quiet fast. You can work out the fixed end forces. Mind you we are not taking shortcuts, so you are arresting all degrees of freedom that you identified, as active `degrees of freedom. For example, in the second case, C is arrested. The rotation at C is arrested and these are simple fixed end moment calculations, that you can do. If you recall, we did this problem

6 by slope deflection and moment distribution method. There, we took a shortcut; we took advantage of the fact, that, there was a guided roller support there and we modified both the stiffness and the fixed end forces. We do not take those shortcuts in conventional stiffness method. We will take that shortcut, in reduced element stiffness method, because this is, the normal way computers, software solve these problems. We just want to stimulate, what the standard computer program does, is it clear. So, we really do not care, how many degrees of freedom there- are, we just want to correctly identify the degree of kinematic indeterminacy. We do not want to take shortcuts, of the kind that we did earlier. But, if there is symmetry in the structure, definitely it is worth taking, dealing with half the frame, so you can work out these. These are very straight forward. (Refer Slide time: 05:59) Under concentrated load, the formula is minus, not minus, because now it is plus minussince- you are dealing with the conventional stiffness method, where anticlockwise is positive. So, it is W a b squared by L squared, you know that formula, you can apply all that and you can get the fixed end force vectors. One more important difference here, you need to get the vertical reactions as well, which is something- we did not do, when we did slope deflection and moment distribution

7 method. Those are easy to compute, in the first case, since, it is symmetric. Just take the total load, 15 into 4 divided by 2, you get the two reactions. When you have an unsymmetric load, you get the shears; not only from the load, but you also get from the lack of balance, between these two loads. In this case, because this should be both should be anticlockwise. This should be anticlockwise and the difference, divided by the span, you should add up. Yeah, this should be clockwise, you are right. This should be clockwise, it is an error shown there but the vectors are correctly shown. Pre-multiply, why do we do this exercise? Because, we want to find out, what the equivalent joint forces are in the structure. (Refer Slide Time: 07:37) So, you are pre-multiplying by an identity matrix but you get along with it the linking coordinates and then you just you have done the slotting; you just assemble them properly. You have six degrees of freedom: three are active, three are restrained. Corresponding to one- you have 20 kilonewton meter, corresponding to two- you have minus 20 and plus 22.5, which add up, 2.5 five and so on and so forth. So, this is this can be easily assembled. Is it clear? This is your fixed end force vector. What do we do next? You find the net, the resultant load vector, which is F A minus F f. F A in this case, is zero, it is a null vector, because you

8 do not have any nodal loads, in this particular problem and so, you can find the resultant force. You can even, draw a sketch to tell, exactly what is happening. (Refer Slide Time: 08:50) This is your resultant force vector and to remind you once again, the displacements you get, at the active degrees of freedom: D 1, D 2 and D 3 from this problem. From this, nodal load problem will be exactly equal to, the displacements you would have got, with the original intermediate loads. Is it clear? That is the equivalence, we are trying to establish. It is very effectively done, because you can do matrix analysis, only if you have dealing with nodal loads. Because, matrix had only vectors, which have discrete entities, so your coordinates are limited.

9 (Refer Slide Time: 09:39) Next, you generate the element and structure stiffness matrices. Element stiffness matrix is standard, there, you have two elements. All you need is EI and L. In the first case, actually EI is constant, for both the elements. L is 4 meters for first element, 2 meters for the second element. So, plug in those values, you can get k star 1 and k star 2. Very simple, straight forward and we have done this problem earlier by moment distribution method. (Refer Slide Time: 10:24)

10 What do we do, next? We have to assemble, the Structure stiffness matrix. To do that, we have to convert, from the local axis system, to the global axis system, through the transformation- T i transpose k star into T i.. So, you do this first and then you, actually, you get the same thing again, when you premultiply by T i transpose, you got the linking coordinates, then, you have to do the slotting, which I will not explain. You will finally, end up with a, full 6 by 6 matrix: the top upper corner is always k AA, the bottom lower corner is k RR the upper right corner is k AR and the lower is k RA. You should write a program ideally which will generate this automatically. You should just take a look and check there, it is a symmetric and it is the diagonal elements are all positive. You are set to handle any loading. this And this is what the computer does, the moment you give, the geometry of the structure and the material properties, it is ready, with the stiffness matrix and then it is waiting for the loads. You also got the loads. Now, you these are your equilibrium equations. If you solve the first equation, you see how familiar this whole thing is now, nothing. I mean once, you have got the method; you got the solution. (Refer Slide Time: 11:40)

12 recognize, there are linking coordinates of So, you have to put D 5 D 1 D 6 and D 2, some of them are restrained. For example, 5 and 6 are restrained, so they are zero. You have to pick up D 1 and D 2, from the solution that you generated from your D A vector. This is the only thing, you have to be careful about, and the rest of it follows. Is it clear? You have to select those displacements, from your final displacement vector, which has D A and D R, which are matching which are which are matching your element and that comes nicely, with the linking, coordinates which come along with k star i T i. (Refer Slide Time: 14:40) Do a similar exercise, for the second element and you get some moments and then you can draw your free body diagram, bending moment diagram. This is exactly the same solution, we got by the methods, we did earlier. Is it clear?

13 (Refer Slide Time: 14:52) One last topic, before we move onto, reduced element stiffness method. Sometimes, it becomes necessary, to account for, shear deformations. When do you think, you need to count for, shear deformations? The length is very small. When, the span to depth ratio is low. In normal beams, the span to depth ratio is, how much? Well, 10 to 15. If it is above 8 or 7, you would not make any significant error, by ignoring shear deformations and normally, well proportioned beam belong to that category. Occasionally, for various reasons, possibly for architectural reasons, you might require, a deep beam. So, if you got a deep beam, even if you do not have a deep beam; if you still include shear deformations, you re only going to get a more accurate solution. So, that deep beams are those beams, in which the span to depth ratio is roughly less than two and half, between two and half and six or seven, you have the the middle range, which is between, shallow beams and deep beams. You encounter such situations, especially, when you deal with shear walls, in tall buildings. So, you know shear walls are the lateral load resisting system, a part of the lateral load resisting system, in a multi storey building. The shear wall is essentially, a vertical cantilever but, it is connected to different floors, through the horizontal framing

14 plan. You may have beams; you may have slabs and essentially, if, it subject to and the lateral loads come from, those diaphragms at the slab levels, in the different stories of a structure. Now, if the shear wall is slender, in the sense, it is like this, (Refer Slide Time: 17:24) width is small and the storey height is large, there are many stories and essentially, it is going to behave, like a flexural element. It will be, the deflection shape, it will be like that. But, sometimes you encounter shear walls, which are very wide and stocky, the height is less. So, when you try to push that shear wall; you ll find that, the deflection that you get, has two components: one is flexural, the other is shear. Remember, we did this exercise earlier, shear deflection in cantilever beams, and the shear deflection can be comparable to the flexural deflection. In a cantilever subject to a concentrated load p at the free end, what is the deflection? p L cube by 3 EI. But, there is also a shear deflection that you get. Remember, we did this, which has g a dash coming into the picture, in the denominater. So, in such instances, shear deformations have to come in. Now, this kind of beam, in which you include shear deformations was originally, described in detail, by Timoshenko and sometimes it referred to as Timoshenko beam. It is an energy formulation. I am not giving the formulation here, but you can go through it in literature. You will find that, you have to modify, your element stiffness matrix, by including a quantity, where you have a ratio of the flexural rigidity, to the shear rigidity. Now, that is called, the shear deformation constant beta s.

15 (Refer Slide Time: 19:14) So, you have EI and you have G A dash, I, A dash. G is the shear modulus, which is related to the elastic modulus, through the Poisson s ratio. You know that. A dash, is not the gross cross sectional area, it is the reduced cross sectional area, to account for the fact that, the shear stress distribution, is not uniform.. So, there is a form factor that comes into play. So, this is a non-dimensional factor, that is why, L square also comes in the denominator and we will see, what s the variation of this factor? How it affects the analyses? But, you are and sometimes this formula is useful. You can easily run this and check, what is the error I make, if, I ignore shear deformations; by including shear deformations, in any beam problem. This can be also used, when you do frame problems. So, all you need to do, is to modify this term outside, by this factor: 1 plus beta s in the denominator and wherever you have 4 EI by L, you have to add 4 plus beta s, into this constant; where you had 2, you have to put minus beta s, that is all you need to do. So, four terms, in your coefficient matrix get affected and all terms get affected, because this is common outside. Is it, clear? So, this is a correction, you need to do and check out the solution.

16 (Refer Slide Time: 21:00) Considering, a rectangular section and a material with Poisson s ratio, mu equal to 0.3, taking on values in the practical range of 0.01, for very high span to depth ratios, , for L by D equal to 1. Normally, you would not get a depth of beam, which is less than the span of the beam. So, the variation of 1 divided by 1 plus beta s is between 1 and 0.24 in practice. So, that is a kind of range, that you get obviously when 1 by 1 plus beta s is goes to 0.24, it is going to make a big difference but, those are very rare on exceptional cases. We are not going to do any problem but, if tomorrow you are need to include it, in a real life situation, please make use of this matrices. With this, we have covered completely, the conventional stiffness method.

17 (Refer Slide Time: 22:02) Now, we will look at the reduced element stiffness method. In this reduced. In the conventional stiffness method, we have this stiffness matrix. I am not including shear deformations. What is the rank of this matrix? Rank is 2. It is not 3; it is 2. You can easily make out. Is it, not? Take a look. You can play around with rows and columns and two of them, will you know find the reduced form but more easily, you can see, why is it? Why is the rank not 4 but, 2? What does it, point to? There are only two equations of equilibrium available, that is why, you can t find the inverse of this matrix. It is a singular matrix, but physically, what does it, mean? When you find, the rank is not full? What does it, point to? It depends equations, sir. The other forces..

18 Physically what does it? We have discussed this earlier. The other forces are dependant.. It is unstable. It can have rigid body motion. See, you can have a flexibility matrix, only for a stable structure. You can have stiffness matrix for an unstable structure that, at the element level, not structure. At the structure it has to be stable, otherwise your structure stiffness matrix will become singular. This is very interesting. The element stiffness matrix is singular but, your structural stiffness matrix will not be singular, unless you take the full k matrix. You have k AA. k AA will not be singular. Because, you are arresting some degrees of freedom and you have to arrest a certain minimum number, for it to be stable. Is it clear? Now, what is the, to make this stable, what should, we do? You can arrest, any of these two degrees of freedom. If you make it simply supported, it is going to be stable. So, that is the element: we will use; we did this for axial element, remember. We caught hold of one end, we said, we can pull only the other end. (Refer Slide Time: 24:40) Here also, you arrest it, when you have a simply supported beam. So, from now on, in the reduced element stiffness method; this is the element, that we will use for the element.

19 You can, it is a good question. Can you use a cantilever? Please, do so, most of us like, simply supported conditions and we are already familiar with, you know 2 star and 4 star. The 4 EI by L 2, EI by L, is now, child s play, for all of us. So, for shear convenience, we have used simply support, but you can also use, cantilever. In the book, I have discussed this. In the book, I have also used cantilever as an option, but I do not want to confuse you. So, go by simply supported, but you can also use this. Now, can you write down, the element stiffness matrix, for this, straight away? It is a 2 by 2 matrix and we will use a symbol k tilda, what is it? (Refer Slide Time: 26:23) Can you extracte it from the full, four by four matrix? How do you, extract it? What should you remove? what should you remove? What should you remove, from that, 4 by 4 matrix to? The translation column. Translation column. Just knock off the first column, third column, first row, third row and whatever you left with. That is an easiest, you can do. Whatever, you are left with, is your reduced element stiffness. Let us do it in, a way, that you will appreciate better, let us, use a physical approach and derive the same thing.

20 (Refer Slide Time: 26:39) So, what do you normally do, to get the first column? You apply D 1 star equal to 1 and the moment link with that is 4 EI by L, you have a carryover moment at the other end, which is 2 EI by L. That is all, you need to worry about. Do not worry, about the reactions. If you want to, the deflected shape will look like that; the point of contraflexure will separate the beam and the ratio two is to one. Bending moment diagram will look like that. If you now, do D 2 star equal to 1, you get a similar figure and from this, you can generate, your element stiffness matrix. Is it, clear? Very easy, to.. and very easy to remember: 4 EI by L; 2 EI by L; 2 EI by L; 4 EI by L, no minus sign is, here. Clear? easy.

21 (Refer Slide Time: 27:42) Now, you can also do it from flexibility matrix, because you get, if you invert the flexibility matrix, you get the reduced element stiffness matrix. In an axial element, it was very easy, because it was 1 by 1. It was EA by L or L by A. Here, it is not 1, it is 2 by 2. Let us, do this, you remember. If I take up the same simply supported beam, apply f star 1 equal to 1, the deflected shape will look like this, if I use conjugate beam method or some such method, I can show that this angle here, f star 1 is L by 3 EI and the angle here will be half this, put it in the opposite direction, it is minus L by 6 EI. If I do, F 2 star equal to 1, it will look like this. So, what is my flexibility matrix? It is going to, look like this. Here, is negative sign comes. If I take the inverse of this matrix, I get that matrix. You can work both ways; you can generate the flexibility matrix, from the stiffness matrix or you can, but, you can do it only, with the reduced element stiffness. Is it clear? Now, let me ask you a simple question. How can you use a two degree of freedom element? How can it handle the deflections, in your structure? Remember, your global coordinate system: It has not only rotation; it also has deflections: with this 2 by 2, can you handle it? It is an important question, to ask? Is it clear?

22 (Refer Slide Time: 29:36) How do we, How did we manage in slope deflection and moment distribution method? Chord rotation. That is right, we use chord rotation. Normally, if you do not have chord rotation, your interpretation in this element AB is, MAB is F star 1, MBA is F star 2, theta A is D star 1 and theta B is D star 2: these are flexural rotations. If you have chord rotation, that means you have relative movement, differential settlement. Now, we switch, our sign conventions, we say that anticlockwise chord rotation is positive; Vertical reflection upward is positive, not downward. So, DB minus DA both is acting upward. If DB is more than DA, we will have an anti clockwise rotation and phi will be positive. Is it clear? How do you deal, with this? What happens in a beam, when you have an anticlockwise chord rotation? You get clockwise end moments, so how can we take advantage, of this? Your stiffness matrix does not change. So, how do you accommodate, that is right. you have to, you cannot touch the left hand side. You play with the D star. You have to somehow accommodate, the chord rotation in your in your, displacement vector, how do you do that? So, you have to do it in the, displacement transformation matrix. So, how do you do that? Theta a minus 3EI by. Theta A minus phi i. So, that is what, you do.

23 (Refer Slide Time: 31:47) So, it is a clever trick. If you have an anticlockwise chord rotation, just, recognize that the effect it has, is that of a clockwise flexural rotation at the both the ends. (Refer Slide Time: 32:25) Let us demonstrate, this once, because most people, who have done this, have really not fully understood this. I hope, you understand, why we are doing it? You can go back to our earlier sessions and see how we did it. So, let us say, you need, you have some, displacement transformation matrix to generate for this element. Let us do it, component by component; let us say, from your global

24 coordinate system, you have some D j, that D j could be a translation; could be a rotation; usually, they will be upward or anti clockwise. Got it? You want to write down, the effect of that, on this two degree of freedom element. There are four possibilities. Let us look at them. Two possibilities are shown here, they are pretty easy. Let us say in your, continuous beam structure, you had a rotation D j anticlockwise. It will either, go to the left or it will go to the right. So, do you, agree. If D j corresponds to the left end rotation, obviously D 1 star will be one time D j and D 2 star will be zero. If D j corresponds to the, right side of your element, anticlockwise, then it will be zero one. This is clear. This is straightforward. There is nothing special about it, the problem comes, when you have a deflection. So, let us look at that. Let us say you had a deflection, in your structure, in your, continuous beam that means your element is going to deflect like this, all other coordinates, all other displacements being arrested. So, how will you write, D 1 star D 2 star for this, if length of the element is end. See, I wrote something here, you have to write something similar here. For this situation, what will you write here? What is the first component? What is the second component? D j by L NO 0 minus D j by L 1 minus D j by L No No, D j is a deflection. 1 by L is your chord rotation. 1 by L is a, because D j is a deflection. You do not put chord rotation in the global coordinates; you put only deflections. Get it straight. So, you put 1 by L, now, the question, should you put plus 1 by L or minus 1 by L? So, you have to think, if the left end is going up, then you are having a clockwise chord rotation, so you have anticlockwise end moments. So, you should put, plus, because anticlockwise is positive. Well done. The last case is, when the right end goes up, that is it. Is it clear?

25 (Refer Slide Time: 35:03) Just to seal, your understanding, let us take a look at this situation. I have shown an element here, which is a part of continuous beam. The coordinates are l m n p, it could be anything. So, this part of continuous beam and this could be active degrees of freedom, restrained, I do not care. So, they let us say, they come together like this-d l D m D n D p, at the global level, at the element level I have only 1 star and 2 star. The element coordinates are D 1 star, D 2 star and you need to do this transformation. Can you write down T D i, in terms of L? So, we are talking of this segment, you will have four terms: Tell me, what are those four terms? Are you getting it? What are those four terms? 1 by L 1 0 1by L one at a time 1 by L by L This is this portion, let us try to figure out. It is very easy. If I lift this up, that is my first coordinate, D l by, unity. Do, I get a clockwise chord rotation? Yes, sir.

26 Do, i get a clockwise chord rotation? Yes, yes, sir. So, I get anticlockwise end moments, which are positive. So, the equivalent rotation is positive. Got it? Number two: If I put D m star equal to 1, what do I get? I get a unit rotation, on the left end. So, it remains positive and I do not get anything here, D 2 star is zero. Then I have D n star going up by unity, what is my chord rotation? Anticlockwise. So, what are my end moments? Clockwise. Clockwise means, it is minus. So, do you get the hang of it? That is it. Because, once you have got this, we can proceed ahead. There you can deal with any problem, but it is only, this little bit, you need to understand, the procedure is the same, you have to generate, these matrices. The procedure is identical. (Refer Slide Time: 39:00) Let us demonstrate quickly, with one example. This example, which we have already done, by the conventional stiffness method. So, find out the T D matrix, manually generate the fixed end force vector. Remember, we had problems, when you had distributed loads in the axial system. Why, because it can

27 handle only a constant one force. Here, you have a distributed loading, so you, you the two end moments, may not be the same. (Refer Slide Time: 39:38) We will demonstrate this and the rest of the procedure is same, fixed end forces only, manually superimpose or generate.so, coordinate transformation, if you look at global coordinates, these are the same coordinates; we used in conventional stiffness method; we are not changing here. Same coordinates and local coordinates are what we have just discussed two degrees of freedom, write down the transformation matrix. (Refer Slide Time: 39:40)

28 Write down the transformation, there are two matrices; you have to write T D 1 and T D 2. You can to put altogether, also. So, let me help you, first of all the given loading is, you have a nodal moment 30 kilonewton meter. So, this is what you get. Let us do it together. Listen carefully. D 1 equal to 1, this goes up, it causes an anticlockwise chord rotation in element one and causes a clockwise chord rotation in element two, so when, you have anticlockwise chord rotation, you will get, clockwise end moment. So, you should put a minus sign. So, it is minus 1 divided by 10, so you get minus 1 divided by 10, for the left one and for the right one, you get plus 1 divided by 10. Is this clear? You all got it. Am just extending what we did, so you fill up the first column, for which covers both T D 1 and T D 2, second one D 2 equal to 1, you have a rotation here. The right end of this will have 1, the left end of this will have 1. So, Is it clear? Clear. Now, you move to the restrain coordinates, 3 equal to 1, if you lift this up, it affects only element one. You have a clockwise chord rotation in element one, so anticlockwise that is positive. So, you get plus 0.1, plus 0.1, nothing happens to the second element. Number four: If you give a rotation A it effects only D 1 star 1 in the first element, nothing else happen to Number five: You lift this up, you have anticlockwise chord rotation in the second element, clockwise end moments, so equivalent flexure rotations will be negative 0.1, 0.1, in the second element, nothing happens. Is this clear? and so on, so forth. Can you do this, correctly? You have done. So it is a powerful technique of dealing with deflections, converting them to equivalent flexural rotations, through the displacement transformation matrix. We do not touch the stiffness matrix, so if you got this step, correct? It is easy.

29 (Refer Slide Time: 42:28) Fixed end forces, we have done earlier. So, you can find the fixed end forces, find the deflections, if you want, we have done this, earlier. Put the fixed end force, (Refer Slide Time: 42:30) in a vector form. You got this diagram, so, this you have to directly get. In conventional stiffness method, you could assemble it, doing the contra gradient principle. (Refer Slide Time: 43:05) You can put, T i transpose. Here, you cannot do that. Here, you have to do it manually, that means you draw these sketches and then you figure out. I want to find out F 1. So, F 1

30 will be 50 plus 50, 100. Is it clear? I want to find out F 2. F 2, is this coordinate that will be, minus 125. So, minus 46. I want to find F 3, that is, this force that is plus 50. I want to find F4, that is plus 125, anti clockwise I want to find F 5, that is plus 50. I want to find F 6 that is minus 83. Is it clear? You have to do it by inspection. No, contra gradient principle, when you are using the reduced element stiffness method, but this is ok, in fact this method is, more for manual use. Yeah, that is right. We also, do it here by the way. Here also, we write F star, this does not change but, we have only 2 here. There we had a 4 by 1, we are including also. We did the T i transpose and we got the linking coordinates and then we did slotting. It was all done mechanically, here you cannot do that. You have done it with your eyes, open. Is it clear? (Refer Slide Time: 44:22) Then find the net load vector, from now on, its same as conventional stiffness method. Because, you got beyond the element, so this part is common and of course the element stiffness matrix derivation, you have to do carefully. So, you have two elements, span is same, El is changing. Very easy to write down: , EI by L. What did you do after you get a K star, you do K star T D. T D you have already got, do not have to write any linking coordinates, because of all the global

31 coordinates, in one go. Then, what did you do? You pre- multiply this with T D. You just sum up, you got the same structure stiffness matrix, which you generated, in the conventional stiffness method. You manage with less coordinates, then this solution is, ditto, same as what you did in conventional stiffness method. Because, you have to invert the K, you have to find so, that we are just reproducing, what we did earlier. What you do next? Find the support reactions; same equation. You can check equilibrium. Then last step, member forces you have to do little carefully, you have that you have done this, you remember, when you computed the structure stiffness matrix, you first did K i star T D i, that comes in handy here. Because, that is what you invoke here.. And plug in those values will get the same answers. Please, go through this problem solved in the book also, exactly same solution. Is it clear? So, we demonstrated one application, we will do all the other applications, as well in the next class. Thank you...

32 KEYWORDS Matrix analysis Reduced element stiffness method Shear deformations Singular stiffness matrix Chord rotations

### Advanced Structural Analysis Prof. Devdas Menon Department of Civil Engineering Indian Institute of Technology, Madras. Module

Advanced Structural Analysis Prof. Devdas Menon Department of Civil Engineering Indian Institute of Technology, Madras Module - 2.2 Lecture - 08 Review of Basic Structural Analysis-2 Good morning to you.

### Structural Analysis - II Prof. P. Banerjee Department of Civil Engineering Indian Institute of Technology, Bombay. Lecture - 02

Structural Analysis - II Prof. P. Banerjee Department of Civil Engineering Indian Institute of Technology, Bombay Lecture - 02 Good morning. Today is the second lecture in the series of lectures on structural

### Strength of Materials Prof: S.K.Bhattacharya Dept of Civil Engineering, IIT, Kharagpur Lecture no 23 Bending of Beams- II

Strength of Materials Prof: S.K.Bhattacharya Dept of Civil Engineering, IIT, Kharagpur Lecture no 23 Bending of Beams- II Welcome to the second lesson of the fifth module which is on Bending of Beams part

### Structural Axial, Shear and Bending Moments

Structural Axial, Shear and Bending Moments Positive Internal Forces Acting Recall from mechanics of materials that the internal forces P (generic axial), V (shear) and M (moment) represent resultants

### Analysis of Plane Frames

Plane frames are two-dimensional structures constructed with straight elements connected together by rigid and/or hinged connections. rames are subjected to loads and reactions that lie in the plane of

### Finite Element Formulation for Beams - Handout 2 -

Finite Element Formulation for Beams - Handout 2 - Dr Fehmi Cirak (fc286@) Completed Version Review of Euler-Bernoulli Beam Physical beam model midline Beam domain in three-dimensions Midline, also called

### Gas Dynamics Prof. T. M. Muruganandam Department of Aerospace Engineering Indian Institute of Technology, Madras. Module No - 12 Lecture No - 25

(Refer Slide Time: 00:22) Gas Dynamics Prof. T. M. Muruganandam Department of Aerospace Engineering Indian Institute of Technology, Madras Module No - 12 Lecture No - 25 Prandtl-Meyer Function, Numerical

### 10 Space Truss and Space Frame Analysis

10 Space Truss and Space Frame Analysis 10.1 Introduction One dimensional models can be very accurate and very cost effective in the proper applications. For example, a hollow tube may require many thousands

### Computer Graphics Prof. Sukhendu Das Dept. of Computer Science and Engineering Indian Institute of Technology, Madras Lecture 7 Transformations in 2-D

Computer Graphics Prof. Sukhendu Das Dept. of Computer Science and Engineering Indian Institute of Technology, Madras Lecture 7 Transformations in 2-D Welcome everybody. We continue the discussion on 2D

### Solving Simultaneous Equations and Matrices

Solving Simultaneous Equations and Matrices The following represents a systematic investigation for the steps used to solve two simultaneous linear equations in two unknowns. The motivation for considering

### Deflections. Question: What are Structural Deflections?

Question: What are Structural Deflections? Answer: The deformations or movements of a structure and its components, such as beams and trusses, from their original positions. It is as important for the

### METHODS FOR ACHIEVEMENT UNIFORM STRESSES DISTRIBUTION UNDER THE FOUNDATION

International Journal of Civil Engineering and Technology (IJCIET) Volume 7, Issue 2, March-April 2016, pp. 45-66, Article ID: IJCIET_07_02_004 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=7&itype=2

### Stiffness Methods for Systematic Analysis of Structures (Ref: Chapters 14, 15, 16)

Stiffness Methods for Systematic Analysis of Structures (Ref: Chapters 14, 15, 16) The Stiffness method provides a very systematic way of analyzing determinate and indeterminate structures. Recall Force

### Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Lecture - 28

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras Lecture - 28 In the earlier lectures, we have seen formulation for 3 node linear triangular

### CHAPTER 9 MULTI-DEGREE-OF-FREEDOM SYSTEMS Equations of Motion, Problem Statement, and Solution Methods

CHAPTER 9 MULTI-DEGREE-OF-FREEDOM SYSTEMS Equations of Motion, Problem Statement, and Solution Methods Two-story shear building A shear building is the building whose floor systems are rigid in flexure

### TUTORIAL FOR RISA EDUCATIONAL

1. INTRODUCTION TUTORIAL FOR RISA EDUCATIONAL C.M. Uang and K.M. Leet The educational version of the software RISA-2D, developed by RISA Technologies for the textbook Fundamentals of Structural Analysis,

### Unit 21 Influence Coefficients

Unit 21 Influence Coefficients Readings: Rivello 6.6, 6.13 (again), 10.5 Paul A. Lagace, Ph.D. Professor of Aeronautics & Astronautics and Engineering Systems Have considered the vibrational behavior of

### Applied Finite Element Analysis. M. E. Barkey. Aerospace Engineering and Mechanics. The University of Alabama

Applied Finite Element Analysis M. E. Barkey Aerospace Engineering and Mechanics The University of Alabama M. E. Barkey Applied Finite Element Analysis 1 Course Objectives To introduce the graduate students

### Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method. Version 2 CE IIT, Kharagpur

Module Analysis of Statically Indeterminate Structures by the Matrix Force Method esson 11 The Force Method of Analysis: Frames Instructional Objectives After reading this chapter the student will be able

### Approximate Analysis of Statically Indeterminate Structures

Approximate Analysis of Statically Indeterminate Structures Every successful structure must be capable of reaching stable equilibrium under its applied loads, regardless of structural behavior. Exact analysis

### Soil Dynamics Prof. Deepankar Choudhury Department of Civil Engineering Indian Institute of Technology, Bombay

Soil Dynamics Prof. Deepankar Choudhury Department of Civil Engineering Indian Institute of Technology, Bombay Module - 2 Vibration Theory Lecture - 8 Forced Vibrations, Dynamic Magnification Factor Let

### Chapter 11 Equilibrium

11.1 The First Condition of Equilibrium The first condition of equilibrium deals with the forces that cause possible translations of a body. The simplest way to define the translational equilibrium of

### Hydraulics Prof. A. K. Sarma Department of Civil Engineering Indian Institute of Technology, Guwahati. Module No. # 02 Uniform Flow Lecture No.

Hydraulics Prof. A. K. Sarma Department of Civil Engineering Indian Institute of Technology, Guwahati Module No. # 02 Uniform Flow Lecture No. # 04 Computation of Uniform Flow (Part 02) Welcome to this

### Figure 12 1 Short columns fail due to material failure

12 Buckling Analysis 12.1 Introduction There are two major categories leading to the sudden failure of a mechanical component: material failure and structural instability, which is often called buckling.

### Foundation Engineering Prof. Mahendra Singh Department of Civil Engineering Indian Institute of Technology, Roorkee

Foundation Engineering Prof. Mahendra Singh Department of Civil Engineering Indian Institute of Technology, Roorkee Module - 03 Lecture - 09 Stability of Slopes Welcome back to the classes of on this Stability

### Chapter 3 THE STATIC ASPECT OF SOLICITATION

Chapter 3 THE STATIC ASPECT OF SOLICITATION 3.1. ACTIONS Construction elements interact between them and with the environment. The consequence of this interaction defines the system of actions that subject

### Statics problem solving strategies, hints and tricks

Statics problem solving strategies, hints and tricks Contents 1 Solving a problem in 7 steps 3 1.1 To read.............................................. 3 1.2 To draw..............................................

### EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1 - LOADING SYSTEMS

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1 - LOADING SYSTEMS TUTORIAL 1 NON-CONCURRENT COPLANAR FORCE SYSTEMS 1. Be able to determine the effects

### Module 3. Analysis of Statically Indeterminate Structures by the Displacement Method. Version 2 CE IIT, Kharagpur

odule 3 Analysis of Statically Indeterminate Structures by the Displacement ethod Lesson 21 The oment- Distribution ethod: rames with Sidesway Instructional Objectives After reading this chapter the student

### SECTION 5 ANALYSIS OF CONTINUOUS SPANS DEVELOPED BY THE PTI EDC-130 EDUCATION COMMITTEE LEAD AUTHOR: BRYAN ALLRED

SECTION 5 ANALYSIS OF CONTINUOUS SPANS DEVELOPED BY THE PTI EDC-130 EDUCATION COMMITTEE LEAD AUTHOR: BRYAN ALLRED NOTE: MOMENT DIAGRAM CONVENTION In PT design, it is preferable to draw moment diagrams

### Statics of Structural Supports

Statics of Structural Supports TYPES OF FORCES External Forces actions of other bodies on the structure under consideration. Internal Forces forces and couples exerted on a member or portion of the structure

### Laboratory Weeks 9 10 Theory of Pure Elastic Bending

Laboratory Weeks 9 10 Theory of Pure Elastic Bending Objective To show the use of the Sagital method for finding the Radius of Curvature of a beam, to prove the theory of bending, and find the elastic

### MECHANICS OF SOLIDS - BEAMS TUTORIAL 1 STRESSES IN BEAMS DUE TO BENDING. On completion of this tutorial you should be able to do the following.

MECHANICS OF SOLIDS - BEAMS TUTOIAL 1 STESSES IN BEAMS DUE TO BENDING This is the first tutorial on bending of beams designed for anyone wishing to study it at a fairly advanced level. You should judge

### Engineering Mechanics Dr. G Saravana Kumar Department of Mechanical Engineering Indian Institute of Technology, Guwahati

Engineering Mechanics Dr. G Saravana Kumar Department of Mechanical Engineering Indian Institute of Technology, Guwahati Module 5 Lecture 12 Application of Friction Part-3 Today, we will see some more

### Chapter (3) SLOPE DEFLECTION METHOD

Chapter (3) SOPE DEFECTION ETHOD 3.1 Introduction:- The methods of three moment equation, and consistent deformation method are represent the FORCE ETHOD of structural analysis, The slope deflection method

### MECHANICS OF SOLIDS - BEAMS TUTORIAL 2 SHEAR FORCE AND BENDING MOMENTS IN BEAMS

MECHANICS OF SOLIDS - BEAMS TUTORIAL 2 SHEAR FORCE AND BENDING MOMENTS IN BEAMS This is the second tutorial on bending of beams. You should judge your progress by completing the self assessment exercises.

### Cryptography and Network Security. Prof. D. Mukhopadhyay. Department of Computer Science and Engineering. Indian Institute of Technology, Kharagpur

Cryptography and Network Security Prof. D. Mukhopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Module No. # 01 Lecture No. # 12 Block Cipher Standards

### Electronics for Analog Signal Processing - II Prof. K. Radhakrishna Rao Department of Electrical Engineering Indian Institute of Technology Madras

Electronics for Analog Signal Processing - II Prof. K. Radhakrishna Rao Department of Electrical Engineering Indian Institute of Technology Madras Lecture - 18 Wideband (Video) Amplifiers In the last class,

### The elements used in commercial codes can be classified in two basic categories:

CHAPTER 3 Truss Element 3.1 Introduction The single most important concept in understanding FEA, is the basic understanding of various finite elements that we employ in an analysis. Elements are used for

### PH2213 : Examples from Chapter 4 : Newton s Laws of Motion. Key Concepts

PH2213 : Examples from Chapter 4 : Newton s Laws of Motion Key Concepts Newton s First and Second Laws (basically Σ F = m a ) allow us to relate the forces acting on an object (left-hand side) to the motion

### Design of Reinforced Concrete Structures Prof. N. Dhang Department of Civil Engineering Indian Institute of Technology Kharagpur

Design of Reinforced Concrete Structures Prof. N. Dhang Department of Civil Engineering Indian Institute of Technology Kharagpur Lecture - 24 Design of Footings Part I Well so far done up to design of

### Strength of Materials Prof: S.K.Bhattacharya Dept of Civil Engineering, IIT, Kharagpur Lecture no 29 Stresses in Beams- IV

Strength of Materials Prof: S.K.Bhattacharya Dept of Civil Engineering, IIT, Kharagpur Lecture no 29 Stresses in Beams- IV Welcome to the fourth lesson of the sixth module on Stresses in Beams part 4.

### Statics of Structural Supports

Statics of Structural Supports TYPES OF FORCES External Forces actions of other bodies on the structure under consideration. Internal Forces forces and couples exerted on a member or portion of the structure

### Elastic Buckling Loads of Hinged Frames by the Newmark Method

International Journal of Applied Science and Technology Vol. 1 No. 3; June 011 Abstract Elastic Buckling Loads of Hinged Frames by the Newmark Method Ashraf Badir Department of Environmental and Civil

### Math 018 Review Sheet v.3

Math 018 Review Sheet v.3 Tyrone Crisp Spring 007 1.1 - Slopes and Equations of Lines Slopes: Find slopes of lines using the slope formula m y y 1 x x 1. Positive slope the line slopes up to the right.

### KINGS COLLEGE OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK. UNIT I STRESS STRAIN DEFORMATION OF SOLIDS PART- A (2 Marks)

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK SUB CODE/NAME: CE1259 STRENGTH OF MATERIALS YEAR/SEM: II / IV 1. What is Hooke s Law? 2. What are the Elastic Constants?

### Module 4. Analysis of Statically Indeterminate Structures by the Direct Stiffness Method. Version 2 CE IIT, Kharagpur

Module Analysis of Statically Indeterminate Structures by the Direct Stiffness Method Version CE IIT, haragpur esson 7 The Direct Stiffness Method: Beams Version CE IIT, haragpur Instructional Objectives

### Copyright 2011 Casa Software Ltd. www.casaxps.com. Centre of Mass

Centre of Mass A central theme in mathematical modelling is that of reducing complex problems to simpler, and hopefully, equivalent problems for which mathematical analysis is possible. The concept of

### EML 5526 FEA Project 1 Alexander, Dylan. Project 1 Finite Element Analysis and Design of a Plane Truss

Problem Statement: Project 1 Finite Element Analysis and Design of a Plane Truss The plane truss in Figure 1 is analyzed using finite element analysis (FEA) for three load cases: A) Axial load: 10,000

### ENGINEERING SCIENCE H1 OUTCOME 1 - TUTORIAL 3 BENDING MOMENTS EDEXCEL HNC/D ENGINEERING SCIENCE LEVEL 4 H1 FORMERLY UNIT 21718P

ENGINEERING SCIENCE H1 OUTCOME 1 - TUTORIAL 3 BENDING MOMENTS EDEXCEL HNC/D ENGINEERING SCIENCE LEVEL 4 H1 FORMERLY UNIT 21718P This material is duplicated in the Mechanical Principles module H2 and those

### The Basics of FEA Procedure

CHAPTER 2 The Basics of FEA Procedure 2.1 Introduction This chapter discusses the spring element, especially for the purpose of introducing various concepts involved in use of the FEA technique. A spring

### CH 4: Deflection and Stiffness

CH 4: Deflection and Stiffness Stress analyses are done to ensure that machine elements will not fail due to stress levels exceeding the allowable values. However, since we are dealing with deformable

### End Restraint and Effective Lengths of Columns

CHAPTER Structural Steel Design LRFD Method Third Edition INTRODUCTION TO AXIALLY LOADED COMPRESSION MEMBERS A. J. Clark School of Engineering Department of Civil and Environmental Engineering Part II

### (Refer Slide Time: 00:01:23 min)

Computer Aided Design Prof. Anoop Chalwa Department of Mechanical Engineering Indian Institute of Technology, Delhi Lecture No. # 02 Input Output Devices, Raster Graphics Today we will be talking about

### Vectors 2. The METRIC Project, Imperial College. Imperial College of Science Technology and Medicine, 1996.

Vectors 2 The METRIC Project, Imperial College. Imperial College of Science Technology and Medicine, 1996. Launch Mathematica. Type

### COMPUTATIONAL ENGINEERING OF FINITE ELEMENT MODELLING FOR AUTOMOTIVE APPLICATION USING ABAQUS

International Journal of Advanced Research in Engineering and Technology (IJARET) Volume 7, Issue 2, March-April 2016, pp. 30 52, Article ID: IJARET_07_02_004 Available online at http://www.iaeme.com/ijaret/issues.asp?jtype=ijaret&vtype=7&itype=2

### EFFECTS ON NUMBER OF CABLES FOR MODAL ANALYSIS OF CABLE-STAYED BRIDGES

EFFECTS ON NUMBER OF CABLES FOR MODAL ANALYSIS OF CABLE-STAYED BRIDGES Yang-Cheng Wang Associate Professor & Chairman Department of Civil Engineering Chinese Military Academy Feng-Shan 83000,Taiwan Republic

### Indeterminate Analysis Force Method 1

Indeterminate Analysis Force Method 1 The force (flexibility) method expresses the relationships between displacements and forces that exist in a structure. Primary objective of the force method is to

### Statics of Bending: Shear and Bending Moment Diagrams

Statics of Bending: Shear and Bending Moment Diagrams David Roylance Department of Materials Science and Engineering Massachusetts Institute of Technology Cambridge, MA 02139 November 15, 2000 Introduction

### Module 6 : Design of Retaining Structures. Lecture 28 : Anchored sheet pile walls [ Section 28.1 : Introduction ]

Lecture 28 : Anchored sheet pile walls [ Section 28.1 : Introduction ] Objectives In this section you will learn the following Introduction Lecture 28 : Anchored sheet pile walls [ Section 28.1 : Introduction

### 1 of 7 10/2/2009 1:13 PM

1 of 7 10/2/2009 1:13 PM Chapter 6 Homework Due: 9:00am on Monday, September 28, 2009 Note: To understand how points are awarded, read your instructor's Grading Policy. [Return to Standard Assignment View]

### Since the Steel Joist Institute

SELECTING and SPECIFYING Wesley B. Myers, P.E. An insider s guide to selecting and specifying K-series, LH, DLH-series joists and joist girders Since the Steel Joist Institute adopted the first standard

### BASIC ELECTRONICS PROF. T.S. NATARAJAN DEPT OF PHYSICS IIT MADRAS LECTURE-4 SOME USEFUL LAWS IN BASIC ELECTRONICS

BASIC ELECTRONICS PROF. T.S. NATARAJAN DEPT OF PHYSICS IIT MADRAS LECTURE-4 SOME USEFUL LAWS IN BASIC ELECTRONICS Hello everybody! In a series of lecture on basic electronics, learning by doing, we now

### If A is divided by B the result is 2/3. If B is divided by C the result is 4/7. What is the result if A is divided by C?

Problem 3 If A is divided by B the result is 2/3. If B is divided by C the result is 4/7. What is the result if A is divided by C? Suggested Questions to ask students about Problem 3 The key to this question

### Elasticity Theory Basics

G22.3033-002: Topics in Computer Graphics: Lecture #7 Geometric Modeling New York University Elasticity Theory Basics Lecture #7: 20 October 2003 Lecturer: Denis Zorin Scribe: Adrian Secord, Yotam Gingold

### Lecture 15. Torque. Center of Gravity. Rotational Equilibrium. Cutnell+Johnson:

Lecture 15 Torque Center of Gravity Rotational Equilibrium Cutnell+Johnson: 9.1-9.3 Last time we saw that describing circular motion and linear motion is very similar. For linear motion, we have position

### Bending Stress and Strain

Bending Stress and Strain DEFLECTIONS OF BEAMS When a beam with a straight longitudinal ais is loaded by lateral forces, the ais is deformed into a curve, called the deflection curve of the beam. We will

### THREE DIMENSIONAL ACES MODELS FOR BRIDGES

THREE DIMENSIONAL ACES MODELS FOR BRIDGES Noel Wenham, Design Engineer, Wyche Consulting Joe Wyche, Director, Wyche Consulting SYNOPSIS Plane grillage models are widely used for the design of bridges,

### MECHANICS OF SOLIDS - BEAMS TUTORIAL 3 THE DEFLECTION OF BEAMS

MECHANICS OF SOLIDS - BEAMS TUTORIAL THE DEECTION OF BEAMS This is the third tutorial on the bending of beams. You should judge your progress by completing the self assessment exercises. On completion

### MODULE 3 ANALYSIS OF STATICALLY INDETERMINATE STRUCTURES BY THE DISPLACEMENT METHOD. Version 2 CE IIT, Kharagpur

ODULE 3 ANALYI O TATICALLY INDETERINATE TRUCTURE BY THE DIPLACEENT ETHOD LEON 19 THE OENT- DITRIBUTION ETHOD: TATICALLY INDETERINATE BEA WITH UPPORT ETTLEENT Instructional Objectives After reading this

### Seismic Design of Shallow Foundations

Shallow Foundations Page 1 Seismic Design of Shallow Foundations Reading Assignment Lecture Notes Other Materials Ch. 9 FHWA manual Foundations_vibrations.pdf Homework Assignment 10 1. The factored forces

### (Refer Slide Time 6:09)

Digital Circuits and Systems Prof. S. Srinivasan Department of Electrical Engineering Indian Institute of Technology, Madras Lecture 3 Combinational Logic Basics We defined digital signal as a signal which

### 8.2 Elastic Strain Energy

Section 8. 8. Elastic Strain Energy The strain energy stored in an elastic material upon deformation is calculated below for a number of different geometries and loading conditions. These expressions for

### DESIGN OF SLABS. 3) Based on support or boundary condition: Simply supported, Cantilever slab,

DESIGN OF SLABS Dr. G. P. Chandradhara Professor of Civil Engineering S. J. College of Engineering Mysore 1. GENERAL A slab is a flat two dimensional planar structural element having thickness small compared

### FOUNDATION DESIGN. Instructional Materials Complementing FEMA 451, Design Examples

FOUNDATION DESIGN Proportioning elements for: Transfer of seismic forces Strength and stiffness Shallow and deep foundations Elastic and plastic analysis Foundation Design 14-1 Load Path and Transfer to

### Eðlisfræði 2, vor 2007

[ Assignment View ] [ Pri Eðlisfræði 2, vor 2007 28. Sources of Magnetic Field Assignment is due at 2:00am on Wednesday, March 7, 2007 Credit for problems submitted late will decrease to 0% after the deadline

### 11 CHAPTER 11: FOOTINGS

CHAPTER ELEVEN FOOTINGS 1 11 CHAPTER 11: FOOTINGS 11.1 Footing Types Footings may be classified as deep or shallow. If depth of the footing is equal to or greater than its width, it is called deep footing,

### Advanced Electric Drives Prof. S.P. Das Department of Electrical Engineering Indian Institute of Technology, Kanpur. Lecture 30

Advanced Electric Drives Prof. S.P. Das Department of Electrical Engineering Indian Institute of Technology, Kanpur Lecture 30 Hello and welcome to this lecture on advanced electric drives. In the last

### 11 Vibration Analysis

11 Vibration Analysis 11.1 Introduction A spring and a mass interact with one another to form a system that resonates at their characteristic natural frequency. If energy is applied to a spring mass system,

### Lecture 21: The Inverse of a Matrix

Lecture 21: The Inverse of a Matrix Winfried Just, Ohio University October 16, 2015 Review: Our chemical reaction system Recall our chemical reaction system A + 2B 2C A + B D A + 2C 2D B + D 2C If we write

### Tutorial for Assignment #2 Gantry Crane Analysis By ANSYS (Mechanical APDL) V.13.0

Tutorial for Assignment #2 Gantry Crane Analysis By ANSYS (Mechanical APDL) V.13.0 1 Problem Description Design a gantry crane meeting the geometry presented in Figure 1 on page #325 of the course textbook

### When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid.

Fluid Statics When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid. Consider a small wedge of fluid at rest of size Δx, Δz, Δs

### Keywords Approximate Methods, Split frame analysis, Revised Method of analysis

Comparative Studies on Exact and Approximate Methods of Structural Analysis Life John*, Dr. M G Rajendran ** *(Department of Civil Engineering, Karunya University, Coimbatore) ** (Department of Civil Engineering,

### Introduction to the Finite Element Method (FEM)

Introduction to the Finite Element Method (FEM) Lecture 1 The Direct Stiffness Method and the Global StiffnessMatrix Dr. J. Dean 1 Introduction The finite element method (FEM) is a numerical technique

### A vector is a directed line segment used to represent a vector quantity.

Chapters and 6 Introduction to Vectors A vector quantity has direction and magnitude. There are many examples of vector quantities in the natural world, such as force, velocity, and acceleration. A vector

### Lecture 23: The Inverse of a Matrix

Lecture 23: The Inverse of a Matrix Winfried Just, Ohio University March 9, 2016 The definition of the matrix inverse Let A be an n n square matrix. The inverse of A is an n n matrix A 1 such that A 1

### Surveying Prof. Bharat Lohani Department of Civil Engineering Indian Institute of Technology, Kanpur. Module - 7 Lecture - 2 Levelling and Contouring

Surveying Prof. Bharat Lohani Department of Civil Engineering Indian Institute of Technology, Kanpur Module - 7 Lecture - 2 Levelling and Contouring (Refer Slide Time: 00:22) Welcome to this lecture series

### MATH 304 Linear Algebra Lecture 8: Inverse matrix (continued). Elementary matrices. Transpose of a matrix.

MATH 304 Linear Algebra Lecture 8: Inverse matrix (continued). Elementary matrices. Transpose of a matrix. Inverse matrix Definition. Let A be an n n matrix. The inverse of A is an n n matrix, denoted

### Motion Graphs. It is said that a picture is worth a thousand words. The same can be said for a graph.

Motion Graphs It is said that a picture is worth a thousand words. The same can be said for a graph. Once you learn to read the graphs of the motion of objects, you can tell at a glance if the object in

### Trusses (Pin jointed frames) I. Basic concepts.

Trusses (Pin jointed frames) I. Basic concepts. The truss is a frame structure which will continue to perform as a geometrically unchangeable system, even when all of its rigid joints are conventionally

### Chapter 5: Indeterminate Structures Slope-Deflection Method

Chapter 5: Indeterminate Structures Slope-Deflection Method 1. Introduction Slope-deflection method is the second of the two classical methods presented in this course. This method considers the deflection

### Stability Of Structures: Basic Concepts

23 Stability Of Structures: Basic Concepts ASEN 3112 Lecture 23 Slide 1 Objective This Lecture (1) presents basic concepts & terminology on structural stability (2) describes conceptual procedures for

### Worked Examples of mathematics used in Civil Engineering

Worked Examples of mathematics used in Civil Engineering Worked Example 1: Stage 1 Engineering Surveying (CIV_1010) Tutorial - Transition curves and vertical curves. Worked Example 1 draws from CCEA Advanced

### Mechanics 1. Revision Notes

Mechanics 1 Revision Notes July 2012 MECHANICS 1... 2 1. Mathematical Models in Mechanics... 2 Assumptions and approximations often used to simplify the mathematics involved:... 2 2. Vectors in Mechanics....

### MODULE E: BEAM-COLUMNS

MODULE E: BEAM-COLUMNS This module of CIE 428 covers the following subjects P-M interaction formulas Moment amplification Web local buckling Braced and unbraced frames Members in braced frames Members

### Distribution of Forces in Lateral Load Resisting Systems

Distribution of Forces in Lateral Load Resisting Systems Part 2. Horizontal Distribution and Torsion IITGN Short Course Gregory MacRae Many slides from 2009 Myanmar Slides of Profs Jain and Rai 1 Reinforced

### 2D Geometric Transformations. COMP 770 Fall 2011

2D Geometric Transformations COMP 770 Fall 2011 1 A little quick math background Notation for sets, functions, mappings Linear transformations Matrices Matrix-vector multiplication Matrix-matrix multiplication