2. Axial Force, Shear Force, Torque and Bending Moment Diagrams


 Virgil Boone
 1 years ago
 Views:
Transcription
1 2. Axial Force, Shear Force, Torque and Bending Moment Diagrams In this section, we learn how to summarize the internal actions (shear force and bending moment) that occur throughout an axial member, shaft, or beam. Later, we learn how to convert these internal forces to stresses. (Note: Axial force and torsion bending diagrams are easy to derive. Will show an example to illustrate.).: mention that axial force and torsion bending diagrams are easy to derive. Will showcouple of examples to ill Outline  Purpose of Axial Force, Shear Force and Bending Moment Diagrams  Sign Convention  Basic Method Examples  Mathematical Relationship Between External Loading, Internal Shear, and Internal Bending  Integration/Graphical Method Examples Purpose of Axial Force, Shear Force and Bending Moment Diagrams We learned that we can get the internal forces at any point in a structure by: (1) taking an imaginary cut at the point; (2) drawing the freebody diagram; and (3) using the equations of equilibrium to calculate the internal forces. The challenge with a beam is that the internal forces can vary a great deal along the length of the beam. Therefore, we draw what are called shear force and bending moment diagrams, which show the internal forces along the length of the beam. This helps us visualize where the maximum stresses will occur. We will learn two methods for drawing shear force and bending moment diagrams: 1) the Basic Method; and 2) the Integration (also called Graphical) Method. In each case, mathematical functions describing the shear force and bending moment throughout the beam are derived and plotted along the length of the beam. In the Basic Method, we derive these functions from first principles. In the Integration/Graphical Method, the relationships between the applied load, shear force and bending moment are used to rapidly sketch out the diagrams. 21
2 The approach used depends on the problem and what the designer requires from the diagrams. For example, many problems require only the maximum values of the shear and moment, and the locations at which these values occur. The Graphical Method is most useful for these situations. In other cases, a beam may be subjected to a loading that is a fairly complicated function. For these situations, the Basic Method may be needed. You should know how to use both methods and recognize when to apply them! Sign Convention (Section 6.1 in Mechanics of Materials) We define the sign convention for internal shear force and bending moment: Shear Force Bending Moment Positive internal shear force tends to rotate the freebody diagram clockwise. Positive internal bending moment causes the beam to sag. Also known (informally) as the smile rule. Bending moment is drawn on the compression side of the member. Summary of Steps for Basic Method: 1) Determine the support reactions for the beam. 2) Specify an origin for a coordinate x along the length of the beam. 3) Section the beam with an imaginary cut at a distance x, and draw the freebody diagram. 4) Determine shear and bending moment as a function of x using equilibrium equations. 5) Repeat steps 3 and 4 for all regions between any two discontinuities of loading. 6) Draw, to scale, the functions on a sketch of the beam. 22
3 Basic Method Example Consider beam ABC from the example in Section 1. D 1.0 m A E θ B Pin 60 N/m C F 0.5 m 0.5 m 0.5 m 0.5 m Determine the axial force, shear force, and bending moment diagrams for the beam ABC. 23
4 24
5 Mathematical Relationship Between External Loading, Internal Shear, and Internal Bending The previous example shows that: 1) axial force (and shear force) diagrams change abruptly at the location of a concentrated axial force (or applied force); 2) for a region of a beam without external applied forces, the shear force has a constant value, and the bending moment is a function of x; [see section AB of the beam in the previous example] 3) for a region of the beam subjected to a uniformly distributed load (UDL), the shear force is a function of x, and the bending moment is a function of x 2. [see section BC of the beam in the previous example]. In fact, we can prove that (see Section 6.2 of the textbook): dv ( x) dx = w( x) (21) i.e. the slope of the shear force diagram at x is equal to the negative of the value of the loading function at x; and, dm ( x) dx = V ( x) (22) i.e. the slope of the moment diagram at x is equal to the value of the shear function at x. dv ( x) From Eq. 21 we have: = w( x) through integration: dx (note what each side of the equation represents) From Eq. 22 we have through integration: (23). (note what each side of the equation represents) (24). 25
6 Graphically: 26
7 The following table, taken from your textbook, illustrates a number of common loading cases. It shows how shear and moment diagrams can be constructed on the basis of knowing the variation of the slope from the load and shear diagrams. Make sure that the relationships make sense, but you should not memorize the table!! You should always work from the basic relationships, Eqs. 2.1 to 2.4. (show overhead of table) 27
8 Graphical Method Example 1 Consider the cantilever beam subjected to the loading w(x). Draw the internal forces on a typical element of the beam, and hence derive the differential equations relating bending moments, shear forces, and applied loading, i.e. Eqs. 21, 22. Use these differential equations to draw shear force and bending moment diagrams for the following cases: (a) w(x) = 20 kn/m; (b) w(x) = 20x kn/m w(x) L (add soln from Campbell notes) 28
9 29
10 Example Draw the shear force and bending moment diagrams. 35 kn/m 40 kn/m 1 m 2 m 3 m 210
11 211
12 Finally, we end this section with a discussion of torque diagrams. These are usually simpler than shear and bending moment diagrams, and can be illustrated with the following example. Example Draw the torque diagram for the cantilever shaft shown. Determine the maximum torque in the shaft. 1 m 1 m 1 m fixed end 5 knm 7 knm 12 knm 212
13 213
Shear Forces and Bending Moments
Chapter 4 Shear Forces and Bending Moments 4.1 Introduction Consider a beam subjected to transverse loads as shown in figure, the deflections occur in the plane same as the loading plane, is called the
More informationMechanics of Materials. Chapter 4 Shear and Moment In Beams
Mechanics of Materials Chapter 4 Shear and Moment In Beams 4.1 Introduction The term beam refers to a slender bar that carries transverse loading; that is, the applied force are perpendicular to the bar.
More informationMECHANICS OF SOLIDS  BEAMS TUTORIAL 2 SHEAR FORCE AND BENDING MOMENTS IN BEAMS
MECHANICS OF SOLIDS  BEAMS TUTORIAL 2 SHEAR FORCE AND BENDING MOMENTS IN BEAMS This is the second tutorial on bending of beams. You should judge your progress by completing the self assessment exercises.
More informationStrength of Materials Prof: S.K.Bhattacharya Dept of Civil Engineering, IIT, Kharagpur Lecture no 23 Bending of Beams II
Strength of Materials Prof: S.K.Bhattacharya Dept of Civil Engineering, IIT, Kharagpur Lecture no 23 Bending of Beams II Welcome to the second lesson of the fifth module which is on Bending of Beams part
More informationENGINEERING SCIENCE H1 OUTCOME 1  TUTORIAL 3 BENDING MOMENTS EDEXCEL HNC/D ENGINEERING SCIENCE LEVEL 4 H1 FORMERLY UNIT 21718P
ENGINEERING SCIENCE H1 OUTCOME 1  TUTORIAL 3 BENDING MOMENTS EDEXCEL HNC/D ENGINEERING SCIENCE LEVEL 4 H1 FORMERLY UNIT 21718P This material is duplicated in the Mechanical Principles module H2 and those
More informationProblem 1: Computation of Reactions. Problem 2: Computation of Reactions. Problem 3: Computation of Reactions
Problem 1: Computation of Reactions Problem 2: Computation of Reactions Problem 3: Computation of Reactions Problem 4: Computation of forces and moments Problem 5: Bending Moment and Shear force Problem
More informationRecitation #5. Understanding Shear Force and Bending Moment Diagrams
Recitation #5 Understanding Shear Force and Bending Moment Diagrams Shear force and bending moment are examples of interanl forces that are induced in a structure when loads are applied to that structure.
More informationDeflections. Question: What are Structural Deflections?
Question: What are Structural Deflections? Answer: The deformations or movements of a structure and its components, such as beams and trusses, from their original positions. It is as important for the
More informationShear and Moment Diagrams. Shear and Moment Diagrams. Shear and Moment Diagrams. Shear and Moment Diagrams. Shear and Moment Diagrams
CI 3 Shear Force and Bending oment Diagrams /8 If the variation of and are written as functions of position,, and plotted, the resulting graphs are called the shear diagram and the moment diagram. Developing
More informationStructural Axial, Shear and Bending Moments
Structural Axial, Shear and Bending Moments Positive Internal Forces Acting Recall from mechanics of materials that the internal forces P (generic axial), V (shear) and M (moment) represent resultants
More informationShear Force and Moment Diagrams
C h a p t e r 9 Shear Force and Moment Diagrams In this chapter, you will learn the following to World Class standards: Making a Shear Force Diagram Simple Shear Force Diagram Practice Problems More Complex
More informationMODULE 3 ANALYSIS OF STATICALLY INDETERMINATE STRUCTURES BY THE DISPLACEMENT METHOD. Version 2 CE IIT, Kharagpur
ODULE 3 ANALYI O TATICALLY INDETERINATE TRUCTURE BY THE DIPLACEENT ETHOD LEON 19 THE OENT DITRIBUTION ETHOD: TATICALLY INDETERINATE BEA WITH UPPORT ETTLEENT Instructional Objectives After reading this
More informationBEAMS: SHEAR AND MOMENT DIAGRAMS (GRAPHICAL)
LECTURE Third Edition BES: SHER ND OENT DIGRS (GRPHICL). J. Clark School of Engineering Department of Civil and Environmental Engineering 3 Chapter 5.3 by Dr. Ibrahim. ssakkaf SPRING 003 ENES 0 echanics
More informationCHAPTER 3 SHEARING FORCE AND BENDING MOMENT DIAGRAMS. Summary
CHAPTER 3 SHEARING FORCE AND BENDING MOMENT DIAGRAMS Summary At any section in a beam carrying transverse loads the shearing force is defined as the algebraic sum of the forces taken on either side of
More informationStress and Deformation Analysis. Representing Stresses on a Stress Element. Representing Stresses on a Stress Element con t
Stress and Deformation Analysis Material in this lecture was taken from chapter 3 of Representing Stresses on a Stress Element One main goals of stress analysis is to determine the point within a loadcarrying
More informationAnalysis of Stresses and Strains
Chapter 7 Analysis of Stresses and Strains 7.1 Introduction axial load = P / A torsional load in circular shaft = T / I p bending moment and shear force in beam = M y / I = V Q / I b in this chapter, we
More informationChapter 7: Forces in Beams and Cables
Chapter 7: Forces in Beams and Cables 최해진 hjchoi@cau.ac.kr Contents Introduction Internal Forces in embers Sample Problem 7.1 Various Types of Beam Loading and Support Shear and Bending oment in a Beam
More informationModule 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method. Version 2 CE IIT, Kharagpur
Module Analysis of Statically Indeterminate Structures by the Matrix Force Method esson 11 The Force Method of Analysis: Frames Instructional Objectives After reading this chapter the student will be able
More informationAnnouncements. Moment of a Force
Announcements Test observations Units Significant figures Position vectors Moment of a Force Today s Objectives Understand and define Moment Determine moments of a force in 2D and 3D cases Moment of
More informationChapter 8. Shear Force and Bending Moment Diagrams for Uniformly Distributed Loads.
hapter 8 Shear Force and ending Moment Diagrams for Uniformly Distributed Loads. 8.1 Introduction In Unit 4 we saw how to calculate moments for uniformly distributed loads. You might find it worthwhile
More informationCommon Beam Formulas (http://structsource.com/analysis/types/beam.htm)
Common Beam Formulas (http://structsource.com/analysis/types/beam.htm) Beam formulas may be used to determine the deflection, shear and bending moment in a beam based on the applied loading and boundary
More information4 Shear Forces and Bending Moments
4 Shear Forces and ending oments Shear Forces and ending oments 8 lb 16 lb roblem 4.31 alculate the shear force and bending moment at a cross section just to the left of the 16lb load acting on the simple
More informationChapter 2: Load, Stress and Strain
Chapter 2: Load, Stress and Strain The careful text books measure (Let all who build beware!) The load, the shock, the pressure Material can bear. So when the buckled girder Lets down the grinding span,
More informationCOMPLEX STRESS TUTORIAL 3 COMPLEX STRESS AND STRAIN
COMPLX STRSS TUTORIAL COMPLX STRSS AND STRAIN This tutorial is not part of the decel unit mechanical Principles but covers elements of the following sllabi. o Parts of the ngineering Council eam subject
More informationMECHANICS OF SOLIDS  BEAMS TUTORIAL 3 THE DEFLECTION OF BEAMS
MECHANICS OF SOLIDS  BEAMS TUTORIAL THE DEECTION OF BEAMS This is the third tutorial on the bending of beams. You should judge your progress by completing the self assessment exercises. On completion
More information8.2 Elastic Strain Energy
Section 8. 8. Elastic Strain Energy The strain energy stored in an elastic material upon deformation is calculated below for a number of different geometries and loading conditions. These expressions for
More informationTUTORIAL FOR RISA EDUCATIONAL
1. INTRODUCTION TUTORIAL FOR RISA EDUCATIONAL C.M. Uang and K.M. Leet The educational version of the software RISA2D, developed by RISA Technologies for the textbook Fundamentals of Structural Analysis,
More information6 1. Draw the shear and moment diagrams for the shaft. The bearings at A and B exert only vertical reactions on the shaft.
06 Solutions 46060_Part1 5/27/10 3:51 PM Page 329 6 1. Draw the shear and moment diagrams for the shaft. The bearings at and exert only vertical reactions on the shaft. 250 mm 800 mm 24 kn 6 2. Draw the
More informationBending Stress and Strain
Bending Stress and Strain DEFLECTIONS OF BEAMS When a beam with a straight longitudinal ais is loaded by lateral forces, the ais is deformed into a curve, called the deflection curve of the beam. We will
More informationBending Stress in Beams
93673600 Bending Stress in Beams Derive a relationship for bending stress in a beam: Basic Assumptions:. Deflections are very small with respect to the depth of the beam. Plane sections before bending
More informationEDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1  LOADING SYSTEMS
EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1  LOADING SYSTEMS TUTORIAL 1 NONCONCURRENT COPLANAR FORCE SYSTEMS 1. Be able to determine the effects
More informationUnit M4.3 Statics of Beams
Unit M4.3 Statics of Beams Readings: CD 3.23.6 (CD 3.8  etension to 3D) 16.003/004  Unified Engineering Department of Aeronautics and Astronautics Massachusetts Institute of Technology EARNING OBJECTIVES
More informationENGINEERING MECHANICS STATIC
EX 16 Using the method of joints, determine the force in each member of the truss shown. State whether each member in tension or in compression. Sol Freebody diagram of the pin at B X = 0 500 BC sin
More informationChapter 5: Indeterminate Structures SlopeDeflection Method
Chapter 5: Indeterminate Structures SlopeDeflection Method 1. Introduction Slopedeflection method is the second of the two classical methods presented in this course. This method considers the deflection
More informationIntroduction, Method of Sections
Lecture #1 Introduction, Method of Sections Reading: 1:12 Mechanics of Materials is the study of the relationship between external, applied forces and internal effects (stress & deformation). An understanding
More informationApproximate Analysis of Statically Indeterminate Structures
Approximate Analysis of Statically Indeterminate Structures Every successful structure must be capable of reaching stable equilibrium under its applied loads, regardless of structural behavior. Exact analysis
More informationBeam Deflections: 4th Order Method and Additional Topics
11 eam Deflections: 4th Order Method and dditional Topics 11 1 ecture 11: EM DEFECTIONS: 4TH ORDER METHOD ND DDITION TOICS TE OF CONTENTS age 11.1. Fourth Order Method Description 11 3 11.1.1. Example
More informationLesson 4 Rigid Body Statics. Taking into account finite size of rigid bodies
Lesson 4 Rigid Body Statics When performing static equilibrium calculations for objects, we always start by assuming the objects are rigid bodies. This assumption means that the object does not change
More informationMECHANICS OF SOLIDS  BEAMS TUTORIAL 1 STRESSES IN BEAMS DUE TO BENDING. On completion of this tutorial you should be able to do the following.
MECHANICS OF SOLIDS  BEAMS TUTOIAL 1 STESSES IN BEAMS DUE TO BENDING This is the first tutorial on bending of beams designed for anyone wishing to study it at a fairly advanced level. You should judge
More informationIndeterminate Analysis Force Method 1
Indeterminate Analysis Force Method 1 The force (flexibility) method expresses the relationships between displacements and forces that exist in a structure. Primary objective of the force method is to
More informationMCE380: Measurements and Instrumentation Lab. Chapter 9: Force, Torque and Strain Measurements
MCE380: Measurements and Instrumentation Lab Chapter 9: Force, Torque and Strain Measurements Topics: Elastic Elements for Force Measurement Dynamometers and Brakes Resistance Strain Gages Holman, Ch.
More informationMESA Bridge Design. Basic Engineering Task:
1 asic Engineering Task: We have to transfer a load A to supports, using ¼ square balsa, and there has to be clearance under the bridge for vehicles to pass underneath. A 1 2 Loads: Loads in beams can
More informationChapter 5: Indeterminate Structures Force Method
Chapter 5: Indeterminate Structures Force Method 1. Introduction Statically indeterminate structures are the ones where the independent reaction components, and/or internal forces cannot be obtained by
More informationThe Mathematics of Beam Deflection
The athematics of eam Deflection Scenario s a structural engineer you are part of a team working on the design of a prestigious new hotel comple in a developing city in the iddle East. It has been decided
More informationEDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1  LOADING SYSTEMS TUTORIAL 3 LOADED COMPONENTS
EDEXCEL NATIONAL CERTIICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQ LEVEL 3 OUTCOME 1  LOADING SYSTEMS TUTORIAL 3 LOADED COMPONENTS 1. Be able to determine the effects of loading in static engineering
More informationDesign Analysis and Review of Stresses at a Point
Design Analysis and Review of Stresses at a Point Need for Design Analysis: To verify the design for safety of the structure and the users. To understand the results obtained in FEA, it is necessary to
More informationStresses in Beam (Basic Topics)
Chapter 5 Stresses in Beam (Basic Topics) 5.1 Introduction Beam : loads acting transversely to the longitudinal axis the loads create shear forces and bending moments, stresses and strains due to V and
More informationSlide 10.1. Basic system Models
Slide 10.1 Basic system Models Objectives: Devise Models from basic building blocks of mechanical, electrical, fluid and thermal systems Recognize analogies between mechanical, electrical, fluid and thermal
More informationFinite Element Simulation of Simple Bending Problem and Code Development in C++
EUROPEAN ACADEMIC RESEARCH, VOL. I, ISSUE 6/ SEPEMBER 013 ISSN 8648, www.euacademic.org IMPACT FACTOR: 0.485 (GIF) Finite Element Simulation of Simple Bending Problem and Code Development in C++ ABDUL
More informationHØGSKOLEN I GJØVIK Avdeling for teknologi, økonomi og ledelse. Løsningsforslag for kontinuasjonseksamen i Mekanikk 4/110
Løsningsforslag for kontinuasjonseksamen i 4/110 Oppgave 1 (T betyr tension, dvs. strekk, og C betyr compression, dvs. trykk.) Side 1 av 9 Leif Erik Storm Oppgave 2 Løsning (fra http://www.public.iastate.edu/~statics/examples/vmdiags/vmdiaga.html
More informationAdvance Physics Letter
Beam Analysis in Matlab (For simply supported & Cantilever; For Point Load & UDL) 1 Gulab Pamnani; 2 Dageshwar Singh Rajput; 3 Nikhil Tiwari; 4 Amit Gajendra 1 Assistant Professor, Department of Mechanical
More informationENGR1100 Introduction to Engineering Analysis. Lecture 13
ENGR1100 Introduction to Engineering Analysis Lecture 13 EQUILIBRIUM OF A RIGID BODY & FREEBODY DIAGRAMS Today s Objectives: Students will be able to: a) Identify support reactions, and, b) Draw a freebody
More informationMECHANICS OF SOLIDS COMPRESSION MEMBERS TUTORIAL 1 STRUTS. On completion of this tutorial you should be able to do the following.
MECHANICS OF SOLIDS COMPRESSION MEMBERS TUTORIAL 1 STRUTS You should judge your progress by completing the self assessment exercises. On completion of this tutorial you should be able to do the following.
More informationMECHANICS OF SOLIDS  BEAMS TUTORIAL TUTORIAL 4  COMPLEMENTARY SHEAR STRESS
MECHANICS OF SOLIDS  BEAMS TUTORIAL TUTORIAL 4  COMPLEMENTARY SHEAR STRESS This the fourth and final tutorial on bending of beams. You should judge our progress b completing the self assessment exercises.
More informationENGINEERING COUNCIL CERTIFICATE LEVEL ENGINEERING SCIENCE C103 TUTORIAL 3  TORSION
ENGINEEING COUNCI CETIFICATE EVE ENGINEEING SCIENCE C10 TUTOIA  TOSION You should judge your progress by completing the self assessment exercises. These may be sent for marking or you may request copies
More informationSOLID MECHANICS TUTORIAL MECHANISMS KINEMATICS  VELOCITY AND ACCELERATION DIAGRAMS
SOLID MECHANICS TUTORIAL MECHANISMS KINEMATICS  VELOCITY AND ACCELERATION DIAGRAMS This work covers elements of the syllabus for the Engineering Council exams C105 Mechanical and Structural Engineering
More informationDESIGN OF SLABS. 3) Based on support or boundary condition: Simply supported, Cantilever slab,
DESIGN OF SLABS Dr. G. P. Chandradhara Professor of Civil Engineering S. J. College of Engineering Mysore 1. GENERAL A slab is a flat two dimensional planar structural element having thickness small compared
More informationStructural Steel Design Project
Job No: Sheet 1 of 1 Rev Job Title: Eccentrically Loaded Bolt Group Worked Example 1 Checked by Date Design Example 1: Design a bolted connection between a bracket 8 mm thick and the flange of an ISHB
More informationSTRESS AND DEFORMATION ANALYSIS OF LINEAR ELASTIC BARS IN TENSION
Chapter 11 STRESS AND DEFORMATION ANALYSIS OF LINEAR ELASTIC BARS IN TENSION Figure 11.1: In Chapter10, the equilibrium, kinematic and constitutive equations for a general threedimensional solid deformable
More informationVisualizing Differential Equations Slope Fields. by Lin McMullin
Visualizing Differential Equations Slope Fields by Lin McMullin The topic of slope fields is new to the AP Calculus AB Course Description for the 2004 exam. Where do slope fields come from? How should
More informationWorked Examples of mathematics used in Civil Engineering
Worked Examples of mathematics used in Civil Engineering Worked Example 1: Stage 1 Engineering Surveying (CIV_1010) Tutorial  Transition curves and vertical curves. Worked Example 1 draws from CCEA Advanced
More informationAdvanced Structural Analysis Prof. Devdas Menon Department of Civil Engineering Indian Institute of Technology, Madras. Module
Advanced Structural Analysis Prof. Devdas Menon Department of Civil Engineering Indian Institute of Technology, Madras Module  2.2 Lecture  08 Review of Basic Structural Analysis2 Good morning to you.
More informationPLANE TRUSSES. Definitions
Definitions PLANE TRUSSES A truss is one of the major types of engineering structures which provides a practical and economical solution for many engineering constructions, especially in the design of
More informationMohr s Circle. Academic Resource Center
Mohr s Circle Academic Resource Center Introduction The transformation equations for plane stress can be represented in graphical form by a plot known as Mohr s Circle. This graphical representation is
More informationOUTCOME 2 KINEMATICS AND DYNAMICS TUTORIAL 2 PLANE MECHANISMS. You should judge your progress by completing the self assessment exercises.
Unit 60: Dynamics of Machines Unit code: H/601/1411 QCF Level:4 Credit value:15 OUTCOME 2 KINEMATICS AND DYNAMICS TUTORIAL 2 PLANE MECHANISMS 2 Be able to determine the kinetic and dynamic parameters of
More informationME 343: Mechanical Design3
ME 343: Mechanical Design3 Design of Shaft (continue) Dr. Aly Mousaad Aly Department of Mechanical Engineering Faculty of Engineering, Alexandria University Objectives At the end of this lesson, we should
More informationTorsion Tests. Subjects of interest
Chapter 10 Torsion Tests Subjects of interest Introduction/Objectives Mechanical properties in torsion Torsional stresses for large plastic strains Type of torsion failures Torsion test vs.tension test
More informationEnd Restraint and Effective Lengths of Columns
CHAPTER Structural Steel Design LRFD Method Third Edition INTRODUCTION TO AXIALLY LOADED COMPRESSION MEMBERS A. J. Clark School of Engineering Department of Civil and Environmental Engineering Part II
More informationAwellknown lecture demonstration1
Acceleration of a Pulled Spool Carl E. Mungan, Physics Department, U.S. Naval Academy, Annapolis, MD 40506; mungan@usna.edu Awellknown lecture demonstration consists of pulling a spool by the free end
More informationTruss Structures. See also pages in the supplemental notes. Truss: Mimic Beam Behavior. Truss Definitions and Details
Truss Structures Truss: Mimic Beam Behavior Truss Definitions and Details 1 2 Framing of a Roof Supported Truss Bridge Truss Details 3 4 See also pages 1215 in the supplemental notes. 1 Common Roof Trusses
More informationLaterally Loaded Piles
Laterally Loaded Piles 1 Soil Response Modelled by py Curves In order to properly analyze a laterally loaded pile foundation in soil/rock, a nonlinear relationship needs to be applied that provides soil
More informationMechanics of Materials. Chapter 5 Stresses In Beams
Mechanics of Materials Chapter 5 Stresses In Beams 5.1 Introduction In previous chapters, the stresses in bars caused by axial loading and torsion. Here consider the third fundamental loading : bending.
More informationStatics and Mechanics of Materials
Statics and Mechanics of Materials Chapter 41 Internal force, normal and shearing Stress Outlines Internal Forces  cutting plane Result of mutual attraction (or repulsion) between molecules on both
More informationTorque and Rotational Equilibrium
Torque and Rotational Equilibrium Name Section Torque is the rotational analog of force. If you want something to move (translation), you apply a force; if you want something to rotate, you apply a torque.
More informationRotation: Moment of Inertia and Torque
Rotation: Moment of Inertia and Torque Every time we push a door open or tighten a bolt using a wrench, we apply a force that results in a rotational motion about a fixed axis. Through experience we learn
More informationAnalysis of Statically Determinate Trusses
Analysis of Statically Determinate Trusses THEORY OF STRUCTURES Asst. Prof. Dr. Cenk Üstündağ Common Types of Trusses A truss is one of the major types of engineering structures which provides a practical
More informationBEAMS: DEFORMATION BY SUPERPOSITION
ETURE EMS: EFORMTION Y SUPERPOSITION Third Edition. J. lark School of Engineering epartment of ivil and Environmental Engineering 19 hapter 9.7 9.8 b r. Ibrahim. ssakkaf SPRING 00 ENES 0 Mechanics of Materials
More informationTorsion Testing. Objectives
Laboratory 4 Torsion Testing Objectives Students are required to understand the principles of torsion testing, practice their testing skills and interpreting the experimental results of the provided materials
More informationStructural Displacements. Structural Displacements. Beam Displacement. Truss Displacements 2
Structural Displacements Structural Displacements P Beam Displacement 1 Truss Displacements The deflections of civil engineering structures under the action of usual design loads are known to be small
More informationANALYTICAL METHODS FOR ENGINEERS
UNIT 1: Unit code: QCF Level: 4 Credit value: 15 ANALYTICAL METHODS FOR ENGINEERS A/601/1401 OUTCOME  TRIGONOMETRIC METHODS TUTORIAL 1 SINUSOIDAL FUNCTION Be able to analyse and model engineering situations
More informationStatics problem solving strategies, hints and tricks
Statics problem solving strategies, hints and tricks Contents 1 Solving a problem in 7 steps 3 1.1 To read.............................................. 3 1.2 To draw..............................................
More informationA beam is a structural member that is subjected primarily to transverse loads and negligible
Chapter. Design of Beams Flexure and Shear.1 Section forcedeformation response & Plastic Moment (M p ) A beam is a structural member that is subjected primarily to transverse loads and negligible axial
More informationChapter (3) SLOPE DEFLECTION METHOD
Chapter (3) SOPE DEFECTION ETHOD 3.1 Introduction: The methods of three moment equation, and consistent deformation method are represent the FORCE ETHOD of structural analysis, The slope deflection method
More informationInvestigation of strip footings under column loads
Investigation of strip footings under column loads Group: Greg Deacon, John Brogan, David McDonnell and Richard Delaney Course: Structural Engineering (Dt024/4) Lecturers: Dr. Colin Caprani, Lacour Ayompe
More informationStiffness Methods for Systematic Analysis of Structures (Ref: Chapters 14, 15, 16)
Stiffness Methods for Systematic Analysis of Structures (Ref: Chapters 14, 15, 16) The Stiffness method provides a very systematic way of analyzing determinate and indeterminate structures. Recall Force
More informationDesign of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar
Problem 1 Design a hand operated overhead crane, which is provided in a shed, whose details are: Capacity of crane = 50 kn Longitudinal spacing of column = 6m Center to center distance of gantry girder
More informationPHYSICS 149: Lecture 4
PHYSICS 149: Lecture 4 Chapter 2 2.3 Inertia and Equilibrium: Newton s First Law of Motion 2.4 Vector Addition Using Components 2.5 Newton s Third Law 1 Net Force The net force is the vector sum of all
More informationThe Free Body Diagram. The Concurrent System
T A B The Free Body Diagram The Concurrent System Free Body Diagrams Essential step in solving Equilibrium problems Complex Structural systems reduced into concise FORCE systems WHAT IS A FREE BODY DIAGRAM?
More informationP4 Stress and Strain Dr. A.B. Zavatsky MT07 Lecture 4 Stresses on Inclined Sections
4 Stress and Strain Dr. A.B. Zavatsky MT07 Lecture 4 Stresses on Inclined Sections Shear stress and shear strain. Equality of shear stresses on perpendicular planes. Hooke s law in shear. Normal and shear
More informationγ [Increase from (1) to (2)] γ (1ft) [Decrease from (2) to (B)]
1. The manometer fluid in the manometer of igure has a specific gravity of 3.46. Pipes A and B both contain water. If the pressure in pipe A is decreased by 1.3 psi and the pressure in pipe B increases
More informationUnit 4: Science and Materials in Construction and the Built Environment. Chapter 14. Understand how Forces act on Structures
Chapter 14 Understand how Forces act on Structures 14.1 Introduction The analysis of structures considered here will be based on a number of fundamental concepts which follow from simple Newtonian mechanics;
More information2 Session Two  Complex Numbers and Vectors
PH2011 Physics 2A Maths Revision  Session 2: Complex Numbers and Vectors 1 2 Session Two  Complex Numbers and Vectors 2.1 What is a Complex Number? The material on complex numbers should be familiar
More informationsuperimposing the stresses and strains cause by each load acting separately
COMBINED LOADS In many structures the members are required to resist more than one kind of loading (combined loading). These can often be analyzed by superimposing the stresses and strains cause by each
More informationCHAPTER 6 SIMPLY SUPPORTED BEAMS
CHPTE 6 SIMPLY SUPPOTED BEMS EXECISE 40, Page 87 1. Determine the moment of a force of 5 N applied to a spanner at an effective length of 180 mm from the centre of a nut. Moment, M = force distance = 5
More informationCOMPLEX STRESS TUTORIAL 5 STRAIN ENERGY
COMPLEX STRESS TUTORIAL 5 STRAIN ENERGY This tutorial covers parts of the Engineering Council Exam D Structural Analysis and further material useful students of structural engineering. You should judge
More informationChapter 5A. Torque. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University
Chapter 5A. Torque A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University 2007 Torque is a twist or turn that tends to produce rotation. * * * Applications
More informationUNIT 7 FRONT AXLE AND STEERING
UNIT 7 FRONT AXLE AND STEERING Front Axle and Steering Structure 7.1 Introduction Objectives 7.2 Front Axle 7.3 Types of Front Axle 7.4 Stub Axle 7.5 Steering 7.6 Ackerman s Principle of Steering 7.7 Steering
More informationTorque and Rotary Motion
Torque and Rotary Motion Name Partner Introduction Motion in a circle is a straightforward extension of linear motion. According to the textbook, all you have to do is replace displacement, velocity,
More informationMATERIALS SELECTION FOR SPECIFIC USE
MATERIALS SELECTION FOR SPECIFIC USE1 Subtopics 1 Density What determines density and stiffness? Material properties chart Design problems LOADING 2 STRENGTH AND STIFFNESS Stress is applied to a material
More informationTower Cross Arm Numerical Analysis
Chapter 7 Tower Cross Arm Numerical Analysis In this section the structural analysis of the test tower cross arm is done in Prokon and compared to a full finite element analysis using Ansys. This is done
More information