# Structural Integrity Analysis

 To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Structural Integrity Analysis 1. STRESS CONCENTRATION Igor Kokcharov 1.1 STRESSES AND CONCENTRATORS Stress An applied external force F causes inner forces in the carrying structure. Inner forces F' are shown by the blue lines spread throughout the structure. Inner forces are distributed differently in each part of the structure. To describe the inner forces in a section of the structure we use stress defined as the force divided by the cross-sectional area. Stress corresponds to the force acting on a unit of area (square millimeter, square inch, square meter, etc.). A smaller cross-sectional area creates a larger amount of stress under the same external force. Copyrighted materials 1

2 As a result, compressive and shear forces also cause compressive and shear stresses. As a rule in complex structures, tensile stress results in compressive stress in the perpendicular direction Strain The shape of a structure will change under loading. For example, a structure will elongate under tension. To estimate this process the value of the strain was introduced. Strain is the ratio of elongation to initial length and is therefore dimensionless. It is also linearly proportional to stress. Copyrighted materials 2

3 1.1.3 Concentrators When inner forces go around holes or notches, they will concentrate near such obstacles. Stress concentrators are areas that tend to magnify the stress level within a part. Stress that is higher in one area than it is in surrounding regions can cause the part to fail. If the radius of curvature in the notch tip is very small or if there is no radius (crack), the stress level is very high. Sharp corners are especially critical. What can serve as stress concentrators? - Holes and slots - Notches or grooves - Ribs, gussets, and posts - Sharp wall thickness transitions - Surface roughness - Bosses - Corners The mentioned design features will not cause stress concentration in those parts where there are no inner forces (stresses). Copyrighted materials 3

4 1.2 FORCE LINES Force lines show forces inside a structure. They have dimensions (units) of external force. If external force 10 N is shown by five force lines, each line has its "price" that is equal to 10 / 5 = 2 N. Usually, all force lines have a constant price in one figure. For any state of stress, it is possible to determine the direction of the maximum tensile stress. This stress is called the main stress. Force lines are drawn by the integration of the main stresses. Mathematical methods are used to draw force lines. We use a few simple rules to present force lines: Force lines start on the surfaces where the external forces are applied. They go around "obstacles" such as holes and notches. Copyrighted materials 4

5 Force lines are distributed uniformly for tension. Their density is higher at the edge of a beam under bending. By passing around the "obstacles," the force lines concentrate in the tip (a). They are not uniformly distributed near the concentrator (b). There is no sudden change of direction (c). Force lines cannot intersect each other (d). Copyrighted materials 5

6 Both tensile and compressive force lines can be used in the analysis. Usually, compressive lines are perpendicular to tensile lines. Force lines will compensate for each other under bending. Copyrighted materials 6

7 1.3 STRESS CONCENTRATION FACTOR Stress concentrators cause high stresses in the structure. The stress concentration factor is the ratio of maximum stress to nominal stress. It is greater than 1 and a dimensionless parameter. There are different formulas for nominal stress, which usually occurs in the absence of concentrators. The authors of the theory of elasticity proved that tensile stress near a hole in a wide plate is three times higher than nominal stress. This means that the stress concentration factor is equal to 3 in this case. Copyrighted materials 7

8 The stress concentration factor increases depending on: a) The larger size of the obstacle on force line path a b) The smaller size of the obstacle along force line path b c) The smaller radius of curvature in the notch tip Theoretically, if the radius tends towards 0 (sharp crack), the stress concentration factor tends towards infinity. That conclusion is correct only for an ideal elastic body. In real structures, the stress concentration factor is finite due to plasticity and microstructural changes. Thus, the stress concentration factor increases as the radius of curvature in the notch tip decreases. Copyrighted materials 8

9 A larger radius in the notch tip will lower the stress concentration. 1.4 THEORY OF ELASTICITY AND STRESS CONCENTRATION At the beginning of the 19th century, the authors of the theory of elasticity showed that an elastic body with a hole will change its form by extending in one direction and compressing in another. A round hole is converted into an elliptical one with a larger axis along the tensile direction. Copyrighted materials 9

10 Usually, nominal stress is defined as the average stress in a cross-section. Consider the three situations to the right. In the last case, the stress is very high due to the large amount of nominal stress. The stress concentration for the third scheme is lower. Elliptical holes can be problematic if the larger axis is perpendicular to the applied tension. In this case, the width of the "obstacles" on the force line path is large and the radius of curvature in the notch tip is small. Copyrighted materials 10

11 The formula shown here is valid for an elliptical hole in an infinite plate. Only in theory does the stress concentration factor tend towards infinity for a crack (radius of curvature is equal to 0). Two holes lying along the same axis of tension have a stress concentration lower than 1, while two holes on the same "obstacle" on the force lines path act as the elliptical hole. 1.5 MIXED MODE STRESS CONCENTRATION In the notch, the stress is as high for tension as it is for shear. The stress concentration factor has the same value for different loading schemes on the same geometry. Copyrighted materials 11

12 For biaxial tension or more complicated loads, the principle of superposition is applied. For example, biaxial tension is the superposition of two applications of tension and this has twice the maximum stress as nominal stress. The maximum tensile stresses act on a line perpendicular to the tension line. The maximum shear stresses act on an angle to the tension line. Copyrighted materials 12

13 There is three-dimensional state of stress in the notch. The complex stress state is only in the small area near the tip of the notch. In the other points of the structure, there are tensile stresses only or no stresses at all ("dark corners"). 1.6 STRESS CONCENTRATION IN AN ANISOTROPIC BODY Force lines are concentrated in the rigid components of composite materials. The strains are equal for all components, but the stress is higher in rigid components. Copyrighted materials 13

14 Rigid fibers define the deformed shape of composite materials. The material in a more flexible matrix has larger shear deformations. A plate is reinforced with a concentrator according to the distribution of the force line. An effective method is to place reinforcement bars along the main force line. For proper design, the zones of transition from rigid to more flexible components should not include sharp corners, sharp bends, thin flexible layers, and so on. Copyrighted materials 14

15 A stress concentration will occur near a broken rigid fiber in a flexible matrix. Delaminating fibers from the matrix will help "smooth" the redistribution of force lines. 1.7 ELASTIC PLASTIC STRESS CONCENTRATION The nature of plasticity in metals is nonlinear shear deformation. The plastic region is different for tension, bending, pure shear, and other loading schemes. It forms an "ear" for tension, a round shape for torsion, and a plastic "hinge" for three-point bending. The plastic region allows for a decrease in stress concentration and for the redistribution of inner forces into neighboring areas. Unfortunately, strains increase in the plastic zone in comparison with in the elastic region. Strains are also finite; when the limit is reached, failure will occur. Force lines extend far from the notch tip in the elastic plastic body. Copyrighted materials 15

16 Under plastic deformation, the ratio of maximum stress to nominal stress decreases in comparison with the elastic case. The opposite occurs with strains. A strain in the notch tip is larger than that in the elastic body. In real materials, stresses in the crack (the sharpest concentrator) will not reach infinity due to plastic or nonlinear deformation. Copyrighted materials 16

17 1.8 JOINTS: BOLTS AND WELDS Joints are regions of stress concentration. Welds are "geometrical" stress concentrations that have inner residual stress (thermal stresses). There are zones where nondestructive testing can detect defects such as cracks (sharpest stress concentrator). Glued joints also show stress concentration due to the non-uniformity of elastic properties and the change of geometry. Rivets and bolts are inserted into holes that are stress concentrators. Force lines must bend around the joints, which causes concentrations of the force lines at the joint. Copyrighted materials 17

18 Designers should try to remove sharp corners and other flaws from weld joints. While this does not eliminate stress concentration, it can decrease the negative effect on the strength of the joints. At the edges of glued surfaces and welds, there is an increase in shear stresses. The main reason for this increase is the difference in the rigidities of the connected plates at the ends. Copyrighted materials 18

19 Thread is also a zone of stress concentration. There are stress concentrations in a bolt and a nut. The first thread has maximum loads and stress concentration. A smaller radius of curvature causes greater tensile stress. A less rigid bolt has a lower stress concentration in the first thread. 1.9 FRACTURE CRITERIA There are several types of fracture in a plate with a stress concentrator. If the plate material is brittle, the main mechanism of failure is cleavage, and new cracks will start perpendicular to the maximum tangential stress in the notch tip. For plastic material, a possible mechanism of failure is shear along the maximal tangential shear stress. Directions are not the same, as they depend on the loading scheme and geometry of the structure. Copyrighted materials 19

20 For tension (see items 1 and 3), the new cleavage is perpendicular to the applied force. Shear surfaces are at an angle to the force. For compression, the cleavage is parallel to the force and shear surfaces are again inclined. Under pure shear (4), the shear surfaces lie along the maximum axis of the elliptical hole and the cleavage is inclined. There are differences in the cleavage path for items 5 and 6. The main mechanism of fatigue crack initiation is local plastic deformation (e.g., on the neighborhood of a stress concentrator). The growth of fatigue cracks is higher if the maximum stress is greater than the limit of elasticity for the material. In this case, the time for crack initiation and growth is short. Copyrighted materials 20

21 The comparison of these diagrams for two specimens shows that the notched specimen has less elongation (strain) and lower maximum load (stress). For plastic materials, there is no direct proportional relation to the theoretical stress concentration factor RATIONAL DESIGN We need to consider many factors including stress concentration in order to determine design validity, cause of failure, and so on. Please remember what will generates less stress concentration: 1) Shrinking obstacles on the force line path, Copyrighted materials 21

22 2) Enlarging the radius of curvature in a notch, 3) Removing stress concentrators from regions of tensile stress, 4) "Smoothing" the transition of rigidities, and 5) Creating greater distances between stress concentrators. Copyrighted materials 22

23 REFERENCES Collins J.A. Failure of Materials in Mechanical Design.- Analysis, Prediction, Prevention. John Wiley & Sons, 1981 Peterson R.E. Stress Concentration Factors. New York: John Wiley & Sons, 1974 Gordon J.E. Structures, or Why Things Don't Fall Down. Penguin Books, Harmondsworth, 1978 Neuiber Stress Concentration Timoshenko Goodier Theory of Elasticity Copyrighted materials 23

### 2. FRACTURE MECHANICS

2. FRACTURE MECHANICS Igor Kokcharov 2.1 DEFECTS Structural materials have inner defects such as cracks, which are extreme stress concentrators. There are technological defects shown in diagrams A and

### NOTCHES AND THEIR EFFECTS. Ali Fatemi - University of Toledo All Rights Reserved Chapter 7 Notches and Their Effects 1

NOTCHES AND THEIR EFFECTS Ali Fatemi - University of Toledo All Rights Reserved Chapter 7 Notches and Their Effects 1 CHAPTER OUTLINE Background Stress/Strain Concentrations S-N Approach for Notched Members

### Material Types and Properties

Material Types and Properties 1 Material Types There are many kinds of materials, but most of them can be divided into four groups: Metals - Metals are composed of one or more metallic elements and often

### Joining Methods. Fit between plastics parts

Joining Methods Molding one part vs. separate components A major advantage of molding plastics parts is that you can now mold what were previously several parts into one part. These include many of the

### P4 Stress and Strain Dr. A.B. Zavatsky MT07 Lecture 4 Stresses on Inclined Sections

4 Stress and Strain Dr. A.B. Zavatsky MT07 Lecture 4 Stresses on Inclined Sections Shear stress and shear strain. Equality of shear stresses on perpendicular planes. Hooke s law in shear. Normal and shear

### Solid Mechanics. Stress. What you ll learn: Motivation

Solid Mechanics Stress What you ll learn: What is stress? Why stress is important? What are normal and shear stresses? What is strain? Hooke s law (relationship between stress and strain) Stress strain

### Pin jointed structures are often used because they are simple to design, relatively inexpensive to make, easy to construct, and easy to modify.

4. FORCES in PIN JOINTED STRUCTURES Pin jointed structures are often used because they are simple to design, relatively inexpensive to make, easy to construct, and easy to modify. They can be fixed structures

CH 6: Fatigue Failure Resulting from Variable Loading Some machine elements are subjected to static loads and for such elements static failure theories are used to predict failure (yielding or fracture).

### Solid shape molding is not desired in injection molding due to following reasons.

PLASTICS PART DESIGN and MOULDABILITY Injection molding is popular manufacturing method because of its high-speed production capability. Performance of plastics part is limited by its properties which

### Fatigue. 3. Final fracture (rough zone) 1. Fatigue origin. 2. Beach marks (velvety zone)

Fatigue Term fatigue introduced by Poncelet (France) 1839 progressive fracture is more descriptive 1. Minute crack at critical area of high local stress (geometric stress raiser, flaws, preexisting cracks)

### Selection of Materials Definition of Testing Methods

Selection of Materials Definition of Testing Methods Robert O Rourke is a Product Engineer and Metallurgist at Dura-Bar, with experience in production, quality management and applications research. He

### Bending, Forming and Flexing Printed Circuits

Bending, Forming and Flexing Printed Circuits John Coonrod Rogers Corporation Introduction: In the printed circuit board industry there are generally two main types of circuit boards; there are rigid printed

### Nonlinear Material Elastic Perfectly Plastic Material Response

Nonlinear Material Elastic Perfectly Plastic Material Response Model an alloy steel plate with a thickness of 0.25 inch. Analytical Solution: If 15,000 lbs is applied at the right edge when the left edge

### Adam Zaborski handouts for Afghans

Tensile test Adam Zaborski handouts for Afghans Outline Tensile test purpose Universal testing machines and test specimens Stress-strain diagram Mild steel : proportional stage, elastic limit, yielding

### MATERIALS SELECTION FOR SPECIFIC USE

MATERIALS SELECTION FOR SPECIFIC USE-1 Sub-topics 1 Density What determines density and stiffness? Material properties chart Design problems LOADING 2 STRENGTH AND STIFFNESS Stress is applied to a material

### Griffith theory of brittle fracture:

Griffith theory of brittle fracture: Observed fracture strength is always lower than theoretical cohesive strength. Griffith explained that the discrepancy is due to the inherent defects in brittle materials

### Yield Criteria for Ductile Materials and Fracture Mechanics of Brittle Materials. τ xy 2σ y. σ x 3. τ yz 2σ z 3. ) 2 + ( σ 3. σ 3

Yield Criteria for Ductile Materials and Fracture Mechanics of Brittle Materials Brittle materials are materials that display Hookean behavior (linear relationship between stress and strain) and which

### Objectives. Experimentally determine the yield strength, tensile strength, and modules of elasticity and ductility of given materials.

Lab 3 Tension Test Objectives Concepts Background Experimental Procedure Report Requirements Discussion Objectives Experimentally determine the yield strength, tensile strength, and modules of elasticity

### Mechanics of Materials

Mechanics of Materials Notation: a = acceleration A = area (net = with holes, bearing = in contact, etc...) ASD = allowable stress design d = diameter of a hole = calculus symbol for differentiation e

### METU DEPARTMENT OF METALLURGICAL AND MATERIALS ENGINEERING

METU DEPARTMENT OF METALLURGICAL AND MATERIALS ENGINEERING Met E 206 MATERIALS LABORATORY EXPERIMENT 1 Prof. Dr. Rıza GÜRBÜZ Res. Assist. Gül ÇEVİK (Room: B-306) INTRODUCTION TENSION TEST Mechanical testing

### Statics and Mechanics of Materials

Statics and Mechanics of Materials Chapter 4 Stress, Strain and Deformation: Axial Loading Objectives: Learn and understand the concepts of internal forces, stresses, and strains Learn and understand the

### Stress Strain Relationships

Stress Strain Relationships Tensile Testing One basic ingredient in the study of the mechanics of deformable bodies is the resistive properties of materials. These properties relate the stresses to the

### SPECIFICATIONS, LOADS, AND METHODS OF DESIGN

CHAPTER Structural Steel Design LRFD Method Third Edition SPECIFICATIONS, LOADS, AND METHODS OF DESIGN A. J. Clark School of Engineering Department of Civil and Environmental Engineering Part II Structural

### KINGS COLLEGE OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK. UNIT I STRESS STRAIN DEFORMATION OF SOLIDS PART- A (2 Marks)

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK SUB CODE/NAME: CE1259 STRENGTH OF MATERIALS YEAR/SEM: II / IV 1. What is Hooke s Law? 2. What are the Elastic Constants?

### Statics and Mechanics of Materials

Statics and Mechanics of Materials Chapter 4-1 Internal force, normal and shearing Stress Outlines Internal Forces - cutting plane Result of mutual attraction (or repulsion) between molecules on both

### Stress Calculation Basics and Examples

Stress Calculation Basics and Examples Miskolc University During solidification and cooling stresses appear in the casting. This can be caused: by the shrinkage of the casting, by the formation of temperature

### Stress and Strain Elasticity

Stress and Strain Elasticit Notation: A = area D = diameter dimension E = modulus of elasticit or Young s modulus f = stress F allow. = allowable stress F t = allowable tensile stress F.S. = factor of

### EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES OUTCOME 2 ENGINEERING COMPONENTS TUTORIAL 1 STRUCTURAL MEMBERS

ENGINEERING COMPONENTS EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES OUTCOME ENGINEERING COMPONENTS TUTORIAL 1 STRUCTURAL MEMBERS Structural members: struts and ties; direct stress and strain,

### Tensile Testing. Objectives

Laboratory 1 Tensile Testing Objectives Students are required to understand the principle of a uniaxial tensile testing and gain their practices on operating the tensile testing machine. Students are able

### Chapter Outline. Mechanical Properties of Metals How do metals respond to external loads?

Mechanical Properties of Metals How do metals respond to external loads? Stress and Strain Tension Compression Shear Torsion Elastic deformation Plastic Deformation Yield Strength Tensile Strength Ductility

### Tensile fracture analysis of blunt notched PMMA specimens by means of the Strain Energy Density

Engineering Solid Mechanics 3 (2015) 35-42 Contents lists available at GrowingScience Engineering Solid Mechanics homepage: www.growingscience.com/esm Tensile fracture analysis of blunt notched PMMA specimens

### Laboratory Weeks 9 10 Theory of Pure Elastic Bending

Laboratory Weeks 9 10 Theory of Pure Elastic Bending Objective To show the use of the Sagital method for finding the Radius of Curvature of a beam, to prove the theory of bending, and find the elastic

### Chapter 5 Bridge Deck Slabs. Bridge Engineering 1

Chapter 5 Bridge Deck Slabs Bridge Engineering 1 Basic types of bridge decks In-situ reinforced concrete deck- (most common type) Pre-cast concrete deck (minimize the use of local labor) Open steel grid

### Removing chips is a method for producing plastic threads of small diameters and high batches, which cause frequent failures of thread punches.

Plastic Threads Technical University of Gabrovo Yordanka Atanasova Threads in plastic products can be produced in three ways: a) by direct moulding with thread punch or die; b) by placing a threaded metal

### ME111 Lecture 16 1. ME111 Instructor: Peter Pinsky Class #16 November 1, 2000

Toda s Topics ME111 Instructor: Peter Pinsk Class #16 November 1, 2000 Introduction to linear elastic fracture mechanics (LEFM). Problem 3 A center-cracked plate of AII 1144 steel ( C = 115MPa m ) has

### Mechanical & Non-Destructive Testing

Training Objective After watching the program and reviewing this printed material, the viewer will gain an understanding and become familiar with the various methods, equipment, and applications of mechanical

### There are three principle ways a load can be applied:

MATERIALS SCIENCE Concepts of Stress and Strains Stress-strain test is used to determine the mechanical behavior by applying a static load uniformly over a cross section or a surface of a member. The test

### INJECTION MOLDING COOLING TIME REDUCTION AND THERMAL STRESS ANALYSIS

INJECTION MOLDING COOLING TIME REDUCTION AND THERMAL STRESS ANALYSIS Tom Kimerling University of Massachusetts, Amherst MIE 605 Finite Element Analysis Spring 2002 ABSTRACT A FEA transient thermal structural

### ME 215 Engineering Materials I

ME 215 Engineering Materials I Chapter 3 Properties in Tension and Compression (Part III) Mechanical Engineering University of Gaziantep Dr. A. Tolga Bozdana www.gantep.edu.tr/~bozdana True Stress and

### Objective To conduct Charpy V-notch impact test and determine the ductile-brittle transition temperature of steels.

IMPACT TESTING Objective To conduct Charpy V-notch impact test and determine the ductile-brittle transition temperature of steels. Equipment Coolants Standard Charpy V-Notched Test specimens Impact tester

### MCEN 2024, Spring 2008 The week of Apr 07 HW 9 with Solutions

MCEN 2024, Spring 2008 The week of Apr 07 HW 9 with Solutions The Quiz questions based upon HW9 will open on Thursday, Apr. 11 and close on Wednesday, Apr 17 at 1:30 PM. References to A&J: Chapters 13,

### Review from Mechanical Properties of Materials

Fall 24 Review from Mechanical Properties of Materials Concept of Stress and Strain Figure 1 shows the behavior of a clindrical bod subjected to tension and compression. Tension specimen etends along its

### σ = F / A o Chapter Outline Introduction Mechanical Properties of Metals How do metals respond to external loads?

Mechanical Properties of Metals How do metals respond to external loads? and Tension Compression Shear Torsion Elastic deformation Chapter Outline Introduction To understand and describe how materials

### Testing Anchors in Cracked Concrete

Testing Anchors in Cracked Concrete Guidance for testing laboratories: how to generate cracks BY ROLF ELIGEHAUSEN, LEE MATTIS, RICHARD WOLLMERSHAUSER, AND MATTHEW S. HOEHLER ACI Committee 355, Anchorage

### Civil Engineering. Strength of Materials. Comprehensive Theory with Solved Examples and Practice Questions. Publications

Civil Engineering Strength of Materials Comprehensive Theory with Solved Examples and Practice Questions Publications Publications MADE EASY Publications Corporate Office: 44-A/4, Kalu Sarai (Near Hauz

### Figure 12 1 Short columns fail due to material failure

12 Buckling Analysis 12.1 Introduction There are two major categories leading to the sudden failure of a mechanical component: material failure and structural instability, which is often called buckling.

### Chapter Outline. Mechanical Properties of Metals How do metals respond to external loads?

Mechanical Properties of Metals How do metals respond to external loads? Stress and Strain Tension Compression Shear Torsion Elastic deformation Plastic Deformation Yield Strength Tensile Strength Ductility

### Technical Notes 3B - Brick Masonry Section Properties May 1993

Technical Notes 3B - Brick Masonry Section Properties May 1993 Abstract: This Technical Notes is a design aid for the Building Code Requirements for Masonry Structures (ACI 530/ASCE 5/TMS 402-92) and Specifications

### MECHANICS OF MATERIALS

2009 The McGraw-Hill Companies, Inc. All rights reserved. Fifth SI Edition CHAPTER 4 MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf David F. Mazurek Pure Bending Lecture

### Chapter 12 Elasticity

If I have seen further than other men, it is because I stood on the shoulders of giants. Isaac Newton 12.1 The Atomic Nature of Elasticity Elasticity is that property of a body by which it experiences

### CE591 Fall 2013 Lecture 26: Moment Connections

CE591 Fall 2013 Lecture 26: Moment Connections Explain basic design procedure for moment (FR) connections Explain considerations for connections in momentresisting frames for seismic demands Describe problems

### Stress and Deformation Analysis. Representing Stresses on a Stress Element. Representing Stresses on a Stress Element con t

Stress and Deformation Analysis Material in this lecture was taken from chapter 3 of Representing Stresses on a Stress Element One main goals of stress analysis is to determine the point within a load-carrying

### FAILURE MODES and MATERIALS PROPERTIES. Component failures. Ductile and Brittle Fracture COMPONENT FAILURES. COMPONENT FAILURE MODES examples:

FAILURE MODES and MATERIALS PROPERTIES MECH2300 - Materials Lecture 10 R. W. Truss Materials Engineering R.Truss@uq.edu.au COMPONENT FAILURES Structures lectures es on component es cause response in component

### Lecture Slides. Chapter 8. Screws, Fasteners, and the Design of Nonpermanent Joints

Lecture Slides Chapter 8 Screws, Fasteners, and the Design of Nonpermanent Joints The McGraw-Hill Companies 2012 Chapter Outline Reasons for Non-permanent Fasteners Field assembly Disassembly Maintenance

### slip lines which are close to, but not coincident with, the slip lines formed in

FATIGUE CRACK NUCLEATION IN AIETALS* BY T. II. LIN ANI) Y. A11. ITO UNIVERSITY OF CALIFORNIA (LOS ANGELES) Communicated by T'. Y. Thomas, December 18, 1968 Abstract. One of the unanswered questions in

### Distinguishing strength from toughness. Understanding fracture toughness.

Lecture notes version 20 Oct 2010 Chapter 8 Fracture and fracture toughness A fractured Liberty Ship 8.1 Introduction and synopsis Distinguishing strength from toughness. Understanding fracture toughness.

### Dr. M. Medraj Mech. Eng. Dept. - Concordia University Mech 421/6511 lecture 8/2

Historically Outline Introduction Cutting Operations Shearing Blanking Piercing (punching) Sheet Metal Cutting Analysis Bending Operations Types of bending Bending analysis Sheet metal stamping was developed

### EXPERIMENTAL AND NUMERICAL ANALYSIS OF THE COLLAR PRODUCTION ON THE PIERCED FLAT SHEET METAL USING LASER FORMING PROCESS

JOURNAL OF CURRENT RESEARCH IN SCIENCE (ISSN 2322-5009) CODEN (USA): JCRSDJ 2014, Vol. 2, No. 2, pp:277-284 Available at www.jcrs010.com ORIGINAL ARTICLE EXPERIMENTAL AND NUMERICAL ANALYSIS OF THE COLLAR

### ME 105 Mechanical Engineering Laboratory Spring Quarter Tensile Test

ME 105 Mechanical Engineering Lab Page 1 ME 105 Mechanical Engineering Laboratory Spring Quarter 2003 3. Tensile Test Introduction In this lab, you will study the deformation and fracture characteristics

### DESIGN TO PREVENT FATIGUE

W H I T E P A P E R DESIGN TO PREVENT FATIGUE Overview In 1954, two crashes involving the world s first commercial airliner, the de Havilland Comet, brought the words metal fatigue to newspaper headlines

### LOAD-CARRYING CAPACITY OF AXIALLY LOADED RODS GLUED-IN PERPENDICULAR TO THE GRAIN

LOAD-CARRYING CAPACITY OF AXIALLY LOADED RODS GLUED-IN PERPENDICULAR TO TE GRAIN Prof. Dr.-Ing..J. Blaß, Dipl.-Ing. B. Laskewitz Universität Karlsruhe (T), Germany Abstract Glued-in rods have been used

### STRENGTH OF COMPOSITE LAMINATE WITH MULTIPLE HOLES

STRENGTH OF COMPOSITE LAMINATE WITH MULTIPLE HOLES Eugene Dan-Jumbo 1, Russell Keller 1, Wen S. Chan and Selvaraj, S. University of Texas at Arlington The Boeing Company 1 SUMMARY An experimental study

### Chapter 4 Strain and Material Relations

CIVL 222 STRENGTH OF MATERIALS Chapter 4 Strain and Material Relations Terminology 1. Displacement 2. Deformation 3. Strain 4. Average Axial Strain 5. Shearing Strain 6. Poisson s Ratio 7. Mechanical Properties

### API. Defined Procedure. for the. Ultrasonic Examination. Ferritic Welds

API Defined Procedure for the Ultrasonic Examination of Ferritic Welds API UT 2 This Procedure Defines the Recommended Techniques for the API Qualification of Ultrasonic Examiners Certification Program.

### Structures and Stiffness

Structures and Stiffness ENGR 10 Introduction to Engineering Ken Youssefi/Thalia Anagnos Engineering 10, SJSU 1 Wind Turbine Structure The Goal The support structure should be optimized for weight and

### MATERIALS AND MECHANICS OF BENDING

HAPTER Reinforced oncrete Design Fifth Edition MATERIALS AND MEHANIS OF BENDING A. J. lark School of Engineering Department of ivil and Environmental Engineering Part I oncrete Design and Analysis b FALL

### Strength of Materials

FE Review Strength of Materials Problem Statements Copyright 2008 C. F. Zorowski NC State E490 Mechanics of Solids 110 KN 90 KN 13.5 KN A 3 = 4.5x10-3 m 2 A 2 = 2x10-3 m 2 A 1 = 5x10-4 m 2 1. A circular

### Introduction to Mechanical Behavior of Biological Materials

Introduction to Mechanical Behavior of Biological Materials Ozkaya and Nordin Chapter 7, pages 127-151 Chapter 8, pages 173-194 Outline Modes of loading Internal forces and moments Stiffness of a structure

### STUDY THE EFFECT OF THE VARIATION OF LAYER'S THICKNESS ON THE BENDING CHARACTERISTICS OF THE COMPOSITE BEAM

STUDY THE EFFECT OF THE VARIATION OF LAYER'S THICKNESS ON THE BENDING CHARACTERISTICS OF THE COMPOSITE BEAM Assist. Lecturer Manal Hameed Jasem Al-Mustansiriya University/College of Eng./Mech. Eng. Depart.

### Activity 2.3b Engineering Problem Solving Answer Key

Activity.3b Engineering roblem Solving Answer Key 1. A force of 00 lbs pushes against a rectangular plate that is 1 ft. by ft. Determine the lb lb pressure in and that the plate exerts on the ground due

### Introduction. ε 1 θ=55 ε 2. Localized necking Because ν=0.5 in plasticity, ε 1 =-2ε 2 =-2ε 3. ε 3,ε 2

SHEET METALWORKING 1. Cutting Operation 2. Bending Operation 3. Drawing 4. Other Sheet-metal Forming 5. Dies and Presses 6. Sheet-metal Operation 7. Bending of Tube Stock 1 Introduction Cutting and forming

### Copyright 2011 Casa Software Ltd. www.casaxps.com. Centre of Mass

Centre of Mass A central theme in mathematical modelling is that of reducing complex problems to simpler, and hopefully, equivalent problems for which mathematical analysis is possible. The concept of

### SAMPLE OF THE STUDY MATERIAL PART OF CHAPTER 1 STRESS AND STRAIN

SAMPLE OF THE STUDY MATERIAL PART OF CHAPTER 1 STRESS AND STRAIN 1.1 Stress & Strain Stress is the internal resistance offered by the body per unit area. Stress is represented as force per unit area. Typical

### Fatigue :Failure under fluctuating / cyclic stress

Fatigue :Failure under fluctuating / cyclic stress Under fluctuating / cyclic stresses, failure can occur at loads considerably lower than tensile or yield strengths of material under a static load: Fatigue

### 8.2 Elastic Strain Energy

Section 8. 8. Elastic Strain Energy The strain energy stored in an elastic material upon deformation is calculated below for a number of different geometries and loading conditions. These expressions for

### DESIGN OF BEAM-COLUMNS - I

13 DESIGN OF BEA-COLUNS - I INTRODUCTION Columns in practice rarely experience concentric axial compression alone. Since columns are usually parts of a frame, they experience both bending moment and axial

### ON THE COLLAPSE OF A REINFORCED CONCRETE DIGESTER TANK

ON THE COLLAPSE OF A REINFORCED CONCRETE DIGESTER TANK Luis A. Godoy and Sandra Lopez-Bobonis Department of Civil Engineering, University of Puerto Rico, Mayagüez, PR 00681-9041, Puerto Rico ABSTRACT The

### Designer s NOTEBOOK BLAST CONSIDERATIONS

Designer s NOTEBOOK BLAST CONSIDERATIONS For a surface blast, the most directly affected building elements are the façade and structural members on the lower four stories. Although the walls can be designed

National Aeronautics and Space Administration Lyndon B. Johnson Space Center Houston, Texas 77058 REVISION A JULY 6, 1998 REPLACES BASELINE SPACE SHUTTLE CRITERIA FOR PRELOADED BOLTS CONTENTS 1.0 INTRODUCTION..............................................

### EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1 - LOADING SYSTEMS TUTORIAL 3 LOADED COMPONENTS

EDEXCEL NATIONAL CERTIICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQ LEVEL 3 OUTCOME 1 - LOADING SYSTEMS TUTORIAL 3 LOADED COMPONENTS 1. Be able to determine the effects of loading in static engineering

### 10 Space Truss and Space Frame Analysis

10 Space Truss and Space Frame Analysis 10.1 Introduction One dimensional models can be very accurate and very cost effective in the proper applications. For example, a hollow tube may require many thousands

### Screw Thread Design. Rev. 3-4-09

Screw Thread Design Screw Thread Fundamentals A screw thread is defined as a ridge of uniform section in the form of a helix on either the external or internal surface of a cylinder. Internal threads refer

### Mechanics of Materials Qualifying Exam Study Material

Mechanics of Materials Qualifying Exam Study Material The candidate is expected to have a thorough understanding of mechanics of materials topics. These topics are listed below for clarification. Not all

### AN EXPLANATION OF JOINT DIAGRAMS

AN EXPLANATION OF JOINT DIAGRAMS When bolted joints are subjected to external tensile loads, what forces and elastic deformation really exist? The majority of engineers in both the fastener manufacturing

### CERAMICS: Properties 2

CERAMICS: Properties 2 (Brittle Fracture Analysis) S.C. BAYNE, 1 J.Y. Thompson 2 1 University of Michigan School of Dentistry, Ann Arbor, MI 48109-1078 sbayne@umich.edu 2 Nova Southeastern College of Dental

### Introduction to Structure and Properties Winter 2005 Final Exam March 17, 2005 TOTAL POINTS 37

Materials 101 Introduction to Structure and Properties Winter 005 Final Exam March 17, 005 Solutions TOTAL POINTS 37 Problem 1: Tensile Test and Plastic Deformation (10 Points) A copper rod is deformed

### Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar. Fig. 7.21 some of the trusses that are used in steel bridges

7.7 Truss bridges Fig. 7.21 some of the trusses that are used in steel bridges Truss Girders, lattice girders or open web girders are efficient and economical structural systems, since the members experience

### Rolling - Introductory concepts

Rolling - Introductory concepts R. Chandramouli Associate Dean-Research SASTRA University, Thanjavur-613 401 Joint Initiative of IITs and IISc Funded by MHRD Page 1 of 8 Table of Contents 1. Rolling -

### Design Analysis and Review of Stresses at a Point

Design Analysis and Review of Stresses at a Point Need for Design Analysis: To verify the design for safety of the structure and the users. To understand the results obtained in FEA, it is necessary to

### Lab#2 Mohr s Circle and state of stress By C. Daley

Engineering 5003 - Ship Structures I Lab#2 Mohr s Circle and state of stress By C. Daley Overview Consider a steel plate subject to some type of in-plane loading, for example as in the case in lab#1. Any

### Sheet metal operations - Bending and related processes

Sheet metal operations - Bending and related processes R. Chandramouli Associate Dean-Research SASTRA University, Thanjavur-613 401 Table of Contents 1.Quiz-Key... Error! Bookmark not defined. 1.Bending

### MECHANICS OF SOLIDS - BEAMS TUTORIAL 1 STRESSES IN BEAMS DUE TO BENDING. On completion of this tutorial you should be able to do the following.

MECHANICS OF SOLIDS - BEAMS TUTOIAL 1 STESSES IN BEAMS DUE TO BENDING This is the first tutorial on bending of beams designed for anyone wishing to study it at a fairly advanced level. You should judge

### Mechanics of Materials-Steel

Mechanics of Materials-Steel Structural Steel Structural steel considered one of the predominant materials for construction of buildings, bridges, towers and other structures. The preferable physical properties

### Evaluation of stress distribution in bolted steel angles under tension

17 Evaluation of stress distribution in bolted steel angles under tension Mohan Gupta Reader, Department of Civil Engineering, Bhilai Institute of Technology, Durg 491 001 (India) L. M. Gupta Professor

### Shear Reinforcements in the Reinforced Concrete Beams

American Journal of Engineering Research (AJER) e-issn : 2320-0847 p-issn : 2320-0936 Volume-02, Issue-10, pp-191-199 www.ajer.org Research Paper Open Access Shear Reinforcements in the Reinforced Concrete

### 9. TIME DEPENDENT BEHAVIOUR: CYCLIC FATIGUE

9. TIME DEPENDENT BEHAVIOUR: CYCLIC FATIGUE A machine part or structure will, if improperly designed and subjected to a repeated reversal or removal of an applied load, fail at a stress much lower than

### Torsion Tests. Subjects of interest

Chapter 10 Torsion Tests Subjects of interest Introduction/Objectives Mechanical properties in torsion Torsional stresses for large plastic strains Type of torsion failures Torsion test vs.tension test

### Mechanical Properties and Fracture Analysis of Glass. David Dutt Chromaglass, Inc.

Mechanical Properties and Fracture Analysis of Glass David Dutt Chromaglass, Inc. IES ALC Williamsburg 2006 2 IES ALC Williamsburg 2006 3 Outline The Ideal The Practical The Reality IES ALC Williamsburg