Shear Forces and Bending Moments


 Coral Golden
 2 years ago
 Views:
Transcription
1 Chapter 4 Shear Forces and Bending Moments 4.1 Introduction Consider a beam subjected to transverse loads as shown in figure, the deflections occur in the plane same as the loading plane, is called the plane of bending. In this chapter we discuss shear forces and bending moments in beams related to the loads. 4.2 Types of Beams, Loads, and Reactions Type of beams a. simply supported beam (simple beam) b. cantilever beam (fixed end beam) c. beam with an overhang 1
2 Type of loads a. concentrated load (single force) b. distributed load (measured by their intensity) : uniformly distributed load (uniform load) linearly varying load c. couple Reactions consider the loaded beam in figure equation of equilibrium in horizontal direction F x = 0 H A  P 1 cos = 0 H A = P 1 cos M B = 0  R A L + (P 1 sin ) (L  a) + P 2 (L  b) + q c 2 / 2 = 0 (P 1 sin ) (L  a) P 2 (L  b) q c 2 R A = CCCCCCC + CCCC + CC L L 2 L (P 1 sin ) a P 2 b q c 2 R B = CCCCC + CC + CC L L 2 L for the cantilever beam F x = 0 H A = 5 P 3 / 13 F y = 0 12 P 3 (q 1 + q 2 ) b R A = CC + CCCCC
3 M A = 0 12 P 3 q 1 b q 1 b M A = CC + CC (L 2b/3) + CC (L b/3) for the overhanging beam M B = 0  R A L + P 4 (L a) + M 1 = 0 M A = 0  P 4 a + R B L + M 1 = 0 P 4 (L a) + M 1 P 4 a  M 1 R A = CCCCCC R B = CCCC L L 4.3 Shear Forces and Bending Moments Consider a cantilever beam with a concentrated load P applied at the end A, at the cross section mn, the shear force and bending moment are found F y = 0 V = P M = 0 M = P x sign conventions (deformation sign conventions) the shear force tends to rotate the material clockwise is defined as positive the bending moment tends to compress the upper part of the beam and elongate the lower part is defined as positive 3
4 Example 41 a simple beam AB supports a force P and a couple M 0, find the shear V and bending moment M at (a) at x = (L/2) _ (b) at x = (L/2) + 3P R A = C  M 0 C P R B = C + M 0 C 4 L 4 L (a) at x = (L/2) _ F y = 0 R A  P  V = 0 V = R A  P =  P / 4  M 0 / L M = 0  R A (L/2) + P (L/4) + M = 0 M = R A (L/2) + P (L/4) = P L / 8  M 0 / 2 (b) at x = (L/2) + [similarly as (a)] V =  P / 4  M 0 / L M = P L / 8 + M 0 / 2 Example 42 a cantilever beam AB subjected to a linearly varying distributed load as shown, find the shear force V and the bending moment M q = q 0 x / L F y = 0  V  2 (q 0 x / L) (x) = 0 V =  q 0 x 2 / (2 L) V max =  q 0 L / 2 4
5 M = 0 M + 2 (q 0 x / L) (x) (x / 3) = 0 M =  q 0 x 3 / (6 L) M max =  q 0 L 2 / 6 Example 43 an overhanging beam ABC is supported to an uniform load of intensity q and a concentrated load P, calculate the shear force V and the bending moment M at D from equations of equilibrium, it is found R A = 40 kn R B = 48 kn at section D F y = x 5  V = 0 V =  18 kn M = 040 x x x 5 x M = 0 M = 69 knm from the free body diagram of the righthand part, same results can be obtained 4.4 Relationships Between Loads, Shear Forces, and Bending Moments consider an element of a beam of length dx subjected to distributed loads q equilibrium of forces in vertical direction 5
6 F y = 0 V  q dx  (V + dv) = 0 or dv / dx =  q integrate between two points A and B B dv =  q dx A A B i.e. B V B  V A =  q dx A =  (area of the loading diagram between A and B) the area of loading diagram may be positive or negative moment equilibrium of the element M = 0  M  q dx (dx/2)  (V + dv) dx + M + dm = 0 or dm / dx = V maximum (or minimum) bendingmoment occurs at dm / dx = 0, i.e. at the point of shear force V = 0 integrate between two points A and B B dm = A B V dx A i.e. M B  M A B = V dx A = (area of the shearforce diagram between A and B) this equation is valid even when concentrated loads act on the beam between A and B, but it is not valid if a couple acts between A and B 6
7 concentrated loads equilibrium of force V  P  (V + V 1 ) = 0 or V 1 =  P i.e. an abrupt change in the shear force occurs at any point where a concentrated load acts equilibrium of moment  M  P (dx/2)  (V + V 1 ) dx + M + M 1 = 0 or M 1 = P (dx/2) + V dx + V 1 dx j 0 since the length dx of the element is infinitesimally small, i.e. M 1 is also infinitesimally small, thus, the bending moment does not change as we pass through the point of application of a concentrated load loads in the form of couples equilibrium of force V 1 = 0 i.e. no change in shear force at the point of application of a couple equilibrium of moment  M + M 0  (V + V 1 ) dx + M + M 1 = 0 or M 1 =  M 0 the bending moment changes abruptly at a point of application of a couple 7
8 4.5 ShearForce and BendingMoment Diagrams concentrated loads consider a simply support beam AB with a concentrated load P R A = P b / L R B = P a / L for 0 < x < a V = R A = P b / L M = R A x = P b x / L note that dm / dx = P b / L = V for a < x < L V = R A  P =  P a / L M = R A x  P (x  a) = P a (L  x) / L note that dm / dx =  P a / L = V with M max = P a b / L uniform load consider a simple beam AB with a uniformly distributed load of constant intensity q 8
9 R A = R B = q L / 2 V = R A  q x = q L / 2  q x M = R A x  q x (x/2) = q L x / 2  q x 2 / 2 note that dm / dx = q L / 2  q x / 2 = V M max = q L 2 / 8 at x = L / 2 several concentrated loads for 0 < x < a 1 V = R A M = R A x M 1 = R A a 1 for a 1 < x < a 2 V = R A  P 1 M = R A x  P 1 (x  a 1 ) M 2  M 1 = (R A  P 1 )(a 2  a 1 ) similarly for others M 2 = M max because V = 0 at that point Example 44 construct the shearforce and bending moment diagrams for the simple beam AB R A = q b (b + 2c) / 2L R B = q b (b + 2a) / 2L for 0 < x < a V = R A M = R A x 9
10 for a < x < a + b V = R A  q (x  a) M = R A x  q (x  a) 2 / 2 for a + b < x < L V =  R B M = R B (L  x) maximum moment occurs where V = 0 i.e. x 1 = a + b (b + 2c) / 2L M max = q b (b + 2c) (4 a L + 2 b c + b 2 ) / 8L 2 for a = c, x 1 = L / 2 M max = q b (2L  b) / 8 for b = L, a = c = 0 (uniform loading over the entire span) M max = q L 2 / 8 Example 45 construct the V and Mdia for the cantilever beam supported to P 1 and P 2 R B = P 1 + P 2 M B = P 1 L + P 2 b for 0 < x < a V =  P 1 M =  P 1 x for a < x < L V =  P 1  P 2 M =  P 1 x  P 2 (x  a) 10
11 Example 46 construct the V and Mdia for the cantilever beam supporting to a constant uniform load of intensity q R B = q L M B = q L 2 / 2 then V =  q x M =  q x 2 / 2 alternative method V max =  q L M max =  q L 2 / 2 x V  V A = V  0 = V =  q dx =  q x 0 M  M A = M  0 = M = x  V dx =  q x 2 / 2 0 Example 47 an overhanging beam is subjected to a uniform load of q = 1 kn/m on AB and a couple M 0 = 12 knm on midpoint of BC, construct the V and Mdia for the beam R B = 5.25 kn R C = 1.25 kn shear force diagram V =  q x V = constant on AB on BC 11
12 bending moment diagram M B =  q b 2 / 2 =  1 x 4 2 / 2 =  8 knm the slope of M on BC is constant (1.25 kn), the bending moment just to the left of M 0 is M = x 8 = 2 knm the bending moment just to the right of M 0 is M = 212 =  10 knm and the bending moment at point C is M C = x 8 = 0 as expected 12
Stresses in Beam (Basic Topics)
Chapter 5 Stresses in Beam (Basic Topics) 5.1 Introduction Beam : loads acting transversely to the longitudinal axis the loads create shear forces and bending moments, stresses and strains due to V and
More information2. Axial Force, Shear Force, Torque and Bending Moment Diagrams
2. Axial Force, Shear Force, Torque and Bending Moment Diagrams In this section, we learn how to summarize the internal actions (shear force and bending moment) that occur throughout an axial member, shaft,
More informationChapter 9 Deflections of Beams
Chapter 9 Deflections of Beams 9.1 Introduction in this chapter, we describe methods for determining the equation of the deflection curve of beams and finding deflection and slope at specific points along
More information4 Shear Forces and Bending Moments
4 Shear Forces and ending oments Shear Forces and ending oments 8 lb 16 lb roblem 4.31 alculate the shear force and bending moment at a cross section just to the left of the 16lb load acting on the simple
More informationStrength of Materials Prof: S.K.Bhattacharya Dept of Civil Engineering, IIT, Kharagpur Lecture no 23 Bending of Beams II
Strength of Materials Prof: S.K.Bhattacharya Dept of Civil Engineering, IIT, Kharagpur Lecture no 23 Bending of Beams II Welcome to the second lesson of the fifth module which is on Bending of Beams part
More informationMechanics of Materials. Chapter 4 Shear and Moment In Beams
Mechanics of Materials Chapter 4 Shear and Moment In Beams 4.1 Introduction The term beam refers to a slender bar that carries transverse loading; that is, the applied force are perpendicular to the bar.
More informationBending Stress and Strain
Bending Stress and Strain DEFLECTIONS OF BEAMS When a beam with a straight longitudinal ais is loaded by lateral forces, the ais is deformed into a curve, called the deflection curve of the beam. We will
More informationChapter 7: Forces in Beams and Cables
Chapter 7: Forces in Beams and Cables 최해진 hjchoi@cau.ac.kr Contents Introduction Internal Forces in embers Sample Problem 7.1 Various Types of Beam Loading and Support Shear and Bending oment in a Beam
More information5 Solutions /23/09 5:11 PM Page 377
5 Solutions 44918 1/23/09 5:11 PM Page 377 5 71. The rod assembly is used to support the 250lb cylinder. Determine the components of reaction at the ballandsocket joint, the smooth journal bearing E,
More informationRecitation #5. Understanding Shear Force and Bending Moment Diagrams
Recitation #5 Understanding Shear Force and Bending Moment Diagrams Shear force and bending moment are examples of interanl forces that are induced in a structure when loads are applied to that structure.
More informationAnalysis of Stresses and Strains
Chapter 7 Analysis of Stresses and Strains 7.1 Introduction axial load = P / A torsional load in circular shaft = T / I p bending moment and shear force in beam = M y / I = V Q / I b in this chapter, we
More informationMECHANICS OF SOLIDS  BEAMS TUTORIAL 2 SHEAR FORCE AND BENDING MOMENTS IN BEAMS
MECHANICS OF SOLIDS  BEAMS TUTORIAL 2 SHEAR FORCE AND BENDING MOMENTS IN BEAMS This is the second tutorial on bending of beams. You should judge your progress by completing the self assessment exercises.
More informationProblem 1: Computation of Reactions. Problem 2: Computation of Reactions. Problem 3: Computation of Reactions
Problem 1: Computation of Reactions Problem 2: Computation of Reactions Problem 3: Computation of Reactions Problem 4: Computation of forces and moments Problem 5: Bending Moment and Shear force Problem
More informationENGR1100 Introduction to Engineering Analysis. Lecture 13
ENGR1100 Introduction to Engineering Analysis Lecture 13 EQUILIBRIUM OF A RIGID BODY & FREEBODY DIAGRAMS Today s Objectives: Students will be able to: a) Identify support reactions, and, b) Draw a freebody
More informationModule 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method. Version 2 CE IIT, Kharagpur
Module Analysis of Statically Indeterminate Structures by the Matrix Force Method esson 11 The Force Method of Analysis: Frames Instructional Objectives After reading this chapter the student will be able
More informationENGINEERING SCIENCE H1 OUTCOME 1  TUTORIAL 3 BENDING MOMENTS EDEXCEL HNC/D ENGINEERING SCIENCE LEVEL 4 H1 FORMERLY UNIT 21718P
ENGINEERING SCIENCE H1 OUTCOME 1  TUTORIAL 3 BENDING MOMENTS EDEXCEL HNC/D ENGINEERING SCIENCE LEVEL 4 H1 FORMERLY UNIT 21718P This material is duplicated in the Mechanical Principles module H2 and those
More information8.2 Continuous Beams (Part I)
8.2 Continuous Beams (Part I) This section covers the following topics. Analysis Incorporation of Moment due to Reactions Pressure Line due to Prestressing Force Introduction Beams are made continuous
More informationCHAPTER 3 SHEARING FORCE AND BENDING MOMENT DIAGRAMS. Summary
CHAPTER 3 SHEARING FORCE AND BENDING MOMENT DIAGRAMS Summary At any section in a beam carrying transverse loads the shearing force is defined as the algebraic sum of the forces taken on either side of
More informationFrame structure Basic properties of plane frame structure Simple open frame structure Simple closed frame structure
Statics of Building Structures I., RASUS Frame structure Basic properties of plane frame structure Simple open frame structure Simple closed frame structure Department of Structural echanics Faculty of
More informationBEAMS: SHEAR AND MOMENT DIAGRAMS (GRAPHICAL)
LECTURE Third Edition BES: SHER ND OENT DIGRS (GRPHICL). J. Clark School of Engineering Department of Civil and Environmental Engineering 3 Chapter 5.3 by Dr. Ibrahim. ssakkaf SPRING 003 ENES 0 echanics
More informationShear and Moment Diagrams. Shear and Moment Diagrams. Shear and Moment Diagrams. Shear and Moment Diagrams. Shear and Moment Diagrams
CI 3 Shear Force and Bending oment Diagrams /8 If the variation of and are written as functions of position,, and plotted, the resulting graphs are called the shear diagram and the moment diagram. Developing
More informationMODULE 3 ANALYSIS OF STATICALLY INDETERMINATE STRUCTURES BY THE DISPLACEMENT METHOD. Version 2 CE IIT, Kharagpur
ODULE 3 ANALYI O TATICALLY INDETERINATE TRUCTURE BY THE DIPLACEENT ETHOD LEON 19 THE OENT DITRIBUTION ETHOD: TATICALLY INDETERINATE BEA WITH UPPORT ETTLEENT Instructional Objectives After reading this
More informationStatics of Structural Supports
Statics of Structural Supports TYPES OF FORCES External Forces actions of other bodies on the structure under consideration. Internal Forces forces and couples exerted on a member or portion of the structure
More informationChapter 2: Load, Stress and Strain
Chapter 2: Load, Stress and Strain The careful text books measure (Let all who build beware!) The load, the shock, the pressure Material can bear. So when the buckled girder Lets down the grinding span,
More informationStatics of Structural Supports
Statics of Structural Supports TYPES OF FORCES External Forces actions of other bodies on the structure under consideration. Internal Forces forces and couples exerted on a member or portion of the structure
More informationStructural Axial, Shear and Bending Moments
Structural Axial, Shear and Bending Moments Positive Internal Forces Acting Recall from mechanics of materials that the internal forces P (generic axial), V (shear) and M (moment) represent resultants
More information8.2 Shear and BendingMoment Diagrams: Equation Form
8.2 Shear and endingoment Diagrams: Equation Form 8.2 Shear and endingoment Diagrams: Equation Form Eample 1, page 1 of 6 1. Epress the shear and bending moment as functions of, the distance from the
More informationShear Force and Moment Diagrams
C h a p t e r 9 Shear Force and Moment Diagrams In this chapter, you will learn the following to World Class standards: Making a Shear Force Diagram Simple Shear Force Diagram Practice Problems More Complex
More informationHØGSKOLEN I GJØVIK Avdeling for teknologi, økonomi og ledelse. Løsningsforslag for kontinuasjonseksamen i Mekanikk 4/110
Løsningsforslag for kontinuasjonseksamen i 4/110 Oppgave 1 (T betyr tension, dvs. strekk, og C betyr compression, dvs. trykk.) Side 1 av 9 Leif Erik Storm Oppgave 2 Løsning (fra http://www.public.iastate.edu/~statics/examples/vmdiags/vmdiaga.html
More informationENGINEERING MECHANICS STATIC
EX 16 Using the method of joints, determine the force in each member of the truss shown. State whether each member in tension or in compression. Sol Freebody diagram of the pin at B X = 0 500 BC sin
More informationApproximate Analysis of Statically Indeterminate Structures
Approximate Analysis of Statically Indeterminate Structures Every successful structure must be capable of reaching stable equilibrium under its applied loads, regardless of structural behavior. Exact analysis
More informationTUTORIAL FOR RISA EDUCATIONAL
1. INTRODUCTION TUTORIAL FOR RISA EDUCATIONAL C.M. Uang and K.M. Leet The educational version of the software RISA2D, developed by RISA Technologies for the textbook Fundamentals of Structural Analysis,
More informationModule 3. Analysis of Statically Indeterminate Structures by the Displacement Method. Version 2 CE IIT, Kharagpur
odule 3 Analysis of Statically Indeterminate Structures by the Displacement ethod Lesson 21 The oment Distribution ethod: rames with Sidesway Instructional Objectives After reading this chapter the student
More informationStress and Deformation Analysis. Representing Stresses on a Stress Element. Representing Stresses on a Stress Element con t
Stress and Deformation Analysis Material in this lecture was taken from chapter 3 of Representing Stresses on a Stress Element One main goals of stress analysis is to determine the point within a loadcarrying
More information8.2 Elastic Strain Energy
Section 8. 8. Elastic Strain Energy The strain energy stored in an elastic material upon deformation is calculated below for a number of different geometries and loading conditions. These expressions for
More informationDeflections. Question: What are Structural Deflections?
Question: What are Structural Deflections? Answer: The deformations or movements of a structure and its components, such as beams and trusses, from their original positions. It is as important for the
More informationMechanics of Materials. Chapter 6 Deflection of Beams
Mechanics of Materials Chapter 6 Deflection of Beams 6.1 Introduction Because the design of beams is frequently governed by rigidity rather than strength. For example, building codes specify limits on
More informationSign Conventions. Applied and Reaction Force Sign Conventions Are Static Sign Conventions
Sign Conventions Sign conventions are a standardized set of widely accepted rules that provide a consistent method of setting up, solving, and communicating solutions to engineering mechanics problemsstatics,
More informationCommon Beam Formulas (http://structsource.com/analysis/types/beam.htm)
Common Beam Formulas (http://structsource.com/analysis/types/beam.htm) Beam formulas may be used to determine the deflection, shear and bending moment in a beam based on the applied loading and boundary
More informationStatics and Mechanics of Materials
Statics and Mechanics of Materials Chapter 41 Internal force, normal and shearing Stress Outlines Internal Forces  cutting plane Result of mutual attraction (or repulsion) between molecules on both
More informationDESIGN OF SLABS. 3) Based on support or boundary condition: Simply supported, Cantilever slab,
DESIGN OF SLABS Dr. G. P. Chandradhara Professor of Civil Engineering S. J. College of Engineering Mysore 1. GENERAL A slab is a flat two dimensional planar structural element having thickness small compared
More informationEML 5526 FEA Project 1 Alexander, Dylan. Project 1 Finite Element Analysis and Design of a Plane Truss
Problem Statement: Project 1 Finite Element Analysis and Design of a Plane Truss The plane truss in Figure 1 is analyzed using finite element analysis (FEA) for three load cases: A) Axial load: 10,000
More informationProf. Dr. Hamed Hadhoud. Design of Water Tanks: Part (1)
Design of Water Tanks: Part (1) 1 Types of Tanks Elevated Tanks Resting on Soil & Underground Tanks Tank Walls Walls Shallow Medium Deep L/ L/ < & L/ >0.5 /L L L L 3 Shallow Walls L 1 m L/ (for same continuity
More informationChapter 8. Shear Force and Bending Moment Diagrams for Uniformly Distributed Loads.
hapter 8 Shear Force and ending Moment Diagrams for Uniformly Distributed Loads. 8.1 Introduction In Unit 4 we saw how to calculate moments for uniformly distributed loads. You might find it worthwhile
More informationAnnouncements. Moment of a Force
Announcements Test observations Units Significant figures Position vectors Moment of a Force Today s Objectives Understand and define Moment Determine moments of a force in 2D and 3D cases Moment of
More informationUnit M4.3 Statics of Beams
Unit M4.3 Statics of Beams Readings: CD 3.23.6 (CD 3.8  etension to 3D) 16.003/004  Unified Engineering Department of Aeronautics and Astronautics Massachusetts Institute of Technology EARNING OBJECTIVES
More information1. a) Discuss how finite element is evolved in engineering field. (8) b) Explain the finite element idealization of structures with examples.
M.TECH. DEGREE EXAMINATION Branch: Civil Engineering Specialization Geomechanics and structures Model Question Paper  I MCEGS 1062 FINITE ELEMENT ANALYSIS Time: 3 hours Maximum: 100 Marks Answer ALL
More informationIntroduction, Method of Sections
Lecture #1 Introduction, Method of Sections Reading: 1:12 Mechanics of Materials is the study of the relationship between external, applied forces and internal effects (stress & deformation). An understanding
More informationP4 Stress and Strain Dr. A.B. Zavatsky MT07 Lecture 4 Stresses on Inclined Sections
4 Stress and Strain Dr. A.B. Zavatsky MT07 Lecture 4 Stresses on Inclined Sections Shear stress and shear strain. Equality of shear stresses on perpendicular planes. Hooke s law in shear. Normal and shear
More informationThe Mathematics of Beam Deflection
The athematics of eam Deflection Scenario s a structural engineer you are part of a team working on the design of a prestigious new hotel comple in a developing city in the iddle East. It has been decided
More informationBending Stress in Beams
93673600 Bending Stress in Beams Derive a relationship for bending stress in a beam: Basic Assumptions:. Deflections are very small with respect to the depth of the beam. Plane sections before bending
More informationAnalysis of Statically Determinate Trusses
Analysis of Statically Determinate Trusses THEORY OF STRUCTURES Asst. Prof. Dr. Cenk Üstündağ Common Types of Trusses A truss is one of the major types of engineering structures which provides a practical
More information6.3 Trusses: Method of Sections
6.3 Trusses: Method of Sections 6.3 Trusses: Method of Sections xample 1, page 1 of 2 1. etermine the force in members,, and, and state whether the force is tension or compression. 5 m 4 kn 4 kn 5 m 1
More informationModule 4. Analysis of Statically Indeterminate Structures by the Direct Stiffness Method. Version 2 CE IIT, Kharagpur
Module Analysis of Statically Indeterminate Structures by the Direct Stiffness Method Version CE IIT, haragpur esson 7 The Direct Stiffness Method: Beams Version CE IIT, haragpur Instructional Objectives
More informationModeling Beams on Elastic Foundations Using Plate Elements in Finite Element Method
Modeling Beams on Elastic Foundations Using Plate Elements in Finite Element Method Yungang Zhan School of Naval Architecture and Ocean Engineering, Jiangsu University of Science and Technology, Zhenjiang,
More informationType of Force 1 Axial (tension / compression) Shear. 3 Bending 4 Torsion 5 Images 6 Symbol (+ )
Cause: external force P Force vs. Stress Effect: internal stress f 05 Force vs. Stress Copyright G G Schierle, 200105 press Esc to end, for next, for previous slide 1 Type of Force 1 Axial (tension /
More informationChapter 5: Indeterminate Structures SlopeDeflection Method
Chapter 5: Indeterminate Structures SlopeDeflection Method 1. Introduction Slopedeflection method is the second of the two classical methods presented in this course. This method considers the deflection
More informationBEAMS: DEFORMATION BY SUPERPOSITION
ETURE EMS: EFORMTION Y SUPERPOSITION Third Edition. J. lark School of Engineering epartment of ivil and Environmental Engineering 19 hapter 9.7 9.8 b r. Ibrahim. ssakkaf SPRING 00 ENES 0 Mechanics of Materials
More informationP4 Stress and Strain Dr. A.B. Zavatsky MT07 Lecture 3 Statically Indeterminate Structures
4 Stress and Strain Dr... Zavatsky MT07 ecture 3 Statically Indeterminate Structures Statically determinate structures. Statically indeterminate structures (equations of equilibrium, compatibility, and
More informationCHAP 4 FINITE ELEMENT ANALYSIS OF BEAMS AND FRAMES INTRODUCTION
CHAP FINITE EEMENT ANAYSIS OF BEAMS AND FRAMES INTRODUCTION We learned Direct Stiffness Method in Chapter imited to simple elements such as D bars we will learn Energ Method to build beam finite element
More information6 1. Draw the shear and moment diagrams for the shaft. The bearings at A and B exert only vertical reactions on the shaft.
06 Solutions 46060_Part1 5/27/10 3:51 PM Page 329 6 1. Draw the shear and moment diagrams for the shaft. The bearings at and exert only vertical reactions on the shaft. 250 mm 800 mm 24 kn 6 2. Draw the
More informationDesign MEMO 54a Reinforcement design for RVK 41
Page of 5 CONTENTS PART BASIC ASSUMTIONS... 2 GENERAL... 2 STANDARDS... 2 QUALITIES... 3 DIMENSIONS... 3 LOADS... 3 PART 2 REINFORCEMENT... 4 EQUILIBRIUM... 4 Page 2 of 5 PART BASIC ASSUMTIONS GENERAL
More informationStructural Steel Design Project
Job No: Sheet 1 of 1 Rev Job Title: Eccentrically Loaded Bolt Group Worked Example 1 Checked by Date Design Example 1: Design a bolted connection between a bracket 8 mm thick and the flange of an ISHB
More informationAluminium systems profile selection
Aluminium systems profile selection The purpose of this document is to summarise the way that aluminium profile selection should be made, based on the strength requirements for each application. Curtain
More informationFTOOL Tutorial for creation and analysis of a simple frame and result visualization
FTOOL Tutorial for creation and analysis of a simple frame and result visualization Educational Version 3.00 August 2012 http://www.tecgraf.pucrio.br/ftool This file: http://www.tecgraf.pucrio.br/ftp_pub/lfm/ftool300tutorialframe.pdf
More informationINTRODUCTION TO BEAMS
CHAPTER Structural Steel Design LRFD Method INTRODUCTION TO BEAMS Third Edition A. J. Clark School of Engineering Department of Civil and Environmental Engineering Part II Structural Steel Design and Analysis
More informationStress Analysis, Strain Analysis, and Shearing of Soils
C H A P T E R 4 Stress Analysis, Strain Analysis, and Shearing of Soils Ut tensio sic vis (strains and stresses are related linearly). Robert Hooke So I think we really have to, first, make some new kind
More informationwww.mathsbox.org.uk Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx Acceleration Velocity (v) Displacement x
Mechanics 2 : Revision Notes 1. Kinematics and variable acceleration Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx differentiate a = dv = d2 x dt dt dt 2 Acceleration Velocity
More informationTwoForce Members, ThreeForce Members, Distributed Loads
TwoForce Members, ThreeForce Members, Distributed Loads TwoForce Members  Examples ME 202 2 TwoForce Members Only two forces act on the body. The line of action (LOA) of forces at both A and B must
More informationMECHANICS OF SOLIDS  BEAMS TUTORIAL 3 THE DEFLECTION OF BEAMS
MECHANICS OF SOLIDS  BEAMS TUTORIAL THE DEECTION OF BEAMS This is the third tutorial on the bending of beams. You should judge your progress by completing the self assessment exercises. On completion
More informationPage 1 of 18 28.4.2008 Sven Alexander Last revised 1.3.2010. SBProduksjon STATICAL CALCULATIONS FOR BCC 250
Page 1 of 18 CONTENT PART 1 BASIC ASSUMPTIONS PAGE 1.1 General 1. Standards 1.3 Loads 1. Qualities PART ANCHORAGE OF THE UNITS.1 Beam unit equilibrium 3. Beam unit anchorage in front..1 Check of capacity..
More informationLesson 4 Rigid Body Statics. Taking into account finite size of rigid bodies
Lesson 4 Rigid Body Statics When performing static equilibrium calculations for objects, we always start by assuming the objects are rigid bodies. This assumption means that the object does not change
More informationsuperimposing the stresses and strains cause by each load acting separately
COMBINED LOADS In many structures the members are required to resist more than one kind of loading (combined loading). These can often be analyzed by superimposing the stresses and strains cause by each
More informationM x (a) (b) (c) Figure 2: Lateral Buckling The positions of the beam shown in Figures 2a and 2b should be considered as two possible equilibrium posit
Lateral Stability of a Slender Cantilever Beam With End Load Erik Thompson Consider the slender cantilever beam with an end load shown in Figure 1. The bending moment at any crosssection is in the xdirection.
More informationFinite Element Simulation of Simple Bending Problem and Code Development in C++
EUROPEAN ACADEMIC RESEARCH, VOL. I, ISSUE 6/ SEPEMBER 013 ISSN 8648, www.euacademic.org IMPACT FACTOR: 0.485 (GIF) Finite Element Simulation of Simple Bending Problem and Code Development in C++ ABDUL
More informationBasic principles 41. Fig. 2.2: Force in a bar along the bar axis.
Truss Structures 2 Truss structures constitute a special class of structures in which individual straight members are connected at joints. The members are assumed to be connected to the joints in a manner
More informationSTRESS AND DEFORMATION ANALYSIS OF LINEAR ELASTIC BARS IN TENSION
Chapter 11 STRESS AND DEFORMATION ANALYSIS OF LINEAR ELASTIC BARS IN TENSION Figure 11.1: In Chapter10, the equilibrium, kinematic and constitutive equations for a general threedimensional solid deformable
More informationChapter 5: Indeterminate Structures Force Method
Chapter 5: Indeterminate Structures Force Method 1. Introduction Statically indeterminate structures are the ones where the independent reaction components, and/or internal forces cannot be obtained by
More informationSOLUTION 6 6. Determine the force in each member of the truss, and state if the members are in tension or compression.
6 6. etermine the force in each member of the truss, and state if the members are in tension or compression. 600 N 4 m Method of Joints: We will begin by analyzing the equilibrium of joint, and then proceed
More informationWhen the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid.
Fluid Statics When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid. Consider a small wedge of fluid at rest of size Δx, Δz, Δs
More information2) When labeling bends that will be rotated, refer to the amount of rotation as the horizontal and/or vertical deflection angle.
13. Rotation of Fittings. a. Rotation of Bends. 1) Bends can be rotated about the pipe axis to produce a simultaneous deflection or combined bend. This section covers the design of horizontal bends rotated
More informationDesign MEMO 60 Reinforcement design for TSS 102
Date: 04.0.0 sss Page of 5 CONTENTS PART BASIC ASSUMTIONS... GENERAL... STANDARDS... QUALITIES... 3 DIMENSIONS... 3 LOADS... 3 PART REINFORCEMENT... 4 EQUILIBRIUM... 4 Date: 04.0.0 sss Page of 5 PART BASIC
More informationReinforced Concrete Design to BS8110 Structural Design 1 Lesson 5
Lesson 5: Deflection in reinforced concrete beams Content 4.1 Introduction 4. Definitions 4..1 Tension 4.. Compression 4.3 Initial sizing 4.3.1 Worked example 4.4 Reinforcement details 4.5 Anchorage at
More informationA beam is a structural member that is subjected primarily to transverse loads and negligible
Chapter. Design of Beams Flexure and Shear.1 Section forcedeformation response & Plastic Moment (M p ) A beam is a structural member that is subjected primarily to transverse loads and negligible axial
More informationIndeterminate Analysis Force Method 1
Indeterminate Analysis Force Method 1 The force (flexibility) method expresses the relationships between displacements and forces that exist in a structure. Primary objective of the force method is to
More informationOptimum proportions for the design of suspension bridge
Journal of Civil Engineering (IEB), 34 (1) (26) 114 Optimum proportions for the design of suspension bridge Tanvir Manzur and Alamgir Habib Department of Civil Engineering Bangladesh University of Engineering
More informationCHAPTER 6 SIMPLY SUPPORTED BEAMS
CHPTE 6 SIMPLY SUPPOTED BEMS EXECISE 40, Page 87 1. Determine the moment of a force of 5 N applied to a spanner at an effective length of 180 mm from the centre of a nut. Moment, M = force distance = 5
More informationModule 5 (Lectures 17 to 19) MAT FOUNDATIONS
Module 5 (Lectures 17 to 19) MAT FOUNDATIONS Topics 17.1 INTRODUCTION Rectangular Combined Footing: Trapezoidal Combined Footings: Cantilever Footing: Mat foundation: 17.2 COMMON TYPES OF MAT FOUNDATIONS
More informationMECHANICS OF MATERIALS
T dition CHTR MCHNICS OF MTRIS Ferdinand. Beer. Russell Johnston, Jr. John T. DeWolf ecture Notes: J. Walt Oler Texas Tech University Stress and Strain xial oading  Contents Stress & Strain: xial oading
More informationModule 6 : Design of Retaining Structures. Lecture 28 : Anchored sheet pile walls [ Section 28.1 : Introduction ]
Lecture 28 : Anchored sheet pile walls [ Section 28.1 : Introduction ] Objectives In this section you will learn the following Introduction Lecture 28 : Anchored sheet pile walls [ Section 28.1 : Introduction
More informationUnit 4: Science and Materials in Construction and the Built Environment. Chapter 14. Understand how Forces act on Structures
Chapter 14 Understand how Forces act on Structures 14.1 Introduction The analysis of structures considered here will be based on a number of fundamental concepts which follow from simple Newtonian mechanics;
More informationPLANE TRUSSES. Definitions
Definitions PLANE TRUSSES A truss is one of the major types of engineering structures which provides a practical and economical solution for many engineering constructions, especially in the design of
More informationBasics of Reinforced Concrete Design
Basics of Reinforced Concrete Design Presented by: Ronald Thornton, P.E. Define several terms related to reinforced concrete design Learn the basic theory behind structural analysis and reinforced concrete
More informationF. P. Beer et al., Meccanica dei solidi, Elementi di scienza delle costruzioni, 5e  isbn 9788838668579, 2014 McGrawHill Education (Italy) srl
F. P. Beer et al., eccanica dei solidi, Elementi di scienza delle costruzioni, 5e  isbn 9788888579, 04 cgrawhill Education (Italy) srl Reactions: Σ = 0: bp = 0 = Pb Σ = 0: ap = 0 = Pa From to B: 0
More informationCHAPTER 2.0 ANSWER B.20.2
CHAPTER 2.0 ANSWER 1. A tank is filled with seawater to a depth of 12 ft. If the specific gravity of seawater is 1.03 and the atmospheric pressure at this location is 14.8 psi, the absolute pressure (psi)
More informationAdvance Physics Letter
Beam Analysis in Matlab (For simply supported & Cantilever; For Point Load & UDL) 1 Gulab Pamnani; 2 Dageshwar Singh Rajput; 3 Nikhil Tiwari; 4 Amit Gajendra 1 Assistant Professor, Department of Mechanical
More informationMECHANICS OF SOLIDS  BEAMS TUTORIAL TUTORIAL 4  COMPLEMENTARY SHEAR STRESS
MECHANICS OF SOLIDS  BEAMS TUTORIAL TUTORIAL 4  COMPLEMENTARY SHEAR STRESS This the fourth and final tutorial on bending of beams. You should judge our progress b completing the self assessment exercises.
More informationMechanics of Materials. Chapter 5 Stresses In Beams
Mechanics of Materials Chapter 5 Stresses In Beams 5.1 Introduction In previous chapters, the stresses in bars caused by axial loading and torsion. Here consider the third fundamental loading : bending.
More informationEDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1  LOADING SYSTEMS
EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1  LOADING SYSTEMS TUTORIAL 1 NONCONCURRENT COPLANAR FORCE SYSTEMS 1. Be able to determine the effects
More informationTutorial 02 Statics (Chapter )
Tutorial  Statics (Chapter 3. 5.3) MECH Spring 9 eb6 th Tutor: LEO Contents Reviews ree Bod Diagram (BD) Truss structure Practices Review orce vector, Moment, Equilibrium of orces, D/3D Vectors (position,
More information