MATERIALS AND MECHANICS OF BENDING


 Valerie Lindsay Horton
 2 years ago
 Views:
Transcription
1 HAPTER Reinforced oncrete Design Fifth Edition MATERIALS AND MEHANIS OF BENDING A. J. lark School of Engineering Department of ivil and Environmental Engineering Part I oncrete Design and Analysis b FALL 00 By Dr. Ibrahim. Assakkaf ENE 55  Introduction to Structural Design Department of ivil and Environmental Engineering University of Maryland, ollege Park HAPTER b. MATERIALS AND MEHANIS OF BENDING Slide No. oncrete in Tension oncrete tensile stresses occur as a result of shear, torsion, and other actions, and in most cases member behavior changes upon cracking. It is therefore important to be able to predict, with reasonable accuracy, the tensile strength of concrete. The tensile and compressive strengths of concrete are not proportional, and an increase in compressive strength is accompanied by smaller percentage increase in tensile strength.
2 HAPTER b. MATERIALS AND MEHANIS OF BENDING Slide No. oncrete in Tension The tensile strength of normalweight concrete in flexure is about 0% to 5% of the compressive strength. There are considerable experimental difficulties in determining the true tensile strength of concrete. The true tensile strength of concrete is difficult to determine. HAPTER b. MATERIALS AND MEHANIS OF BENDING Slide No. oncrete in Tension One common approach is to use the modulus of rupture f r. The modulus of rupture is the maximum tensile bending stress in a plain concrete test beam at failure. Neutral Axis Max. Tensile Stress
3 HAPTER b. MATERIALS AND MEHANIS OF BENDING Slide No. 4 oncrete in Tension AI ode Recommendation For normalweight concrete, the AI ode recommends that the modulus of rupture f r be taken as f. 5 7 () r f c where f r in psi. HAPTER b. MATERIALS AND MEHANIS OF BENDING Slide No. 5 oncrete in Tension racking Moment, M cr The moment that produces a tensile stress just equal to the modulus of rupture is called cracking moment M cr. The Splitylinder Test The splitcylinder test has also been used to determine the tensile strength of lightweight aggregate concrete. It has been accepted as a good measure of the true tensile strength.
4 HAPTER b. MATERIALS AND MEHANIS OF BENDING Slide No. 6 oncrete in Tension The Splitylinder Test (cont d) This test uses a standard 6in.diameter, in.long cylinder placed on its in a testing machine (see Fig. ). A compressive line load is applied uniformly along the length of the cylinder. The compressive load produces a transverse tensile stress, and the cylinder will split in half along the diameter when it tensile strength is reached. HAPTER b. MATERIALS AND MEHANIS OF BENDING Slide No. 7 oncrete in Tension Schematic for Split ylinder Test Figure 4
5 HAPTER b. MATERIALS AND MEHANIS OF BENDING Slide No. 8 oncrete in Tension Splitting Tensile Strength, f ct The tensile splitting stress can be calculated from the following formula: f ct P πld where f cr splitting tensile strength of concrete (psi) P applied load at splitting (lb) L length of cylinder (in.) D diameter of cylinder (in.) () HAPTER b. MATERIALS AND MEHANIS OF BENDING Slide No. 9 Steel is a highcost material compared with concrete. It follows that the two materials are best used in combination if the concrete is made to resist the compressive stresses and the steel the tensile stresses. oncrete cannot withstand very much tensile stress without cracking. 5
6 HAPTER b. MATERIALS AND MEHANIS OF BENDING Slide No. 0 Reinforced oncrete Beam Figure d b ompression. Tension d  x x b x N.A. σ F y n A s (a) (b) (c) HAPTER b. MATERIALS AND MEHANIS OF BENDING Slide No. It follows that tensile reinforcement must be embedded in the concrete to overcome the deficiency. Forms of Steel Reinforcement Steel Reinforcing Bars Welded wire fabric composed of steel wire. Structural Steel Shapes Steel Pipes. 6
7 HAPTER b. MATERIALS AND MEHANIS OF BENDING Slide No. HAPTER b. MATERIALS AND MEHANIS OF BENDING Slide No. Reinforcing Bars (rebars) The specifications for steel reinforcement published by the American Society for Testing and Materials (ASTM) are generally accepted for steel used in reinforced concrete construction in the United States and are identified in the AI ode. 7
8 HAPTER b. MATERIALS AND MEHANIS OF BENDING Slide No. 4 Reinforcing Bars (rebars) These bars are readily available in straight length of 60 ft. The bars vary in designation from No. through No. With additional bars: No. 4 and No. 8 HAPTER b. MATERIALS AND MEHANIS OF BENDING Slide No. 5 Table. ASTM Standard  English Reinforcing Bars Bar Designation Diameter in Area in Weight lb/ft # [#0] #4 [#] #5 [#6] #6 [#9] #7 [#] #8 [#5] #9 [#9] #0 [#] # [#6] #4 [#4] #8 [#57] Note: Metric designations are in brackets 8
9 HAPTER b. MATERIALS AND MEHANIS OF BENDING Slide No. 6 Table. ASTM Standard  Metric Reinforcing Bars Bar Designation Diameter mm Area mm Mass kg/m #0 [#] # [#4] #6 [#5] #9 [#6] # [#7] #5 [#8] #9 [#9] # [#0] #6 [#] #4 [#4] #57 [#8] Note: English designations are in brackets HAPTER b. MATERIALS AND MEHANIS OF BENDING Slide No. 7 Yield Stress for Steel Probably the most useful property of reinforced concrete design calculations is the yield stress for steel, f y. A typical stressstrain diagram for reinforcing steel is shown in Fig. a. An idealized stressstrain diagram for reinforcing steel is shown in Fig. b. 9
10 HAPTER b. MATERIALS AND MEHANIS OF BENDING Slide No. 8 Figure Elastic region Elastic region Stress F y Stress F y ε y Strain (a) As Determined by Tensile Test ε y Strain (b) Idealized HAPTER b. MATERIALS AND MEHANIS OF BENDING Slide No. 9 Modulus of Elasticity for Steel The modulus of elasticity for reinforcing steel varies over small range, and has been adopted by the AI ode as E 9,000,000 psi 9,000 ksi 0
11 HAPTER b. MATERIALS AND MEHANIS OF BENDING Slide No. 0 Introduction The most common type of structural member is a beam. In actual structures beams can be found in an infinite variety of Sizes Shapes, and Orientations HAPTER b. MATERIALS AND MEHANIS OF BENDING Slide No. Introduction Definition A beam may be defined as a member whose length is relatively large in comparison with its thickness and depth, and which is loaded with transverse loads that produce significant bending effects as oppose to twisting or axial effects
12 HAPTER b. MATERIALS AND MEHANIS OF BENDING Slide No. Pure Bending: Prismatic members subjected to equal and opposite couples acting in the same longitudinal plane HAPTER b. MATERIALS AND MEHANIS OF BENDING Slide No. Flexural Normal Stress For flexural loading and linearly elastic action, the neutral axis passes through the centroid of the cross section of the beam
13 HAPTER b. MATERIALS AND MEHANIS OF BENDING Slide No. 4 The elastic flexural formula for normal stress is given by Mc f b () I where f b calculated bending stress at outer fiber of the cross section M the applied moment c distance from the neutral axis to the outside tension or compression fiber of the beam I moment of inertia of the cross section about neutral axis HAPTER b. MATERIALS AND MEHANIS OF BENDING Slide No. 5 By rearranging the flexure formula, the maximum moment that may be applied to the beam cross section, called the resisting moment, M R, is given by M Fb I c R (4) Where F b the allowable bending stress
14 HAPTER b. MATERIALS AND MEHANIS OF BENDING Slide No. 6 Example Determine the maximum flexural stress produced by a resisting moment M of ftlb if the beam has the cross section shown in the figure. 6 6 y HAPTER b. MATERIALS AND MEHANIS OF BENDING Slide No. 7 x Example (cont d) 6 First, we need to locate the neutral axis from the om edge: 5 y y ten ()( 6) + ( + )( 6) 6 y com Max.Stress f Mc I b y c max 4
15 y HAPTER b. MATERIALS AND MEHANIS OF BENDING Slide No. 8 x Example (cont d) 6 Find the moment of inertia I with respect to the x axis using parallel axistheorem: 5 ( ) ( 6) 6 I + ( 6 )( ) in ( 6)( ) () 5 (5 ) Max. Stress (com).ksi 6 HAPTER b. MATERIALS AND MEHANIS OF BENDING Slide No. 9 Internal ouple Method (cont d) The procedure of the flexure formula is easy and straightforward for a beam of known cross section for which the moment of inertia I can be found. However, for a reinforced concrete beam, the use of the flexure formula can be somewhat complicated. The beam in this case is not homogeneous and concrete does not behave elastically. 5
16 HAPTER b. MATERIALS AND MEHANIS OF BENDING Slide No. 0 Internal ouple Method (cont d) In this method, the couple represents an internal resisting moment and is composed of a compressive force and a parallel internal tensile force T as shown in Fig. 4. These two parallel forces and T are separated by a distance Z, called the the moment arm. (Fig. 4) Because that all forces are in equilibrium, therefore, must equal T. HAPTER b. MATERIALS AND MEHANIS OF BENDING Slide No. Internal ouple Method (cont d) y w P Neutral axis entroidal axis Z c x T da y c c y dy R Figure 4 6
17 HAPTER b. MATERIALS AND MEHANIS OF BENDING Slide No. Internal ouple Method (cont d) The internal couple method of determining beam stresses is more general than the flexure formula because it can be applied to homogeneous or nonhomogeneous beams having linear or nonlinear stress distributions. For reinforced concrete beam, it has the advantage of using the basic resistance pattern that is found in a beam. y HAPTER b. MATERIALS AND MEHANIS OF BENDING Slide No. x Example 6 Repeat Example using the internal couple method. 5 N.A Z T 7
18 HAPTER b. MATERIALS AND MEHANIS OF BENDING Slide No. 4 Example (cont d) Because of the irregular area for the tension zone, the tensile force T will be broken up into components T, T, and T. Likewise, the moment arm distance Z will be broken up into components Z, Z, and Z, and calculated for each component tensile force to the compressive force as shown in Fig. 5. HAPTER b. MATERIALS AND MEHANIS OF BENDING Slide No. 5 Example (cont d) f top 5 Z Z Z 6 Figure 5 f T f mid T T 8
19 HAPTER b. MATERIALS AND MEHANIS OF BENDING Slide No. 6 Example (cont d) f T f avg T f avg T f avg avg 6 area f area f area f mid f area top mid [()() 5 ] [()( ) ] [( )( 6) ] f mid 5 f f top mid f mid 5 f 4 f f [( )( 6) ] 6 f 6 fmid f top Z Z Z T f mid T T From similar triangles: f f mid f mid f HAPTER b. MATERIALS AND MEHANIS OF BENDING Slide No. 7 Example (cont d) 6 5 f f top Z Z Z T f mid T T T T + T + T 5 f 5 f top top f f + 4 f + 4 f + 6 f + 6 f 6 f f mid 5 f 5 f top f 9
20 HAPTER b. MATERIALS AND MEHANIS OF BENDING Slide No. 8 Example (cont d) Z Z Z 6 () 5 + () () 5 4 in. 6 + in. 7 () ( ) in. 5 f f top Z Z Z T f mid T T M ext M R 5000( ) ZT + ZT + ZT 60,000 Z T + Z T + Z T HAPTER b. MATERIALS AND MEHANIS OF BENDING Slide No. 9 Example (cont d) ,000 4 f Therefore, f ( 4 f ) + ( 4 f ),.5 psi (Tension) The maximum Stress is compressive stress : f max f top f f + f top Z Z Z T f mid 6 f T T (,.5),05.88 psi. ksi (om) 0
REINFORCED CONCRETE. Reinforced Concrete Design. A Fundamental Approach  Fifth Edition
CHAPTER REINFORCED CONCRETE Reinforced Concrete Design A Fundamental Approach  Fifth Edition CONCRETE Fifth Edition A. J. Clark School of Engineering Department of Civil and Environmental Engineering
More informationReinforced Concrete Design SHEAR IN BEAMS
CHAPTER Reinforced Concrete Design Fifth Edition SHEAR IN BEAMS A. J. Clark School of Engineering Department of Civil and Environmental Engineering Part I Concrete Design and Analysis 4a FALL 2002 By Dr.
More informationINTRODUCTION TO BEAMS
CHAPTER Structural Steel Design LRFD Method INTRODUCTION TO BEAMS Third Edition A. J. Clark School of Engineering Department of Civil and Environmental Engineering Part II Structural Steel Design and Analysis
More informationStress and Deformation Analysis. Representing Stresses on a Stress Element. Representing Stresses on a Stress Element con t
Stress and Deformation Analysis Material in this lecture was taken from chapter 3 of Representing Stresses on a Stress Element One main goals of stress analysis is to determine the point within a loadcarrying
More informationUnit 48: Structural Behaviour and Detailing for Construction. Chapter 13. Reinforced Concrete Beams
Chapter 13 Reinforced Concrete Beams Concrete is a material strong in its resistance to compression, but very weak indeed in tension. good concrete will safely take a stress upwards of 7 N/mm 2 in compression,
More informationOverReinforced Concrete Beam Design ACI
Note: Overreinforced typically means the tensile steel does not yield at failure. for this example, overreinforced means the section is not tension controlled per ACI standards even though the steel
More informationBEAMS: SHEAR AND MOMENT DIAGRAMS (GRAPHICAL)
LECTURE Third Edition BES: SHER ND OENT DIGRS (GRPHICL). J. Clark School of Engineering Department of Civil and Environmental Engineering 3 Chapter 5.3 by Dr. Ibrahim. ssakkaf SPRING 003 ENES 0 echanics
More informationSection 16: Neutral Axis and Parallel Axis Theorem 161
Section 16: Neutral Axis and Parallel Axis Theorem 161 Geometry of deformation We will consider the deformation of an ideal, isotropic prismatic beam the cross section is symmetric about yaxis All parts
More informationPRESTRESSED CONCRETE. Introduction REINFORCED CONCRETE CHAPTER SPRING 2004. Reinforced Concrete Design. Fifth Edition. By Dr. Ibrahim.
CHAPTER REINFORCED CONCRETE Reinforced Concrete Design A Fundamental Approach  Fifth Edition Fifth Edition PRESTRESSED CONCRETE A. J. Clark School of Engineering Department of Civil and Environmental
More information3. AXIALLY LOADED MEMBERS
3 AXIALLY LOADED MEMBERS 31 Reading Assignment: Section 19 and Sections 81 and 82 of text Most axially loaded structural members carry some moment in addition to axial load  for this discussion, restrict
More informationTorsion Tests. Subjects of interest
Chapter 10 Torsion Tests Subjects of interest Introduction/Objectives Mechanical properties in torsion Torsional stresses for large plastic strains Type of torsion failures Torsion test vs.tension test
More informationReinforced Concrete Beam
Mecanics of Materials Reinforced Concrete Beam Concrete Beam Concrete Beam We will examine a concrete eam in ending P P A concrete eam is wat we call a composite eam It is made of two materials: concrete
More informationObjectives. Experimentally determine the yield strength, tensile strength, and modules of elasticity and ductility of given materials.
Lab 3 Tension Test Objectives Concepts Background Experimental Procedure Report Requirements Discussion Objectives Experimentally determine the yield strength, tensile strength, and modules of elasticity
More informationModule 3. Limit State of Collapse  Flexure (Theories and Examples) Version 2 CE IIT, Kharagpur
Module 3 Limit State of Collapse  Flexure (Theories and Examples) Lesson 4 Computation of Parameters of Governing Equations Instructional Objectives: At the end of this lesson, the student should be able
More informationSECTION 3 DESIGN OF POST TENSIONED COMPONENTS FOR FLEXURE
SECTION 3 DESIGN OF POST TENSIONED COMPONENTS FOR FLEXURE DEVELOPED BY THE PTI EDC130 EDUCATION COMMITTEE LEAD AUTHOR: TREY HAMILTON, UNIVERSITY OF FLORIDA NOTE: MOMENT DIAGRAM CONVENTION In PT design,
More informationMECHANICS OF SOLIDS  BEAMS TUTORIAL 1 STRESSES IN BEAMS DUE TO BENDING. On completion of this tutorial you should be able to do the following.
MECHANICS OF SOLIDS  BEAMS TUTOIAL 1 STESSES IN BEAMS DUE TO BENDING This is the first tutorial on bending of beams designed for anyone wishing to study it at a fairly advanced level. You should judge
More informationHardened Concrete. Lecture No. 14
Hardened Concrete Lecture No. 14 Strength of Concrete Strength of concrete is commonly considered its most valuable property, although in many practical cases, other characteristics, such as durability
More informationA beam is a structural member that is subjected primarily to transverse loads and negligible
Chapter. Design of Beams Flexure and Shear.1 Section forcedeformation response & Plastic Moment (M p ) A beam is a structural member that is subjected primarily to transverse loads and negligible axial
More information16. BeamandSlab Design
ENDP311 Structural Concrete Design 16. BeamandSlab Design BeamandSlab System How does the slab work? L beams and T beams Holding beam and slab together University of Western Australia School of Civil
More informationSHAFTS: TORSION LOADING AND DEFORMATION
ECURE hird Edition SHAFS: ORSION OADING AND DEFORMAION A. J. Clark Shool of Engineering Department of Civil and Environmental Engineering 6 Chapter 3.13.5 by Dr. Ibrahim A. Assakkaf SPRING 2003 ENES 220
More informationSECTION 3 DESIGN OF POST TENSIONED COMPONENTS FOR FLEXURE
SECTION 3 DESIGN OF POST TENSIONED COMPONENTS FOR FLEXURE DEVELOPED BY THE PTI EDC130 EDUCATION COMMITTEE LEAD AUTHOR: TREY HAMILTON, UNIVERSITY OF FLORIDA NOTE: MOMENT DIAGRAM CONVENTION In PT design,
More informationWire Fabric and Reinforcement
Wire Fabric and Reinforcement Under the state specification for 709.08 for concrete reinforcement, ASTM A 82 is called out. Under the state specification 709.10 for concrete reinforcement, ASTM A 185 is
More informationDesign of reinforced concrete columns. Type of columns. Failure of reinforced concrete columns. Short column. Long column
Design of reinforced concrete columns Type of columns Failure of reinforced concrete columns Short column Column fails in concrete crushed and bursting. Outward pressure break horizontal ties and bend
More information6 1. Draw the shear and moment diagrams for the shaft. The bearings at A and B exert only vertical reactions on the shaft.
06 Solutions 46060_Part1 5/27/10 3:51 PM Page 329 6 1. Draw the shear and moment diagrams for the shaft. The bearings at and exert only vertical reactions on the shaft. 250 mm 800 mm 24 kn 6 2. Draw the
More informationStress Strain Relationships
Stress Strain Relationships Tensile Testing One basic ingredient in the study of the mechanics of deformable bodies is the resistive properties of materials. These properties relate the stresses to the
More informationsuperimposing the stresses and strains cause by each load acting separately
COMBINED LOADS In many structures the members are required to resist more than one kind of loading (combined loading). These can often be analyzed by superimposing the stresses and strains cause by each
More informationStructures and Stiffness
Structures and Stiffness ENGR 10 Introduction to Engineering Ken Youssefi/Thalia Anagnos Engineering 10, SJSU 1 Wind Turbine Structure The Goal The support structure should be optimized for weight and
More informationTechnical Notes 3B  Brick Masonry Section Properties May 1993
Technical Notes 3B  Brick Masonry Section Properties May 1993 Abstract: This Technical Notes is a design aid for the Building Code Requirements for Masonry Structures (ACI 530/ASCE 5/TMS 40292) and Specifications
More informationDraft Table of Contents. Building Code Requirements for Structural Concrete and Commentary ACI 31814
Draft Table of Contents Building Code Requirements for Structural Concrete and Commentary ACI 31814 BUILDING CODE REQUIREMENTS FOR STRUCTURAL CONCRETE (ACI 318 14) Chapter 1 General 1.1 Scope of ACI 318
More information11/1/2010 3:57 PM 1 of 11
Masonry Wall 6.0  MASONRY WALL ANALYSIS AND DESIGN ================================================================================ Job ID : Job Description : Designed By : ================================================================================
More informationType of Force 1 Axial (tension / compression) Shear. 3 Bending 4 Torsion 5 Images 6 Symbol (+ )
Cause: external force P Force vs. Stress Effect: internal stress f 05 Force vs. Stress Copyright G G Schierle, 200105 press Esc to end, for next, for previous slide 1 Type of Force 1 Axial (tension /
More informationStresses in Beam (Basic Topics)
Chapter 5 Stresses in Beam (Basic Topics) 5.1 Introduction Beam : loads acting transversely to the longitudinal axis the loads create shear forces and bending moments, stresses and strains due to V and
More informationComposite Sections and Steel Beam Design. Composite Design. Steel Beam Selection  ASD Composite Sections Analysis Method
Architecture 324 Structures II Composite Sections and Steel Beam Design Steel Beam Selection  ASD Composite Sections Analysis Method Photo by Mike Greenwood, 2009. Used with permission University of Michigan,
More informationThe following sketches show the plans of the two cases of oneway slabs. The spanning direction in each case is shown by the double headed arrow.
9.2 Oneway Slabs This section covers the following topics. Introduction Analysis and Design 9.2.1 Introduction Slabs are an important structural component where prestressing is applied. With increase
More informationTorsion Testing. Objectives
Laboratory 4 Torsion Testing Objectives Students are required to understand the principles of torsion testing, practice their testing skills and interpreting the experimental results of the provided materials
More informationNonlinear Models of Reinforced and Posttensioned Concrete Beams
111 Nonlinear Models of Reinforced and Posttensioned Concrete Beams ABSTRACT P. Fanning Lecturer, Department of Civil Engineering, University College Dublin Earlsfort Terrace, Dublin 2, Ireland. Email:
More informationA NEW APPROACH FOR MEASUREMENT OF TENSILE STRENGTH OF CONCRETE
Journal of Research (Science), Bahauddin Zakariya University, Multan, Pakistan. Vol.16, No.1, June 2005, pp. 0109 ISSN 10211012 A NEW APPROACH FOR MEASUREMENT OF TENSILE STRENGTH OF CONCRETE A. Ghaffar,
More informationSTRESS AND DEFORMATION ANALYSIS OF LINEAR ELASTIC BARS IN TENSION
Chapter 11 STRESS AND DEFORMATION ANALYSIS OF LINEAR ELASTIC BARS IN TENSION Figure 11.1: In Chapter10, the equilibrium, kinematic and constitutive equations for a general threedimensional solid deformable
More informationBEAMS: SHEAR FLOW, THIN WALLED MEMBERS
LECTURE BEAMS: SHEAR FLOW, THN WALLED MEMBERS Third Edition A. J. Clark School of Engineering Department of Civil and Environmental Engineering 15 Chapter 6.6 6.7 by Dr. brahim A. Assakkaf SPRNG 200 ENES
More informationABSTRACT 1. INTRODUCTION 2. DESCRIPTION OF THE SEGMENTAL BEAM
Ninth LACCEI Latin American and Caribbean Conference (LACCEI 11), Engineering for a Smart Planet, Innovation, Information Technology and Computational Tools for Sustainable Development, August 3, 11,
More informationPerformance Evaluation of Bamboo Reinforced Concrete Beam
Compressive (MPa) Setting Time Fineness International Journal of Engineering & Technology IJETIJENS Vol: 11 No: 04 113 Performance Evaluation of Bamboo Reinforced Concrete Beam M. M. Rahman, M. H. Rashid,
More informationReinforced Concrete Design
FALL 2013 C C Reinforced Concrete Design CIVL 4135 ii 1 Chapter 1. Introduction 1.1. Reading Assignment Chapter 1 Sections 1.1 through 1.8 of text. 1.2. Introduction In the design and analysis of reinforced
More informationIntroduction to Mechanical Behavior of Biological Materials
Introduction to Mechanical Behavior of Biological Materials Ozkaya and Nordin Chapter 7, pages 127151 Chapter 8, pages 173194 Outline Modes of loading Internal forces and moments Stiffness of a structure
More informationAdvantages of Steel as a Structural Material
CHAPTER Structural Steel Design LRFD Method INTRODUCTION TO STRUCTURAL STEEL DESIGN Third Edition A. J. Clark School of Engineering Department of Civil and Environmental Engineering Part II Structural
More informationMCE380: Measurements and Instrumentation Lab. Chapter 9: Force, Torque and Strain Measurements
MCE380: Measurements and Instrumentation Lab Chapter 9: Force, Torque and Strain Measurements Topics: Elastic Elements for Force Measurement Dynamometers and Brakes Resistance Strain Gages Holman, Ch.
More informationChapter14 CALCULATION OF SECTIONS IN ELASTOPLASTIC DOMAIN
Chapter14 CALCULATION OF SECTIONS IN ELASTOPLASTIC DOMAIN 14.1 GENERALS In all strength calculations made until now, it was used the hypothesis of the linear elastic material, where Hooke s law is valid
More informationBending Stress in Beams
93673600 Bending Stress in Beams Derive a relationship for bending stress in a beam: Basic Assumptions:. Deflections are very small with respect to the depth of the beam. Plane sections before bending
More informationBasics of Reinforced Concrete Design
Basics of Reinforced Concrete Design Presented by: Ronald Thornton, P.E. Define several terms related to reinforced concrete design Learn the basic theory behind structural analysis and reinforced concrete
More informationStructural Integrity Analysis
Structural Integrity Analysis 1. STRESS CONCENTRATION Igor Kokcharov 1.1 STRESSES AND CONCENTRATORS 1.1.1 Stress An applied external force F causes inner forces in the carrying structure. Inner forces
More informationSEISMIC DESIGN. Various building codes consider the following categories for the analysis and design for earthquake loading:
SEISMIC DESIGN Various building codes consider the following categories for the analysis and design for earthquake loading: 1. Seismic Performance Category (SPC), varies from A to E, depending on how the
More informationChapter 5 Bridge Deck Slabs. Bridge Engineering 1
Chapter 5 Bridge Deck Slabs Bridge Engineering 1 Basic types of bridge decks Insitu reinforced concrete deck (most common type) Precast concrete deck (minimize the use of local labor) Open steel grid
More informationPOWER SCREWS (ACME THREAD) DESIGN
POWER SCREWS (ACME THREAD) DESIGN There are at least three types of power screw threads: the square thread, the Acme thread, and the buttress thread. Of these, the square and buttress threads are the most
More informationMATERIALS SELECTION FOR SPECIFIC USE
MATERIALS SELECTION FOR SPECIFIC USE1 Subtopics 1 Density What determines density and stiffness? Material properties chart Design problems LOADING 2 STRENGTH AND STIFFNESS Stress is applied to a material
More informationCHAPTER 1 INTRODUCTION
CHAPTER 1 INTRODUCTION 1.1 Background of the research Beam is a main element in structural system. It is horizontal member that carries load through bending (flexure) action. Therefore, beam will deflect
More informationDetailing of Reinforcment in Concrete Structures
Chapter 8 Detailing of Reinforcment in Concrete Structures 8.1 Scope Provisions of Sec. 8.1 and 8.2 of Chapter 8 shall apply for detailing of reinforcement in reinforced concrete members, in general. For
More informationThe Design of Reinforced Concrete Slabs
EGN5439 The Design of Tall Buildings Lecture #14 The Design of Reinforced Concrete Slabs Via the Direct Method as per ACI 31805 L. A. PrietoPortar  2008 Reinforced concrete floor systems provide an
More informationSPECIFICATIONS, LOADS, AND METHODS OF DESIGN
CHAPTER Structural Steel Design LRFD Method Third Edition SPECIFICATIONS, LOADS, AND METHODS OF DESIGN A. J. Clark School of Engineering Department of Civil and Environmental Engineering Part II Structural
More informationDesign Analysis and Review of Stresses at a Point
Design Analysis and Review of Stresses at a Point Need for Design Analysis: To verify the design for safety of the structure and the users. To understand the results obtained in FEA, it is necessary to
More informationThe Strength of Concrete
Chapter The Strength of Concrete.1 The Importance of Strength.2 Strength Level Required KINDS OF STRENGTH. Compressive Strength.4 Flexural Strength.5 Tensile Strength.6 Shear, Torsion and Combined Stresses.7
More informationDeflection Calculation of RC Beams: Finite Element Software Versus Design Code Methods
Deflection Calculation of RC Beams: Finite Element Software Versus Design Code Methods G. Kaklauskas, Vilnius Gediminas Technical University, 1223 Vilnius, Lithuania (gintaris.kaklauskas@st.vtu.lt) V.
More informationAPE T CFRP Aslan 500
Carbon Fiber Reinforced Polymer (CFRP) Tape is used for structural strengthening of concrete, masonry or timber elements using the technique known as Near Surface Mount or NSM strengthening. Use of CFRP
More informationStructural Axial, Shear and Bending Moments
Structural Axial, Shear and Bending Moments Positive Internal Forces Acting Recall from mechanics of materials that the internal forces P (generic axial), V (shear) and M (moment) represent resultants
More informationChapter Outline. Mechanical Properties of Metals How do metals respond to external loads?
Mechanical Properties of Metals How do metals respond to external loads? Stress and Strain Tension Compression Shear Torsion Elastic deformation Plastic Deformation Yield Strength Tensile Strength Ductility
More informationINTRODUCTION TO BEAMS
CHAPTER Structural Steel Design LRFD etho INTRODUCTION TO BEAS Thir Eition A. J. Clark School of Engineering Department of Civil an Environmental Engineering Part II Structural Steel Design an Analsis
More informationPart 1. Dimensions and Properties. Load and Resistance Factor Design, 3 rd Editioni. Most widely used section. Two flanges held apart by a web
Manual of Steel Construction Load and Resistance Factor Design, 3 rd Editioni Part 1 Dimensions and Properties C. C. Fu, Ph.D., P.E. University of Maryland at College Park 1 Wideflange (W) Shapes Most
More informationAssistant Professor of Civil Engineering, University of Texas at Arlington
FRC Performance Comparison: Direct Tensile Test, Beam Type Bending Test, and Round Panel Test Shih Ho Chao (Presenting Author) Assistant Professor of Civil Engineering, University of Texas at Arlington
More information1.054/1.541 Mechanics and Design of Concrete Structures (309) Outline 1 Introduction / Design Criteria for Reinforced Concrete Structures
Prof. Oral Buyukozturk Massachusetts Institute of Technology Outline 1 1.054/1.541 Mechanics and Design of Concrete Structures (309) Outline 1 Introduction / Design Criteria for Reinforced Concrete Structures
More informationPunching shear behavior of steelconcrete composite decks with different shear connectors
Punching shear behavior of steelconcrete composite decks with different shear connectors *XiaoQing Xu 1) and YuQing Liu 2) 1), 2) Department of Bridge Engineering, Tongji University, Shanghai 200092,
More informationLecture 8 Bending & Shear Stresses on Beams
Lecture 8 Bending & hear tresses on Beams Beams are almost always designed on the asis of ending stress and, to a lesser degree, shear stress. Each of these stresses will e discussed in detail as follows.
More informationAN EXPLANATION OF JOINT DIAGRAMS
AN EXPLANATION OF JOINT DIAGRAMS When bolted joints are subjected to external tensile loads, what forces and elastic deformation really exist? The majority of engineers in both the fastener manufacturing
More informationEDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1  LOADING SYSTEMS TUTORIAL 3 LOADED COMPONENTS
EDEXCEL NATIONAL CERTIICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQ LEVEL 3 OUTCOME 1  LOADING SYSTEMS TUTORIAL 3 LOADED COMPONENTS 1. Be able to determine the effects of loading in static engineering
More informationMECHANICS OF SOLIDS  BEAMS TUTORIAL 2 SHEAR FORCE AND BENDING MOMENTS IN BEAMS
MECHANICS OF SOLIDS  BEAMS TUTORIAL 2 SHEAR FORCE AND BENDING MOMENTS IN BEAMS This is the second tutorial on bending of beams. You should judge your progress by completing the self assessment exercises.
More informationLecture Slides. Chapter 10. Mechanical Springs
Lecture Slides Chapter 10 Mechanical Springs The McGrawHill Companies 2012 Chapter Outline Mechanical Springs Exert Force Provide flexibility Store or absorb energy Helical Spring Helical coil spring
More informationIntroduction, Method of Sections
Lecture #1 Introduction, Method of Sections Reading: 1:12 Mechanics of Materials is the study of the relationship between external, applied forces and internal effects (stress & deformation). An understanding
More informationHOW TO DESIGN CONCRETE STRUCTURES Beams
HOW TO DESIGN CONCRETE STRUCTURES Beams Instructions for the Members of BIBM, CEMBUREAU, EFCA and ERMCO: It is the responsibility of the Members (national associations) of BIBM, CEMBUREAU, EFCA and ERMCO
More informationProblem 1: Computation of Reactions. Problem 2: Computation of Reactions. Problem 3: Computation of Reactions
Problem 1: Computation of Reactions Problem 2: Computation of Reactions Problem 3: Computation of Reactions Problem 4: Computation of forces and moments Problem 5: Bending Moment and Shear force Problem
More information8.2 Elastic Strain Energy
Section 8. 8. Elastic Strain Energy The strain energy stored in an elastic material upon deformation is calculated below for a number of different geometries and loading conditions. These expressions for
More informationbi directional loading). Prototype ten story
NEESR SG: Behavior, Analysis and Design of Complex Wall Systems The laboratory testing presented here was conducted as part of a larger effort that employed laboratory testing and numerical simulation
More informationAnalysis of Reinforced Concrete Beams Strengthened with Composites. Subjected to Fatigue Loading
Analysis of Reinforced Concrete Beams Strengthened with Composites Subjected to Fatigue Loading By Christos G. Papakonstantinou, Perumalsamy. Balaguru and Michael F. Petrou Synopsis: Use of high strength
More informationEUROPEAN ORGANISATION FOR TECHNICAL APPROVALS
E TA TECHNICAL REPORT Design of Bonded Anchors TR 29 Edition June 27 EUROPEAN ORGANISATION FOR TECHNICAL APPROVALS TABLE OF CONTENTS Design method for bonded anchors Introduction..4 1 Scope...2 1.1 Type
More informationENGINEERING SCIENCE H1 OUTCOME 1  TUTORIAL 3 BENDING MOMENTS EDEXCEL HNC/D ENGINEERING SCIENCE LEVEL 4 H1 FORMERLY UNIT 21718P
ENGINEERING SCIENCE H1 OUTCOME 1  TUTORIAL 3 BENDING MOMENTS EDEXCEL HNC/D ENGINEERING SCIENCE LEVEL 4 H1 FORMERLY UNIT 21718P This material is duplicated in the Mechanical Principles module H2 and those
More informationSteel Deck. A division of Canam Group
Steel Deck A division of Canam Group TABLE OF CONTENTS PAGE OUR SERVICES... 4 NOTES ABOUT LOAD TABLES... 5 P3615 & P3606 DIMENSIONS & PHYSICAL PROPERTIES... 6 FACTORED AND SERVICE LOADS... 7 P2436 &
More informationDeflection Prediction for Reinforced Concrete Beams Through Different Effective Moment of Inertia Expressions
Deflection Prediction for Reinforced Concrete Beams Through Different Effective Moment of Inertia Expressions İlker Kalkan Abstract The effective moment of inertia expressions proposed by Branson and Bischoff
More informationChapter  3 Design of Rectangular Beams and Oneway Slabs
Rectangular Beams and Oneway Slabs Page 1 of 9 Chapter  3 Design of Rectangular Beams and Oneway Slabs 12 h A 12 strip in a simply supported oneway slab h b=12 L Rectangular Beams and Oneway Slabs
More informationDEVELOPMENT OF A NEW TEST FOR DETERMINATION OF TENSILE STRENGTH OF CONCRETE BLOCKS
1 th Canadian Masonry Symposium Vancouver, British Columbia, June 5, 013 DEVELOPMENT OF A NEW TEST FOR DETERMINATION OF TENSILE STRENGTH OF CONCRETE BLOCKS Vladimir G. Haach 1, Graça Vasconcelos and Paulo
More informationEXPERIMENTAL EVALUATION OF REINFORCED CONCRETE BEAM RETROFITTED WITH FERROCEMENT
Int. J. Struct. & Civil Engg. Res. 2013 Y V Ladi and P M Mohite, 2013 Research Paper EXPERIMENTAL EVALUATION OF REINFORCED CONCRETE BEAM RETROFITTED WITH FERROCEMENT Y V Ladi 1 * and P M Mohite 2 *Corresponding
More informationCe 479 Fall 05. Steel Deck and Concrete Slab Composite Construction. J. Ramirez 1
Ce 479 Fall 05 Steel Deck and Concrete Slab Composite Construction J. Ramirez 1 Types of Floor Deck on Steel Joists/Girders Cast in Place Concrete on Steel Deck Composite Construction  Pages 4249 SDI
More informationA transverse strip of the deck is assumed to support the truck axle loads. Shear and fatigue of the reinforcement need not be investigated.
Design Step 4 Design Step 4.1 DECK SLAB DESIGN In addition to designing the deck for dead and live loads at the strength limit state, the AASHTOLRFD specifications require checking the deck for vehicular
More informationFLEXURAL PERFORMANCE OF RC BEAMS STRENGTHENED WITH PRESTRESSED CFRP SHEETS
FLEXURAL PERFORMANCE OF RC BEAMS STRENGTHENED WITH PRESTRESSED CFRP SHEETS Piyong Yu, Pedro F. Silva, Antonio Nanni Center for Infrastructure and Engineering Studies Department of Civil, Architectural,
More informationSolid Mechanics. Stress. What you ll learn: Motivation
Solid Mechanics Stress What you ll learn: What is stress? Why stress is important? What are normal and shear stresses? What is strain? Hooke s law (relationship between stress and strain) Stress strain
More informationMechanics of Materials. Chapter 5 Stresses In Beams
Mechanics of Materials Chapter 5 Stresses In Beams 5.1 Introduction In previous chapters, the stresses in bars caused by axial loading and torsion. Here consider the third fundamental loading : bending.
More informationPerformance of Existing Reinforced Concrete Columns under Bidirectional Shear & Axial Loading
Performance of Existing Reinforced Concrete Columns under Bidirectional Shear & Axial Loading Laura M. Flores University of California, San Diego REU Institution: University of California, Berkeley REU
More informationFlexural Strength of Concrete (The Modulus of Rupture Test)
Revised 09063, WKS Datasheet No. 7.6a & 7.6b MOHAWK COLLEGE OF APPLIED ARTS AND TECHNOLOGY BUILDING AND CONSTRUCTION SCIENCES DEPARTMENT Flexural Strength of Concrete (The Modulus of Rupture Test) INTRODUCTION
More informationDesign of Fully Restrained Moment Connections per AISC LRFD 3rd Edition (2001)
PDHonline Course S154 (4 PDH) Design of Fully Restrained Moment Connections per AISC LRFD 3rd Edition (2001) Instructor: JoseMiguel Albaine, M.S., P.E. 2012 PDH Online PDH Center 5272 Meadow Estates Drive
More informationCarbon Fiber Reinforced Polymer (CFRP) as Reinforcement for Concrete Beam
Carbon Fiber Reinforced Polymer (CFRP) as Reinforcement for Concrete Beam Norazman Mohamad Nor 1, Mohd Hanif Ahmad Boestamam, Mohammed Alias Yusof 3 1,3 Universiti Pertahanan Nasional Malaysia, 57000 Kuala
More informationBehaviour of retrofitted reinforced concrete beams under combined bending and torsion : A numerical study
Behaviour of retrofitted reinforced concrete beams under combined bending and torsion : A numerical study R.Santhakumar Assistant Professor, National Institute of Technical Teachers Training and Research,
More informationP4 Stress and Strain Dr. A.B. Zavatsky MT07 Lecture 4 Stresses on Inclined Sections
4 Stress and Strain Dr. A.B. Zavatsky MT07 Lecture 4 Stresses on Inclined Sections Shear stress and shear strain. Equality of shear stresses on perpendicular planes. Hooke s law in shear. Normal and shear
More informationChapter 8. Flexural Analysis of TBeams
Chapter 8. Flexural Analysis of Ts 8.1. Reading Assignments Text Chapter 3.7; ACI 318, Section 8.10. 8.2. Occurrence and Configuration of Ts Common construction type. used in conjunction with either
More informationEDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES OUTCOME 2 ENGINEERING COMPONENTS TUTORIAL 1 STRUCTURAL MEMBERS
ENGINEERING COMPONENTS EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES OUTCOME ENGINEERING COMPONENTS TUTORIAL 1 STRUCTURAL MEMBERS Structural members: struts and ties; direct stress and strain,
More informationSimple stresses are expressed as the ratio of the applied force divided by the resisting. σ = Force / Area.
Simple Stresses Simple stresses are expressed as the ratio of the applied force divided by the resisting area or σ = Force / Area. It is the expression of force per unit area to structural members that
More information