BOND TYPES: THE CLASSIFICATION OF SUBSTANCES

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "BOND TYPES: THE CLASSIFICATION OF SUBSTANCES"

Transcription

1 BOND TYPES: THE CLASSIFICATION OF SUBSTANCES Every (pure) substance has a unique set of intrinsic properties which distinguishes it from all other substances. What inferences, if any can be made from a substance s properties? Since the interactions between the atoms, ions, or molecules in a sample of matter largely determine its behavior, the types of interactions, generally called bonding, can be correlated with its properties. In this experiment, you will examine some of the properties of a number of substances and classify each substance on the basis of your observations. The properties of compounds do not resemble the properties of the component elements. Consider sodium chloride, NaCl. Sodium, Na, is a soft, lustrous, low-melting metal which is so reactive that it tarnishes immediately when exposed to air and reacts explosively with water. Chlorine, Cl 2, is a greenish yellow gas which is very corrosive and poisonous. Yet sodium chloride or table salt, a compound of sodium and chlorine, is a hard, brittle, high-melting, nonvolatile, transparent crystalline solid that is nontoxic, dissolves quietly in water, and is unreactive toward most other substances. But even though the compound does not inherit the properties of its parent elements, nevertheless their properties do determine the type of chemical bonding involved, which in turn largely determines the properties of the compound. Although there are no sharply defined boundaries, chemical bonds can be classified into 3 main types: ionic bonds, covalent bonds, and metallic bonds. Following is a brief discussion of each type of bond and the general properties found in typical substances in which the bond type occurs. Ionic Bonds and Ionic Compounds A metal atom and a nonmetal atom interact by electron transfer. The metal atom loses one or more electrons forming a positively charged ion called a cation. The nonmetal atom gains one or more electrons forming a negatively charged ion called an anion. The compound is held together by the electrost atic attractions between the positive and negative ions, called the ionic bond. The cations and anions are arranged in a rigid structure called a crystal lattice in which each positive ion is surrounded by a number of negative ions and each negative ion is surrounded by a number of positive ions. The pattern is determined by the ions sizes and charges. A compound made up of ions - a compound involving any ionic bonds - is called an ionic compound. Ionic compounds are usually hard, brittle, high-melting, nonvolatile, transparent crystalline solids. They usually melt at temperatures of about C. (Some ionic compounds or salts which contain water of crystallization may lose it at temperatures lower than 300 C.) Many ionic compounds dissolve in water because of the strong attractions between the ions and the highly polar water molecules. The water solutions are good conductors of electricity unless they are very dilute. In some ionic compounds, the attractions between the ions are so much larger than the attractions between the ions and water molecules, that the compound does not dissolve in water sufficiently to form a highly conducting solution. With nonpolar solvents such as hexane, the attractions between the non-polar molecules of the liquid and the ions are too weak to bring about solution. The polar organic solvent alcohol is a better solvent Schwartz, R./PC/1342B/I 1/00

2 for ionic compounds than hexane but not as good as water. When an ionic compound is melted, the ions are freed from their positions in the lattice and can conduct electricity by moving. (A moving charge is a current of electricity.) Covalent Bonds and Covalent Compounds 2 A nonmetal atom and another nonmetal atom interact by sharing a pair, or sometimes, several pairs of electrons. The shared pairs of electrons are called covalent bonds. A compound involving only covalent bonds is called a covalent compound. In most covalent compounds, the atoms which share electrons form discrete, uncharged particles called molecules. The unequal sharing of electron pairs results in an unbalanced or polar covalent bond. An unsymmetrical arrangement of polar bonds in a molecule makes the molecule polar, with an unbalanced distribution of electrical charge. Altho ugh the covalent bonds between the atoms in a molecule are strong bonds, the attractions between the molecules, especially nonpolar molecules, are usually much weaker than the attractions between positive and negative ions. Covalent compounds of low molecular weight (less than about 100 amu) are usually gases or volatile liquids. Those of higher molecular weight are soft, crumbly, volatile, low-melting solids. These usually melt below 300 C. (For substances with similar molecules, melting points and boiling points increase with increasing molecular weight.) A substance with polar molecules melts and boils higher than a nonpolar substance of similar molecular weight. A covalent substance is more likely than an ionic substance to be soluble in an organic solvent. Polar covalent substances are soluble in polar solvents such as alcohol or water and nonpolar substances are soluble in nonpolar solvents such as hexane. The attractions between water molecules and nonpolar molecules that the two kinds of molecules do not mingle and nonpolar covalent substances are not appreciably soluble in water. Solutions of covalent substances are usually poor electrical conductors or nonconductors. But a few highly polar covalent substances form water solutions which are very good conductors. These substances or, more properly, their water solutions, are called strong acids. Some examples are nitric acid, HNO 3, hydrochloric acid, HCl, and sulfuric acid, H 2 SO 4. Melted covalent compounds are usually poor conductors of electricity or nonconductors. A few covalent compounds such as silicon dioxide, SiO 2 (quartz, sand) and silicon carbide, SiC (Carborundum), are called macromolecular substances or covalent network solids because a network of covalent bonds joins together all the atoms in a crystal into a giant molecule. Melting such a crystal involves breaking of covalent bonds. Melting a molecular solid does not involve the breaking of covalent bonds. As the molecular solid is heated, thermal energy increases the motions of individual molecules. When their energies are large enough to overcome the relatively weak attractions between molecules (Van der Waals forces), the molecular crystal melts. In contrast, macromolecular solids are very hard, brittle, and very high-melting (above 1000 C). They are insoluble in all solvents and, because they have no loosely bound electrons, are nonconductors of electricity. (Some of them find uses as insulators.) Some substances have a bond system that must be considered intermediate between ionic and covalent. A principally ionic compound may involve a very small, highly charged cation and a large anion. The cation so polarizes the electron cloud of the anion that the bond is described as partially covalent. A principally co valent compound may be so highly polar that the bonding is described as partially ionic. Some authors use the term ionic-covalent to describe a bond that is principally ionic but partially covalent and covalent-ionic to describe a bond that is principally

3 3 covalent but partially ionic. Metallic Bonds and Metallic Solids Metal atoms interact with other metal atoms to form metallic bonds, the bond type found in pure metals, alloys, and certain intermetallic compounds. The metal cations from a lattice and the valence electrons form a surrounding sea or gas. These valence electrons are mobile and delocalized; there are apparently no associations of particular electrons with the particular cations. Because of the mobility of the valence electrons, metals are good conductors of electricity in both the solid and liquid state. Because of the delocalization of the negative charge, metal crystals are easily deformed and reshaped making metals malleable and ductile. The energy states of the electrons in the gas are virtually continuous so that all the visible light frequencies are both absorbed and reradiated, giving metals their characteristic shiny or lustrous appearance. Certain metals may react with liquid solvents but metals do not simply dissolve in solvents the way, for example, salts do. Their melting points range from quite low (-39 C for mercury, Hg) to very high (3415 C for tungsten, W). Their hardness varies from that of potassium, K, and cesium, Cs, which are about as hard as a firm cheese to that of special purpose aloys so hard that special tools are required to cut them. On the next page is a summary of properties typical of members of each of the 4 main classes of solids.

4 4 COMPARISON OF THE FOUR MAIN TYPES OF CRYSTALLINE SOLIDS Ionic Molecular Macromolecular or Covalent Network Metallic Examples NaCl, MgSO 4, Ca(NO 3 ) 2, AlF 3 solid CO 2, S 8, P 4, naphthalene (C 10 H 8 ), paradichlorobenzene (C 6 H 4 Cl 2 ) diamond, gemstones, ceramics, Carborundum pure metals, alloys What occupies the lattice points in the crystal? cations and anions individual molecules atoms covalently bonded to one another metal cations (The valence electrons are delocalized.) What is the strongest force binding them in the lattice? the ionic bond Van der Waals forces (intermolecular attractions) the covalent bond the metallic bond Hard or soft? hard soft very hard variable Brittle or malleable? brittle crumbly very brittle malleable High or low melting point? high (usually C) low (usually under 300 C) very high (usually over 1000 C) variable (-39 C Hg; 3415 C W) Good conductor? no (unless melted) no no (insulators) excellent often soluble in water; usually insoluble in nonpolar solvents polar substances soluble in polar solvents, nonpolar in nonpolar solvents insoluble insoluble

5 5 Procedure You are to estimate the melting points, solubilities in 3 different solvents, and conductivity as a solid and a water solution of various solids, both known and unknown. On the basis of your observations, you are to classify each one as a member of one of the 4 main types of solids (ionic, molecular, macromolecular, or metallic) and cite supporting evidence for your choice. Melting Point Place a small amount of the solid to be tested in a test tube and heat the test tube in a beaker containing boiling water. If the solid melts in the boiling water bath, its melting point is at or below 100 C, the boiling point of water. If the substance does not melt in the boiling water bath, place a sample of it in a crucible supported on a triangle and heat it gently heat with the Tirrill burner. If the solid melts, its melting point can be considered to be at or below 300 C. If the substance does not melt when heated gently, heat the crucible at maximum heat with the Tirrill burner. (This will require repositioning the crucible, or better yet, a separate ring stand assembly.) If the substance melts, its melting point can be considered to be at or below 600 C. If the substance does not melt at maximum heat with the Tirrill burner, its melting point is above 600 C. After these tests, you will be able to place the substance s melting point in one of the following categories: Record the results. room temperature above 600 C C C C You are to test the solubility of each substance in each of 3 solvents: 1. water, 2. A polar organic solvent such as alcohol, and 3. A nonpolar organic solvent such as hexane For each solvent, test the solid as follows. Half fill a medium sized test tube with the solvent to be tested. If the solid is not finely ground, crush it to hasten dissolving. Add a very small portion of the solid (half the size of a match head or less) to the liquid and shake and stir vigorously at intervals for a period of several minutes (be sure to stopper the test tube with a cork before shaking). If the sample dissolves, add another small portion and repeat the shaking and stirring. Continue until no more solid dissolves. Repeat the test with each substance with each solvent. Record the results. Conductivity

6 6 Use the meters provided to test the conductivity of each solid sample. Record the results. Before you begin to test the conductivity of the water solutions, test the conductivity of distilled water for comparison. In estimating the conductivity of the water solution, you will have to take into account the solubility of the dissolved substance. A very dilute solution of an ionic compound is not as good a conductor of electricity as a more concentrated solution of the same substance would be. Record the results. Classification On the basis of the properties you have been able to observe, classify each known and each unknown as a member of one of the 4 main groups of solids and list the evidence which supports your choice of classification. Results and Notes: Melting Points Conductivity

7 7 Substance Appearance MP Range Conductivity CaCl 2 H 2 O Alc Hex Classification Urea, H 2 NCONH 2 Silicon dioxide, SiO 2 Naphthalene, C 10 H 8 Sucrose, C 12 H 22 O 11 KBr Zinc, Zn Camphor NaC 2 H 3 O 2 Silicon carbide, SiC Cholesterol Sulfur, S 8 NaHCO 3

Solid Type of solid Type of particle

Solid Type of solid Type of particle QUESTION (2015:3) Complete the table below by stating the type of solid, the type of particle, and the attractive forces between the particles in each solid. Solid Type of solid Type of particle Cu(s)

More information

9.2 Network Covalent, Ionic, and Metallic Solids

9.2 Network Covalent, Ionic, and Metallic Solids 9.2 Network Covalent, Ionic, and Metallic Solids YOU ARE EXPECTED TO BE ABLE TO: Classify non-molecular solids as either network covalent solids, ionic solids, or metallic solids. Relate the physical properties

More information

Bonding in Elements and Compounds. Covalent

Bonding in Elements and Compounds. Covalent Bonding in Elements and Compounds Structure of solids, liquids and gases Types of bonding between atoms and molecules Ionic Covalent Metallic Many compounds between metals & nonmetals (salts), e.g. Na,

More information

2C Intermolecular forces, structure and properties:

2C Intermolecular forces, structure and properties: Electronegativity and polarity Polar and non-polar bonds: 1) Non-Polar bonds: 2C Intermolecular forces, structure and properties: A covalent bond shares an electron pair: In a hydrogen molecule, the electrons

More information

Properties of Ionic and Covalent Compounds. Intermolecular Forces

Properties of Ionic and Covalent Compounds. Intermolecular Forces Properties of Ionic and Covalent Compounds Intermolecular Forces Physical Properties & Bond Types Physical properties of substances are affected by the attractive forces between particles Greater attraction

More information

Unit 5 Lesson 4 Ionic, Covalent, and Metallic Bonding. Copyright Houghton Mifflin Harcourt Publishing Company

Unit 5 Lesson 4 Ionic, Covalent, and Metallic Bonding. Copyright Houghton Mifflin Harcourt Publishing Company Opposites Attract What is an ion? An atom has a neutral charge because it has an equal number of electrons and protons. An ion is a particle with a positive or negative charge. An ion forms when an atom

More information

Covalent Bonding and Intermolecular Forces

Covalent Bonding and Intermolecular Forces Intermolecular forces are electromagnetic forces that hold like molecules together. Strong intermolecular forces result in a high melting point and a solid state at room temperature. Molecules that are

More information

Which substance contains positive ions immersed in a sea of mobile electrons? A) O2(s) B) Cu(s) C) CuO(s) D) SiO2(s)

Which substance contains positive ions immersed in a sea of mobile electrons? A) O2(s) B) Cu(s) C) CuO(s) D) SiO2(s) BONDING MIDTERM REVIEW 7546-1 - Page 1 1) Which substance contains positive ions immersed in a sea of mobile electrons? A) O2(s) B) Cu(s) C) CuO(s) D) SiO2(s) 2) The bond between hydrogen and oxygen in

More information

Classification of Chemical Substances

Classification of Chemical Substances Classification of Chemical Substances INTRODUCTION: Depending on the kind of bonding present in a chemical substance, the substance may be called ionic, molecular or metallic. In a solid ionic compound

More information

The breaking of bonds and the forming of bonds occur during chemical reactions.

The breaking of bonds and the forming of bonds occur during chemical reactions. Chemical Bonding The breaking of bonds and the forming of bonds occur during chemical reactions. Aspirin The formula for a molecule of aspirin is C 9 H 8 O 4 Is it an ionic or covalent (molecular) compound?

More information

Packet 4: Bonding. Play song: (One of Mrs. Stampfel s favorite songs)

Packet 4: Bonding. Play song:  (One of Mrs. Stampfel s favorite songs) Most atoms are not Packet 4: Bonding Atoms will, or share electrons in order to achieve a stable. Octet means that the atom has in its level. If an atom achieves a stable octet it will have the same electron

More information

Lesmahagow High School CfE Higher Chemistry. Chemical Changes & Structure Structure and Bonding

Lesmahagow High School CfE Higher Chemistry. Chemical Changes & Structure Structure and Bonding Lesmahagow High School CfE Higher Chemistry Chemical Changes & Structure Structure and Bonding Page 1 of 26 No. Learning Outcome Understanding? 1 2 The bonding types of the first twenty elements; metallic

More information

CHAPTER 6 Chemical Bonding

CHAPTER 6 Chemical Bonding CHAPTER 6 Chemical Bonding SECTION 1 Introduction to Chemical Bonding OBJECTIVES 1. Define Chemical bond. 2. Explain why most atoms form chemical bonds. 3. Describe ionic and covalent bonding.. 4. Explain

More information

Bonding Web Practice. Trupia

Bonding Web Practice. Trupia 1. If the electronegativity difference between the elements in compound NaX is 2.1, what is element X? bromine fluorine chlorine oxygen 2. Which bond has the greatest degree of ionic character? H Cl Cl

More information

CHAPTER 10: INTERMOLECULAR FORCES: THE UNIQUENESS OF WATER Problems: 10.2, 10.6,10.15-10.33, 10.35-10.40, 10.56-10.60, 10.101-10.

CHAPTER 10: INTERMOLECULAR FORCES: THE UNIQUENESS OF WATER Problems: 10.2, 10.6,10.15-10.33, 10.35-10.40, 10.56-10.60, 10.101-10. CHAPTER 10: INTERMOLECULAR FORCES: THE UNIQUENESS OF WATER Problems: 10.2, 10.6,10.15-10.33, 10.35-10.40, 10.56-10.60, 10.101-10.102 10.1 INTERACTIONS BETWEEN IONS Ion-ion Interactions and Lattice Energy

More information

EXPERIMENT 10: Electrical Conductivity Chem 111

EXPERIMENT 10: Electrical Conductivity Chem 111 EXPERIMENT 10: Electrical Conductivity Chem 111 INTRODUCTION A. Electrical Conductivity A substance can conduct an electrical current if it is made of positively and negatively charged particles that are

More information

Topic 3 National Chemistry Summary Notes. Bonding, Structure and Properties of Substances. Covalent Bonds

Topic 3 National Chemistry Summary Notes. Bonding, Structure and Properties of Substances. Covalent Bonds Topic 3 National Chemistry Summary Notes Bonding, Structure and Properties of Substances LI 1 Covalent Bonds Most atoms do not exist as single atoms. They are mainly found combined with other atoms in

More information

Answers to Practise Questions (Basic) Atomic Structure and Bonding

Answers to Practise Questions (Basic) Atomic Structure and Bonding Answers to Practise Questions (Basic) Atomic Structure and Bonding Practise questions (Basic) are designed to ensure that students are aware of the basic concepts of the topic. This should be the first

More information

Test 8: Review Questions

Test 8: Review Questions Name: Thursday, February 14, 2008 Test 8: Review Questions 1. Based on bond type, which compound has the highest melting point? 1. CH OH 3. CaCl 3 2 2. C H 4. CCl 6 14 4 2. Which compound contains ionic

More information

Name: Intermolecular Forces Practice Exam Date:

Name: Intermolecular Forces Practice Exam Date: Name: Intermolecular Forces Practice Exam Date: 1. At STP, fluorine is a gas and bromine is a liquid because, compared to fluorine, bromine has 1) stronger covalent bonds 2) stronger intermolecular forces

More information

In the box below, draw the Lewis electron-dot structure for the compound formed from magnesium and oxygen. [Include any charges or partial charges.

In the box below, draw the Lewis electron-dot structure for the compound formed from magnesium and oxygen. [Include any charges or partial charges. Name: 1) Which molecule is nonpolar and has a symmetrical shape? A) NH3 B) H2O C) HCl D) CH4 7222-1 - Page 1 2) When ammonium chloride crystals are dissolved in water, the temperature of the water decreases.

More information

Chapter 11. Chemical Bonds: The Formation of Compounds from Atoms

Chapter 11. Chemical Bonds: The Formation of Compounds from Atoms Chapter 11 Chemical Bonds: The Formation of Compounds from Atoms 1 11.1 Periodic Trends in atomic properties 11.1 Periodic Trends in atomic properties design of periodic table is based on observing properties

More information

Name Date Class STUDY GUIDE FOR CONTENT MASTERY

Name Date Class STUDY GUIDE FOR CONTENT MASTERY Ionic Compounds Section 8.1 Forming Chemical Bonds In your textbook, read about chemical bonds and formation of ions. Use each of the terms below just once to complete the passage. chemical bond electrons

More information

Chapter 13 - LIQUIDS AND SOLIDS

Chapter 13 - LIQUIDS AND SOLIDS Chapter 13 - LIQUIDS AND SOLIDS Problems to try at end of chapter: Answers in Appendix I: 1,3,5,7b,9b,15,17,23,25,29,31,33,45,49,51,53,61 13.1 Properties of Liquids 1. Liquids take the shape of their container,

More information

KINETIC MOLECULAR THEORY OF MATTER

KINETIC MOLECULAR THEORY OF MATTER KINETIC MOLECULAR THEORY OF MATTER The kinetic-molecular theory is based on the idea that particles of matter are always in motion. The theory can be used to explain the properties of solids, liquids,

More information

Type of Chemical Bonds

Type of Chemical Bonds Type of Chemical Bonds Covalent bond Polar Covalent bond Ionic bond Hydrogen bond Metallic bond Van der Waals bonds. Covalent Bonds Covalent bond: bond in which one or more pairs of electrons are shared

More information

4.5 Physical Properties: Solubility

4.5 Physical Properties: Solubility 4.5 Physical Properties: Solubility When a solid, liquid or gaseous solute is placed in a solvent and it seems to disappear, mix or become part of the solvent, we say that it dissolved. The solute is said

More information

Bonding Practice Problems

Bonding Practice Problems NAME 1. When compared to H 2 S, H 2 O has a higher 8. Given the Lewis electron-dot diagram: boiling point because H 2 O contains stronger metallic bonds covalent bonds ionic bonds hydrogen bonds 2. Which

More information

Science 20. Unit A: Chemical Change. Assignment Booklet A1

Science 20. Unit A: Chemical Change. Assignment Booklet A1 Science 20 Unit A: Chemical Change Assignment Booklet A FOR TEACHER S USE ONLY Summary Teacher s Comments Chapter Assignment Total Possible Marks 79 Your Mark Science 20 Unit A: Chemical Change Assignment

More information

ANSWER KEY. Energy Levels, Electrons and IONIC Bonding It s all about the Give and Take!

ANSWER KEY. Energy Levels, Electrons and IONIC Bonding It s all about the Give and Take! ANSWER KEY Energy Levels, Electrons and IONIC Bonding It s all about the Give and Take! From American Chemical Society Middle School Chemistry Unit: Chapter 4 Content Statements: Distinguish the difference

More information

Unit 1 Building Blocks

Unit 1 Building Blocks Unit 1 Building Blocks a) Substances (i) Elements Everything in the world is made from about 100 elements. Each element has a name and a symbol. Elements are classified in different ways, including naturallyoccurring/made

More information

UW Department of Chemistry Lab Lectures Online

UW Department of Chemistry Lab Lectures Online Lab 5: Periodic Trends Part I: (Prelab) A Computer Study and Introduction to ChemDraw Part II: Acid-Base Properties of Period 3 and Group 5A Elemental Oxides Part III: Oxidizing Ability of the Elemental

More information

Chapter 13 The Chemistry of Solids

Chapter 13 The Chemistry of Solids Chapter 13 The Chemistry of Solids Jeffrey Mack California State University, Sacramento Metallic & Ionic Solids Crystal Lattices Regular 3-D arrangements of equivalent LATTICE POINTS in space. Lattice

More information

BONDING AND STRUCTURE

BONDING AND STRUCTURE 8]VeiZg * BONDING AND STRUCTURE Introduction The types of chemical bond and the structure of crystal lattices ultimately determine the properties of a chemical substance. These properties govern the practical

More information

Name Class Date. What is ionic bonding? What happens to atoms that gain or lose electrons? What kinds of solids are formed from ionic bonds?

Name Class Date. What is ionic bonding? What happens to atoms that gain or lose electrons? What kinds of solids are formed from ionic bonds? CHAPTER 1 2 Ionic Bonds SECTION Chemical Bonding BEFORE YOU READ After you read this section, you should be able to answer these questions: What is ionic bonding? What happens to atoms that gain or lose

More information

Chapter 6 Assessment. Name: Class: Date: ID: A. Multiple Choice Identify the choice that best completes the statement or answers the question.

Chapter 6 Assessment. Name: Class: Date: ID: A. Multiple Choice Identify the choice that best completes the statement or answers the question. Name: Class: Date: ID: A Chapter 6 Assessment Multiple Choice Identify the choice that best completes the statement or answers the question. 1. When an atom loses an electron, it forms a(n) a. anion. c.

More information

INTRODUCTORY CHEMISTRY Concepts and Critical Thinking

INTRODUCTORY CHEMISTRY Concepts and Critical Thinking INTRODUCTORY CHEMISTRY Concepts and Critical Thinking Sixth Edition by Charles H. Corwin Chapter 13 Liquids and Solids by Christopher Hamaker 1 Chapter 13 Properties of Liquids Unlike gases, liquids do

More information

CHAPTER 4: MATTER & ENERGY

CHAPTER 4: MATTER & ENERGY CHAPTER 4: MATTER & ENERGY Problems to try at the end of the chapter. Answers in Appendix I: 1,3,5,7,13,17,19,21,23,25,27,29,31,33,37,39, 41,43,45,47,49,51,53,55,57,59,63,65,67,87,89, 4.1 Physical States

More information

Chemical Bonding. There are three types of bonding:

Chemical Bonding. There are three types of bonding: Chemical Bonding What is a chemical bond? If a system has a lower energy when the atoms are close together than when apart, then bonds exist between those atoms. A bond is an electrostatic force that holds

More information

Chapter # 5 CHEMICAL BONDING

Chapter # 5 CHEMICAL BONDING Chapter # 5 CHEMICAL BONDING You will learn in this chapter about: Why do atoms form chemical bonds? Ionic bond. Characteristics of ionic compounds. Covalent bond. Characteristic of covalent compounds.

More information

The component present in larger proportion is known as solvent.

The component present in larger proportion is known as solvent. 40 Engineering Chemistry and Environmental Studies 2 SOLUTIONS 2. DEFINITION OF SOLUTION, SOLVENT AND SOLUTE When a small amount of sugar (solute) is mixed with water, sugar uniformally dissolves in water

More information

PERIODIC TABLE OF GROUPS OF ELEMENTS Elements can be classified using two different schemes.

PERIODIC TABLE OF GROUPS OF ELEMENTS Elements can be classified using two different schemes. 1 PERIODIC TABLE OF GROUPS OF ELEMENTS Elements can be classified using two different schemes. Metal Nonmetal Scheme (based on physical properties) Metals - most elements are metals - elements on left

More information

Unit 6 Particles with Internal Structure 3-1

Unit 6 Particles with Internal Structure 3-1 Unit 6 Particles with Internal Structure 3-1 The Elements Remember, elements are combined to form molecules the way letters are combined to form words. Presently there are about 115 known elements. Only

More information

Metals and Non-metals. Comparison of physical properties of metals and non metals

Metals and Non-metals. Comparison of physical properties of metals and non metals Metals and Non-metals Comparison of physical properties of metals and non metals PHYSICAL PROPERTY METALS NON-METALS Physical State Metallic lustre (having a shining surface) Mostly solids (Liquid -mercury)

More information

Chemistry Diagnostic Questions

Chemistry Diagnostic Questions Chemistry Diagnostic Questions Answer these 40 multiple choice questions and then check your answers, located at the end of this document. If you correctly answered less than 25 questions, you need to

More information

Unit 6: The Periodic Table & Bonding

Unit 6: The Periodic Table & Bonding Unit 6: The Periodic Table & Bonding Student Name: Class Period: Website upload 2014 Page 1 of 49 Page intentionally blank Website upload 2014 Page 2 of 49 Unit 6 Vocabulary: 1. Alkali metal: An element

More information

comparing ionic and covalent bonding.notebook October 16, 2014 Bond strength IMF strength Oct 6 10:43 AM Oct 14 10:06 PM

comparing ionic and covalent bonding.notebook October 16, 2014 Bond strength IMF strength Oct 6 10:43 AM Oct 14 10:06 PM Bond strength IMF strength Oct 6 10:43 AM Oct 14 10:06 PM 1 Oct 14 10:07 PM Oct 14 10:07 PM 2 Oct 14 10:10 PM Oct 14 10:11 PM 3 comparing ionic and covalent bonding.notebook October 16, 2014 Hardness Ionic

More information

CHAPTER 4: MATTER & ENERGY

CHAPTER 4: MATTER & ENERGY CHAPTER 4: MATTER & ENERGY Problems: 1,3,5,7,13,17,19,21,23,25,27,29,31,33,37,41,43,45,47,49,51,53,55,57,59,63,65,67,69,77,79,81,83 4.1 Physical States of Matter Matter: Anything that has mass and occupies

More information

Using Periodic Properties to Identify Group 2A Cations and Group 7A Anions

Using Periodic Properties to Identify Group 2A Cations and Group 7A Anions Using Periodic Properties to Identify Group 2A Cations and Group 7A Anions Objectives The objectives of this lab are as follows: To observe the solubility properties of various ionic compounds containing

More information

Unit 2 Periodic Behavior and Ionic Bonding

Unit 2 Periodic Behavior and Ionic Bonding Unit 2 Periodic Behavior and Ionic Bonding 6.1 Organizing the Elements I. The Periodic Law A. The physical and chemical properties of the elements are periodic functions of their atomic numbers B. Elements

More information

Periodic Table Instructional Background Patterns in Element Properties (History): Elements vary widely in their properties, but in an orderly way.

Periodic Table Instructional Background Patterns in Element Properties (History): Elements vary widely in their properties, but in an orderly way. Periodic Table Instructional Background Patterns in Element Properties (History): Elements vary widely in their properties, but in an orderly way. In 1869, the Russian chemist Dmitri Mendeleev produced

More information

Chapter Test A. Elements, Compounds, and Mixtures MULTIPLE CHOICE. chemically combined? MIXs2 a. element b. compound c. mixture d.

Chapter Test A. Elements, Compounds, and Mixtures MULTIPLE CHOICE. chemically combined? MIXs2 a. element b. compound c. mixture d. Assessment Chapter Test A Elements, Compounds, and Mixtures MULTIPLE CHOICE Write the letter of the correct answer in the space provided. 1. What is a pure substance made of two or more elements that are

More information

Chapter 4: Structure and Properties of Ionic and Covalent Compounds

Chapter 4: Structure and Properties of Ionic and Covalent Compounds Chapter 4: Structure and Properties of Ionic and Covalent Compounds 4.1 Chemical Bonding o Chemical Bond - the force of attraction between any two atoms in a compound. o Interactions involving valence

More information

Covalent Bonding. How Covalent Bonds Form

Covalent Bonding. How Covalent Bonds Form Covalent Bonding 1 Covalent Bonding How Covalent Bonds Form Just as you and your friend can work together by sharing your talents, atoms can become more stable by sharing electrons. The chemical bond formed

More information

Q1. The chart shows the processes involved in the manufacture of nitric acid from ammonia.

Q1. The chart shows the processes involved in the manufacture of nitric acid from ammonia. Chemistry C2 Foundation and Higher Questions Q1. The chart shows the processes involved in the manufacture of nitric acid from ammonia. (a) Complete the word equation for the reaction that takes place

More information

AS Chemistry Revision Notes Unit 1 Atomic Structure, Bonding And Periodicity

AS Chemistry Revision Notes Unit 1 Atomic Structure, Bonding And Periodicity AS Chemistry Revision Notes Unit Atomic Structure, Bonding And Periodicity Atomic Structure. All atoms have a mass number, A (the number of nucleons), and a proton number, Z (the number of protons). 2.

More information

Grade 9 Science Unit: Atoms and Elements Topic 4: Periodic Table & Compounds

Grade 9 Science Unit: Atoms and Elements Topic 4: Periodic Table & Compounds Grade 9 Science Unit: Atoms and Elements Topic 4: Periodic Table & Compounds Topic Using the Periodic Table Metals, Non- Metals & Metalloids I can Explain and identify the periods of the Periodic Table.

More information

EXPERIMENT # 3 ELECTROLYTES AND NON-ELECTROLYTES

EXPERIMENT # 3 ELECTROLYTES AND NON-ELECTROLYTES EXPERIMENT # 3 ELECTROLYTES AND NON-ELECTROLYTES Purpose: 1. To investigate the phenomenon of solution conductance. 2. To distinguish between compounds that form conducting solutions and compounds that

More information

1. Balance the following equation. What is the sum of the coefficients of the reactants and products?

1. Balance the following equation. What is the sum of the coefficients of the reactants and products? 1. Balance the following equation. What is the sum of the coefficients of the reactants and products? 1 Fe 2 O 3 (s) + _3 C(s) 2 Fe(s) + _3 CO(g) a) 5 b) 6 c) 7 d) 8 e) 9 2. Which of the following equations

More information

Chapter 8 Basic Concepts of Chemical Bonding

Chapter 8 Basic Concepts of Chemical Bonding Chapter 8 Basic Concepts of Chemical Bonding Why do TiCl 4 and TiCl 3 have different colors?... different chemical properties?... different physical states? Chemical Bonding and Properties Difference in

More information

Type of Solid Particles Attractive Force Properties Examples. ionic positive ions electrostatic solid poor conductor NaCl KNO 3

Type of Solid Particles Attractive Force Properties Examples. ionic positive ions electrostatic solid poor conductor NaCl KNO 3 Soids&Materials 1 Solids & Materials Summary of Properties and Types of Solids Type of Solid Particles Attractive Force Properties Examples ionic positive ions electrostatic solid poor conductor NaCl KNO

More information

SOLUTIONS EXPERIMENT 13

SOLUTIONS EXPERIMENT 13 SOLUTIONS EXPERIMENT 13 OBJECTIVE The objective of this experiment is to demonstrate the concepts of concentrations of solutions and the properties of solution. Colloids will be demonstrated. EQUIPMENT

More information

CHAPTER NOTES CHAPTER 16. Covalent Bonding

CHAPTER NOTES CHAPTER 16. Covalent Bonding CHAPTER NOTES CHAPTER 16 Covalent Bonding Goals : To gain an understanding of : NOTES: 1. Valence electron and electron dot notation. 2. Stable electron configurations. 3. Covalent bonding. 4. Polarity

More information

Experiment #10: Liquids, Liquid Mixtures and Solutions

Experiment #10: Liquids, Liquid Mixtures and Solutions Experiment #10: Liquids, Liquid Mixtures and Solutions Objectives: This experiment is a broad survey of the physical properties of liquids. We will investigate solvent/solute mixtures. We will study and

More information

5. Which temperature is equal to +20 K? 1) 253ºC 2) 293ºC 3) 253 C 4) 293 C

5. Which temperature is equal to +20 K? 1) 253ºC 2) 293ºC 3) 253 C 4) 293 C 1. The average kinetic energy of water molecules increases when 1) H 2 O(s) changes to H 2 O( ) at 0ºC 3) H 2 O( ) at 10ºC changes to H 2 O( ) at 20ºC 2) H 2 O( ) changes to H 2 O(s) at 0ºC 4) H 2 O( )

More information

Test Bank - Chapter 5 Multiple Choice

Test Bank - Chapter 5 Multiple Choice Test Bank - Chapter 5 The questions in the test bank cover the concepts from the lessons in Chapter 5. Select questions from any of the categories that match the content you covered with students. The

More information

Experiment 8 - Double Displacement Reactions

Experiment 8 - Double Displacement Reactions Experiment 8 - Double Displacement Reactions A double displacement reaction involves two ionic compounds that are dissolved in water. In a double displacement reaction, it appears as though the ions are

More information

CHAPTER 6 REVIEW. Chemical Bonding. Answer the following questions in the space provided.

CHAPTER 6 REVIEW. Chemical Bonding. Answer the following questions in the space provided. Name Date lass APTER 6 REVIEW hemical Bonding SETIN 1 SRT ANSWER Answer the following questions in the space provided. 1. a A chemical bond between atoms results from the attraction between the valence

More information

Chapter 5 TEST: The Periodic Table name

Chapter 5 TEST: The Periodic Table name Chapter 5 TEST: The Periodic Table name HPS # date: Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The order of elements in the periodic table is based

More information

Intermolecular Forces

Intermolecular Forces Intermolecular Forces: Introduction Intermolecular Forces Forces between separate molecules and dissolved ions (not bonds) Van der Waals Forces 15% as strong as covalent or ionic bonds Chapter 11 Intermolecular

More information

5s Solubility & Conductivity

5s Solubility & Conductivity 5s Solubility & Conductivity OBJECTIVES To explore the relationship between the structures of common household substances and the kinds of solvents in which they dissolve. To demonstrate the ionic nature

More information

Chapter 2. Section 2.1 The Formation of Ionic and Covalent Bonds Solutions for Selected Review Questions Student Edition page 63

Chapter 2. Section 2.1 The Formation of Ionic and Covalent Bonds Solutions for Selected Review Questions Student Edition page 63 Chapter 2 Chemical Bonding Section 2.1 The Formation of Ionic and Covalent Bonds Solutions for Selected Review Questions Student Edition page 63 10. Review Question (page 63) Predict whether the bond between

More information

Experiment 9 - Double Displacement Reactions

Experiment 9 - Double Displacement Reactions Experiment 9 - Double Displacement Reactions A double displacement reaction involves two ionic compounds that are dissolved in water. In a double displacement reaction, it appears as though the ions are

More information

How many atoms are in an ammonia molecule?... (1) The diagrams show the electron arrangement in nitrogen and hydrogen.

How many atoms are in an ammonia molecule?... (1) The diagrams show the electron arrangement in nitrogen and hydrogen. Q1. (a) The diagram represents an atom of nitrogen. Label the diagram. (3) (b) Ammonia has the formula NH 3. It is made from nitrogen and hydrogen. How many atoms are in an ammonia molecule?... (c) The

More information

Answer Sheet Quarterly Review Questions

Answer Sheet Quarterly Review Questions Answer Sheet Quarterly Review Questions 1. Compared to the charge and mass of a proton, an electron has a. the same charge and a smaller mass b. the same charge and the same mass c. an opposite charge

More information

Problem Set VIII Liquids, Solids, Intermolecular Forces and Phase Diagrams

Problem Set VIII Liquids, Solids, Intermolecular Forces and Phase Diagrams Chem 121 Problem set VIII LUTI - 1 Problem et VIII Liquids, olids, Intermolecular orces and Phase Diagrams 1a) this is a point on the vapour pressure curve 1b) gas 1c) gas to liquid Water C 2 2a) solid

More information

A mutual electrical attraction between the nuclei and valence electrons of different atoms that binds the atoms together is called a(n)

A mutual electrical attraction between the nuclei and valence electrons of different atoms that binds the atoms together is called a(n) Chemistry I ATOMIC BONDING PRACTICE QUIZ Mr. Scott Select the best answer. 1) A mutual electrical attraction between the nuclei and valence electrons of different atoms that binds the atoms together is

More information

S block elements p block elements and chemical bonding -1

S block elements p block elements and chemical bonding -1 S block elements p block elements and chemical bonding -1 1.Group I elements do not occur free (native state) in the nature because a. They are unstable b. Their compounds with other elements are highly

More information

Liquids and Solids. AP Chemistry Chapter 10. 9/20/2009 Jodi Grack; Wayzata High School; images used with permission from Zumdahl

Liquids and Solids. AP Chemistry Chapter 10. 9/20/2009 Jodi Grack; Wayzata High School; images used with permission from Zumdahl Liquids and Solids AP Chemistry Chapter 10 Liquids and Solids Gases are much easier to study because molecules move independent of each other. In liquids and solids forces between molecules become very

More information

Development of Periodic Table

Development of Periodic Table Chapter 7 Periodic Properties of the Elements Learning Outcomes: Explain the meaning of effective nuclear charge, Z eff, and how Z eff depends on nuclear charge and electron configuration. Predict the

More information

Chemistry 51 Chapter 8 TYPES OF SOLUTIONS. A solution is a homogeneous mixture of two substances: a solute and a solvent.

Chemistry 51 Chapter 8 TYPES OF SOLUTIONS. A solution is a homogeneous mixture of two substances: a solute and a solvent. TYPES OF SOLUTIONS A solution is a homogeneous mixture of two substances: a solute and a solvent. Solute: substance being dissolved; present in lesser amount. Solvent: substance doing the dissolving; present

More information

Solutions Review Questions

Solutions Review Questions Name: Thursday, March 06, 2008 Solutions Review Questions 1. Compared to pure water, an aqueous solution of calcium chloride has a 1. higher boiling point and higher freezing point 3. lower boiling point

More information

POLAR COVALENT BONDS Ionic compounds form repeating. Covalent compounds form distinct. Consider adding to NaCl(s) vs. H 2 O(s):

POLAR COVALENT BONDS Ionic compounds form repeating. Covalent compounds form distinct. Consider adding to NaCl(s) vs. H 2 O(s): POLAR COVALENT BONDS Ionic compounds form repeating. Covalent compounds form distinct. Consider adding to NaCl(s) vs. H 2 O(s): Sometimes when atoms of two different elements form a bond by sharing an

More information

Unit 3: Quantum Theory, Periodicity and Chemical Bonding. Chapter 10: Chemical Bonding II Molecular Geometry & Intermolecular Forces

Unit 3: Quantum Theory, Periodicity and Chemical Bonding. Chapter 10: Chemical Bonding II Molecular Geometry & Intermolecular Forces onour Chemistry Unit 3: Quantum Theory, Periodicity and Chemical Bonding Chapter 10: Chemical Bonding II Molecular Geometry & Intermolecular orces 10.1: Molecular Geometry Molecular Structure: - the three-dimensional

More information

1º ESO UNIT 3: Pure substances and mixtures. Susana Morales Bernal

1º ESO UNIT 3: Pure substances and mixtures. Susana Morales Bernal 1º ESO UNIT 3: Pure substances and mixtures Objectives 1. To know that a substance is identified according to its characteristic properties like: density and melting or boiling points. 2. To know the concepts

More information

Assessment Schedule 2015 Chemistry: Demonstrate understanding of bonding, structure, properties and energy changes (91164)

Assessment Schedule 2015 Chemistry: Demonstrate understanding of bonding, structure, properties and energy changes (91164) NCEA Level 2 Chemistry (91164) 2015 page 1 of 7 Assessment Schedule 2015 Chemistry: Demonstrate understanding of bonding, structure, properties and energy changes (91164) Evidence Statement Q Evidence

More information

Chapter 7. Chemistry, The Central Science, 11th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten

Chapter 7. Chemistry, The Central Science, 11th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chemistry, The Central Science, 11th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chapter 7 John D. Bookstaver St. Charles Community College Cottleville, MO Development of Table

More information

Review of bond types. Sharing Electrons to Form Covalent Bonds. What is the covalent bond? Patterns in nonmetal - nonmetal chemical reactions:

Review of bond types. Sharing Electrons to Form Covalent Bonds. What is the covalent bond? Patterns in nonmetal - nonmetal chemical reactions: Review of bond types To find truth you have to try and you have to persist in trying. Sometimes it s fun. Sometimes it s hard or boring. But it s always worth it.... The Creator of the universe has implanted

More information

OC42 Recall that ionic bonding is an attraction between positive and negative ions; describe the bonding in NaCl and MgO as examples

OC42 Recall that ionic bonding is an attraction between positive and negative ions; describe the bonding in NaCl and MgO as examples Chemistry: 7. Ionic and Covalent Bonding Please remember to photocopy 4 pages onto one sheet by going A3 A4 and using back to back on the photocopier Syllabus OC41 Understand how atoms of elements combine

More information

Chemistry B11 Chapter 6 Solutions and Colloids

Chemistry B11 Chapter 6 Solutions and Colloids Chemistry B11 Chapter 6 Solutions and Colloids Solutions: solutions have some properties: 1. The distribution of particles in a solution is uniform. Every part of the solution has exactly the same composition

More information

Intermolecular forces, acids, bases, electrolytes, net ionic equations, solubility, and molarity of Ions in solution:

Intermolecular forces, acids, bases, electrolytes, net ionic equations, solubility, and molarity of Ions in solution: Intermolecular forces, acids, bases, electrolytes, net ionic equations, solubility, and molarity of Ions in solution: 1. What are the different types of Intermolecular forces? Define the following terms:

More information

(b) Formation of calcium chloride:

(b) Formation of calcium chloride: Chapter 2: Chemical Compounds and Bonding Section 2.1: Ionic Compounds, pages 22 23 1. An ionic compound combines a metal and a non-metal joined together by an ionic bond. 2. An electrostatic force holds

More information

How are atoms joined together to make compounds with different structures?

How are atoms joined together to make compounds with different structures? Chapter 8 Covalent Bonding 8.1 8.2 The Nature of Covalent Bonding 8.3 Bonding Theories 8.4 Polar Bonds and Molecules 1 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved. CHEMISTRY

More information

phys4.17 Page 1 - under normal conditions (pressure, temperature) graphite is the stable phase of crystalline carbon

phys4.17 Page 1 - under normal conditions (pressure, temperature) graphite is the stable phase of crystalline carbon Covalent Crystals - covalent bonding by shared electrons in common orbitals (as in molecules) - covalent bonds lead to the strongest bound crystals, e.g. diamond in the tetrahedral structure determined

More information

Q1. Crude oil is a complex mixture of hydrocarbons, mainly alkanes. The number of carbon atoms in the molecules ranges from 1 to over 100.

Q1. Crude oil is a complex mixture of hydrocarbons, mainly alkanes. The number of carbon atoms in the molecules ranges from 1 to over 100. Q. Crude oil is a complex mixture of hydrocarbons, mainly alkanes. The number of carbon atoms in the molecules ranges from to over 00. (a) How does the boiling point change as the number of carbon atoms

More information

The Periodic Table elements Dimitri Mendeleev increasing atomic mass periodically Henry Moseley increasing atomic number

The Periodic Table elements Dimitri Mendeleev increasing atomic mass periodically Henry Moseley increasing atomic number 1 The Periodic Table Scientists had identified certain substances as elements and so there were many attempts to arrange the known elements so that there were some correlations between their known properties.

More information

Draw a ring around the correct answer to complete each sentence. 11. Ammonia can be reacted with an acid to produce the salt ammonium nitrate.

Draw a ring around the correct answer to complete each sentence. 11. Ammonia can be reacted with an acid to produce the salt ammonium nitrate. Q. This question is about salts of ammonia and salts of lead. (a) Ammonia dissolves in water to make an alkaline solution. Draw a ring around the correct answer to complete each sentence. The ph of a solution

More information

B) atomic number C) both the solid and the liquid phase D) Au C) Sn, Si, C A) metal C) O, S, Se C) In D) tin D) methane D) bismuth B) Group 2 metal

B) atomic number C) both the solid and the liquid phase D) Au C) Sn, Si, C A) metal C) O, S, Se C) In D) tin D) methane D) bismuth B) Group 2 metal 1. The elements on the Periodic Table are arranged in order of increasing A) atomic mass B) atomic number C) molar mass D) oxidation number 2. Which list of elements consists of a metal, a metalloid, and

More information

Periodic Table Questions

Periodic Table Questions Periodic Table Questions 1. The elements characterized as nonmetals are located in the periodic table at the (1) far left; (2) bottom; (3) center; (4) top right. 2. An element that is a liquid at STP is

More information

H 2O gas: molecules are very far apart

H 2O gas: molecules are very far apart Non-Covalent Molecular Forces 2/27/06 3/1/06 How does this reaction occur: H 2 O (liquid) H 2 O (gas)? Add energy H 2O gas: molecules are very far apart H 2O liquid: bonding between molecules Use heat

More information