Heron s Formula for Triangular Area


 Jeffrey Camron Hancock
 1 years ago
 Views:
Transcription
1 Heron s Formul for Tringulr Are y Christy Willims, Crystl Holom, nd Kyl Gifford Heron of Alexndri Physiist, mthemtiin, nd engineer Tught t the museum in Alexndri Interests were more prtil (mehnis, engineering, mesurement) thn theoretil He is pled somewhere round 75 A.D. (±150) 1
2 Heron s Works Automt Mehni Dioptr Metri Pneumti Ctoptri Belopoei Geometri Stereometri Mensure Cheirolistr The Aeolipile Heron s Aeolipile ws the first reorded stem engine. It ws tken s eing toy ut ould hve possily used n industril revolution 000 yers efore the originl.
3 Metri Mthemtiins knew of its existene for yers ut no tres of it existed In 189 mthemtil historin Pul Tnnery found frgment of it in 13 th entury Prisin mnusript In 1896 R. Shöne found the omplete mnusript in Constntinople. Proposition I.8 of Metri gives the proof of his formul for the re of tringle How is Heron s formul helpful? How would you find the re of the given tringle using the most ommon re formul? 1 A h Sine no height is given, it eomes quite diffiult
4 Heron s Formul Heron s formul llows us to find the re of tringle when only the lengths of the three sides re given. His formul sttes: K s ( s )( s )( s ) Where,, nd, re the lengths of the sides nd s is the semiperimeter of the tringle. The Preliminries
5 Proposition 1 Proposition IV. of Eulid s Elements. The isetors of the ngles of tringle meet t point tht is the enter of the tringles insried irle. (Note: this is lled the inenter) Proposition Proposition VI.8 of Eulid s Elements. In rightngled tringle, if perpendiulr is drwn from the right ngle to the se, the tringles on eh side of it re similr to the whole tringle nd to one nother. 5
6 Proposition 3 In right tringle, the midpoint of the hypotenuse is equidistnt from the three verties. Proposition If AHBO is qudrilterl with digonls AB nd OH, then if HOB nd HAB re right ngles (s shown), then irle n e drwn pssing through the verties A, O, B, nd H. 6
7 Proposition 5 Proposition III. of Eulid s Elements. The opposite ngles of yli qudrilterl sum to two right ngles. Semiperimeter The semiperimeter, s, of tringle with sides,, nd, is s 7
8 Heron s Proof Heron s Proof The proof for this theorem is roken into three prts. Prt A insries irle within tringle to get reltionship etween the tringle s re nd semiperimeter. Prt B uses the sme irle insried within tringle in Prt A to find the terms s, s, nd s in the digrm. Prt C uses the sme digrm with qudrilterl nd the results from Prts A nd B to prove Heron s theorem. 8
9 Resttement of Heron s Formul For tringle hving sides of length,, nd nd re K, we hve K s ( s )( s )( s ) where s is the tringle s semiperimeter. Heron s Proof: Prt A Let ABC e n ritrry tringle suh tht side AB is t lest s long s the other two sides. Insrie irle with enter O nd rdius r inside of the tringle. Therefore, OD OE OF. 9
10 Heron s Proof: Prt A (ont.) Now, the re for the three tringles?aob,?boc, nd?coa is found using the formul Are?AOB Are?BOC Are?COA ½(se)(height). ( AB)( OD 1 r 1 ) ( BC)( OE 1 r 1 ) ( AC)( OF 1 r 1 ) Heron s Proof: Prt A (ont.) K Are We know the re of tringle ABC is K. Therefore ( ABC ) Are( AOB) Are( BOC ) Are( COA) If the res lulted for the tringles?aob,?boc, nd?coa found in the previous slides re sustituted into this eqution, then K is K r r r r rs 10
11 Heron s Proof: Prt B When insriing the irle inside the tringle ABC, three pirs of ongruent tringles re formed (y Eulid s Prop. I.6 AAS). AOD BOD AOF BOE COE COF Heron s Proof: Prt B (ont.) Using orresponding prts of similr tringles, the following reltionships were found: AD AF BD BE CE CF AOD AOF BOD BOE COE COF 11
12 Heron s Proof: Prt B (ont.) The se of the tringle ws extended to point G where AG CE. Therefore, using onstrution nd ongruene of tringle: BG BD AD AG BD AD CE ( BD AD CE) 1 1 [( BD BE ) ( AD AF) ( CE CF )] 1 [( BD AD) ( BE CE) ( AF CF )] 1 ( AB BC AC) BG BG BG BG ( ) s BG 1 Heron s Proof: Prt B (ont.) Sine BG s, the semiperimeter of the tringle is the long segment strighten out. Now, s, s, nd s n e found. s BG AB AG Sine AD AF nd AG CE CF, BG AC ( BD AD AG) ( AF CF ) ( BD AD CE) ( AD CE) s BD 1
13 Heron s Proof: Prt B (ont.) Sine BD BF nd AG CE, BG BC ( BD AD AG) ( BE CE) ( BD AD CE) ( BD CE) s AD Heron s Proof: Prt B (ont.) In Summry, the importnt things found from this setion of the proof. ( ) s BG 1 s AG s s BD AD 13
14 Heron s Proof: Prt C The sme irle insried within tringle is used exept three lines re now extended from the digrm. The segment OL is drwn perpendiulr to OB nd uts AB t point K. The segment AM is drwn from point A perpendiulr to AB nd intersets OL t point H. The lst segment drwn is BH. The qudrilterl AHBO is formed. Heron s Proof: Prt C (ont.) Proposition sys the qudrilterl AHBO is yli while Proposition 5 y Eulid sys the sum of its opposite ngles equls two right ngles. AHB AOB right ngles 1
15 Heron s Proof: Prt C (ont.) By ongruene, the ngles round the enter O redue to three pirs of equl ngles to give: α β γ rt ngles Therefore, α β γ rt ngles α Sine Heron s Proof: Prt C (ont.) β γ β α AOB rt ngles Therefore,., nd α AOB rt ngles AHB AOB α AHB 15
16 Heron s Proof: Prt C (ont.) Sine α AHB nd oth ngles CFO nd BAH re right ngles, then the two tringles?cof nd?bha re similr. This leds to the following proportion using from Prt B tht AG CF nd OH r : AB CF AG AH OF r whih is equivlent to the proportion AB AG AH r (*) Heron s Proof: Prt C (ont.) Sine oth ngles KAH nd KDO re right ngles nd vertil ngles AKH nd DKO re equl, the two tringles?kah nd?kdo re similr. This leds to the proportion: AH AK Whih simplifies to AH r OD KD AK KD r KD (**) 16
17 Heron s Proof: Prt C (ont.) The two equtions AB AG AH (*) nd AH AK (**) r r KD re omined to form the key eqution: AB AG AK KD (***) Heron s Proof: Prt C (ont.) By Proposition,?KDO is similr to?odb where?bok hs ltitude ODr. This gives the eqution: KD r r BD whih simplifies ( )( ) to KD BD r (****) (r is the men proportionl etween mgnitudes KD nd BD) 17
18 Heron s Proof: Prt C (ont.) One is dded to eqution (***), the eqution is simplified, then BG/BG is multiplied on the right nd BD/BD is multiplied on the left, then simplified. AB AG AK KD BG BG AD BD BG AG KD BD AB AK 1 1 AG KD AB AG AK KD AG KD BG AD AG KD Using the eqution KD BD r (****) this simplifies to: ( BG) ( AG)( BG) ( )( ) ( AD)( BD) r Heron s Proof: Prt C (ont.) Crossmultiplition of ( BG ) ( AG)( BG) ( BG) ( AG)( BG)( AD)( BD) r Prt B re needed. These re: ( AD)( BD) r produed. Next, the results from BG s s AG s s BD AD 18
19 Heron s Proof: Prt C (ont.) The results from Prt B re sustituted into the eqution: ( BG) ( AG)( BG)( AD)( BD) r r s ( s )( s)( s )( s ) We know rememer from Prt A tht Krs, so the eqution eomes: K s ( s )( s )( s ) Thus proving Heron s Theorem of Tringulr Are Applition of Heron s Formul We n now use Heron s Formul to find the re of the previously given tringle 5 17 s ( ) K ( 3 17)( 3 5)( 3 6)
20 Euler s Proof of Heron s Formul Leonhrd Euler provided proof of Heron s Formul in 178 pper entitled Vrie demonstrtiones geometrie His proof is s follows Euler s Proof (Piture) For referene, this is piture of the proof y Euler. 0
21 Euler s Proof (ont.) ABC Begin with hving sides,, nd nd ngles, β nd γ Insrie irle within the tringle Let O e the enter of the insried irle with rdius r OS OU From the onstrution of the inenter, we know tht segments OA, OB, nd OC iset the ngles of ABC with OAB α β, OBA, γ nd OCA Euler s Proof (ont.) Extend BO nd onstrut perpendiulr from A interseting this extended line t V Denote y N the intersetion of the extensions of segment AV nd rdius OS Beuse AOV is n exterior ngle of AOB, oserve tht AOV OAB OBA α β 1
22 Euler s Proof (ont.) Beuse AOV is right, we know tht nd OAV re omplementry Thus, But α Therefore, α β OAV 90 β γ 90 s well γ OAV OCU AOV Euler s Proof (ont.) Right tringles nd re similr so we get AV / VO CU / OU z / r Also dedue tht nd re similr, s re nd, s well s nd Hene NAS This results in So, OAV NOV BAV AV / AB OV / ON z r AB ON OCU NAS NOV x y SN r ( SN ) r( x y z) rs z BAV
23 Euler s Proof (ont.) Beuse they re vertil ngles, BOS nd VON re ongruent, so OBS 90 BOS 90 VON ANS NAS Hene, nd This results in BOS re similr SN / AS BS / OS SN / x SN y / r ( xy) / r Euler s Proof (ont.) Lstly, Euler onluded tht Are z ( ABC ) rs rs( rs) z( SN )( rs) xy ( ) rs sxyz s( s )( s )( s ) r 3
24 Pythgoren Theorem Heron s Formul n e used s proof of the Pythgoren Theorem Pythgoren Theorem from Heron s Formul Suppose we hve right tringle with hypotenuse of length, nd legs of length nd The semiperimeter is: s
25 5 Pythgoren Thm. from Heron s Formul (ont.) s Similrly s nd s After pplying lger, we get Pythgoren Thm. from Heron s Formul (ont.) ( )( )( )( ) ( ) [ ]( ) [ ] ( ) [ ] ( ) [ ] ( ) [ ] ( ) [ ] ( ) ( ) ( ) ( ) ( )
26 6 Pythgoren Thm. from Heron s Formul (ont.) Returning to Heron s Formul, we get the re of the tringle to e ( )( )( ) ( )( )( )( ) ( ) 16 s s s s K Pythgoren Thm. from Heron s Formul (ont.) Beuse we know the height of this tringle is, we n equte our expression to the expression h K 1 1 ( ) 16 ( ) Equting oth expressions of K nd squring oth sides, we get Crossmultiplition gives us
27 7 Pythgoren Thm. from Heron s Formul (ont.) Tking ll terms to the left side, we hve ( ) ( ) ( ) ( ) [ ] ( ) Thus, Heron s formul provides us with nother proof of the Pythgoren Theorem
excenters and excircles
21 onurrene IIi 2 lesson 21 exenters nd exirles In the first lesson on onurrene, we sw tht the isetors of the interior ngles of tringle onur t the inenter. If you did the exerise in the lst lesson deling
More informationThe remaining two sides of the right triangle are called the legs of the right triangle.
10 MODULE 6. RADICAL EXPRESSIONS 6 Pythgoren Theorem The Pythgoren Theorem An ngle tht mesures 90 degrees is lled right ngle. If one of the ngles of tringle is right ngle, then the tringle is lled right
More informationGeometry 71 Geometric Mean and the Pythagorean Theorem
Geometry 71 Geometric Men nd the Pythgoren Theorem. Geometric Men 1. Def: The geometric men etween two positive numers nd is the positive numer x where: = x. x Ex 1: Find the geometric men etween the
More information8. Hyperbolic triangles
8. Hyperoli tringles Note: This yer, I m not doing this mteril, prt from Pythgors theorem, in the letures (nd, s suh, the reminder isn t exminle). I ve left the mteril s Leture 8 so tht (i) nyody interested
More informationState the size of angle x. Sometimes the fact that the angle sum of a triangle is 180 and other angle facts are needed. b y 127
ngles 2 CHTER 2.1 Tringles Drw tringle on pper nd lel its ngles, nd. Ter off its orners. Fit ngles, nd together. They mke stright line. This shows tht the ngles in this tringle dd up to 180 ut it is not
More informationThe area of the larger square is: IF it s a right triangle, THEN + =
8.1 Pythgoren Theorem nd 2D Applitions The Pythgoren Theorem sttes tht IF tringle is right tringle, THEN the sum of the squres of the lengths of the legs equls the squre of the hypotenuse lengths. Tht
More informationRatio and Proportion
Rtio nd Proportion Rtio: The onept of rtio ours frequently nd in wide vriety of wys For exmple: A newspper reports tht the rtio of Repulins to Demorts on ertin Congressionl ommittee is 3 to The student/fulty
More informationVectors Summary. Projection vector AC = ( Shortest distance from B to line A C D [OR = where m1. and m
. Slr prout (ot prout): = osθ Vetors Summry Lws of ot prout: (i) = (ii) ( ) = = (iii) = (ngle etween two ientil vetors is egrees) (iv) = n re perpeniulr Applitions: (i) Projetion vetor: B Length of projetion
More informationSOLVING EQUATIONS BY FACTORING
316 (560) Chpter 5 Exponents nd Polynomils 5.9 SOLVING EQUATIONS BY FACTORING In this setion The Zero Ftor Property Applitions helpful hint Note tht the zero ftor property is our seond exmple of getting
More information. At first sight a! b seems an unwieldy formula but use of the following mnemonic will possibly help. a 1 a 2 a 3 a 1 a 2
7 CHAPTER THREE. Cross Product Given two vectors = (,, nd = (,, in R, the cross product of nd written! is defined to e: " = (!,!,! Note! clled cross is VECTOR (unlike which is sclr. Exmple (,, " (4,5,6
More informationIf two triangles are perspective from a point, then they are also perspective from a line.
Mth 487 hter 4 Prtie Prolem Solutions 1. Give the definition of eh of the following terms: () omlete qudrngle omlete qudrngle is set of four oints, no three of whih re olliner, nd the six lines inident
More informationAngles 2.1. Exercise 2.1... Find the size of the lettered angles. Give reasons for your answers. a) b) c) Example
2.1 Angles Reognise lternte n orresponing ngles Key wors prllel lternte orresponing vertilly opposite Rememer, prllel lines re stright lines whih never meet or ross. The rrows show tht the lines re prllel
More informationLesson 18.2: Right Triangle Trigonometry
Lesson 8.: Right Tringle Trigonometry lthough Trigonometry is used to solve mny prolems, historilly it ws first pplied to prolems tht involve right tringle. This n e extended to nonright tringles (hpter
More informationHow to Graphically Interpret the Complex Roots of a Quadratic Equation
Universit of Nersk  Linoln DigitlCommons@Universit of Nersk  Linoln MAT Em Epositor Ppers Mth in the Middle Institute Prtnership 7007 How to Grphill Interpret the Comple Roots of Qudrti Eqution Crmen
More informationRIGHT TRIANGLES AND THE PYTHAGOREAN TRIPLETS
RIGHT TRIANGLES AND THE PYTHAGOREAN TRIPLETS Known for over 500 yers is the fct tht the sum of the squres of the legs of right tringle equls the squre of the hypotenuse. Tht is +b c. A simple proof is
More informationVectors 2. 1. Recap of vectors
Vectors 2. Recp of vectors Vectors re directed line segments  they cn be represented in component form or by direction nd mgnitude. We cn use trigonometry nd Pythgors theorem to switch between the forms
More informationMath 314, Homework Assignment 1. 1. Prove that two nonvertical lines are perpendicular if and only if the product of their slopes is 1.
Mth 4, Homework Assignment. Prove tht two nonverticl lines re perpendiculr if nd only if the product of their slopes is. Proof. Let l nd l e nonverticl lines in R of slopes m nd m, respectively. Suppose
More informationAngles and Triangles
nges nd Tringes n nge is formed when two rys hve ommon strting point or vertex. The mesure of n nge is given in degrees, with ompete revoution representing 360 degrees. Some fmiir nges inude nother fmiir
More information81. The Pythagorean Theorem and Its Converse. Vocabulary. Review. Vocabulary Builder. Use Your Vocabulary
81 The Pythgoren Theorem nd Its Converse Voulry Review 1. Write the squre nd the positive squre root of eh numer. Numer Squre Positive Squre Root 9 81 3 1 4 1 16 1 2 Voulry Builder leg (noun) leg Relted
More informationLesson 2.1 Inductive Reasoning
Lesson.1 Inutive Resoning Nme Perio Dte For Eerises 1 7, use inutive resoning to fin the net two terms in eh sequene. 1. 4, 8, 1, 16,,. 400, 00, 100, 0,,,. 1 8, 7, 1, 4,, 4.,,, 1, 1, 0,,. 60, 180, 10,
More informationMathematics. Vectors. hsn.uk.net. Higher. Contents. Vectors 128 HSN23100
hsn.uk.net Higher Mthemtics UNIT 3 OUTCOME 1 Vectors Contents Vectors 18 1 Vectors nd Sclrs 18 Components 18 3 Mgnitude 130 4 Equl Vectors 131 5 Addition nd Subtrction of Vectors 13 6 Multipliction by
More information1. Definition, Basic concepts, Types 2. Addition and Subtraction of Matrices 3. Scalar Multiplication 4. Assignment and answer key 5.
. Definition, Bsi onepts, Types. Addition nd Sutrtion of Mtries. Slr Multiplition. Assignment nd nswer key. Mtrix Multiplition. Assignment nd nswer key. Determinnt x x (digonl, minors, properties) summry
More informationThank you for participating in Teach It First!
Thnk you for prtiipting in Teh It First! This Teh It First Kit ontins Common Core Coh, Mthemtis teher lesson followed y the orresponding student lesson. We re onfident tht using this lesson will help you
More informationModule 5. Threephase AC Circuits. Version 2 EE IIT, Kharagpur
Module 5 Threehse A iruits Version EE IIT, Khrgur esson 8 Threehse Blned Suly Version EE IIT, Khrgur In the module, ontining six lessons (7), the study of iruits, onsisting of the liner elements resistne,
More information1. Area under a curve region bounded by the given function, vertical lines and the x axis.
Ares y Integrtion. Are uner urve region oune y the given funtion, vertil lines n the is.. Are uner urve region oune y the given funtion, horizontl lines n the y is.. Are etween urves efine y two given
More informationSOLVING QUADRATIC EQUATIONS BY FACTORING
6.6 Solving Qudrti Equtions y Ftoring (6 31) 307 In this setion The Zero Ftor Property Applitions 6.6 SOLVING QUADRATIC EQUATIONS BY FACTORING The tehniques of ftoring n e used to solve equtions involving
More informationSECTION 72 Law of Cosines
516 7 Additionl Topis in Trigonometry h d sin s () tn h h d 50. Surveying. The lyout in the figure t right is used to determine n inessile height h when seline d in plne perpendiulr to h n e estlished
More informationCalculating Principal Strains using a Rectangular Strain Gage Rosette
Clulting Prinipl Strins using Retngulr Strin Gge Rosette Strin gge rosettes re used often in engineering prtie to determine strin sttes t speifi points on struture. Figure illustrtes three ommonly used
More informationMaximum area of polygon
Mimum re of polygon Suppose I give you n stiks. They might e of ifferent lengths, or the sme length, or some the sme s others, et. Now there re lots of polygons you n form with those stiks. Your jo is
More informationRadius of the Earth  Radii Used in Geodesy James R. Clynch Naval Postgraduate School, 2002
dius of the Erth  dii Used in Geodesy Jmes. Clynh vl Postgrdute Shool, 00 I. Three dii of Erth nd Their Use There re three rdii tht ome into use in geodesy. These re funtion of ltitude in the ellipsoidl
More informationChapter. Contents: A Constructing decimal numbers
Chpter 9 Deimls Contents: A Construting deiml numers B Representing deiml numers C Deiml urreny D Using numer line E Ordering deimls F Rounding deiml numers G Converting deimls to frtions H Converting
More informationThe Pythagorean Theorem
The Pythgoren Theorem Pythgors ws Greek mthemtiin nd philosopher, orn on the islnd of Smos (. 58 BC). He founded numer of shools, one in prtiulr in town in southern Itly lled Crotone, whose memers eventully
More informationThree squares with sides 3, 4, and 5 units are used to form the right triangle shown. In a right triangle, the sides have special names.
1 The Pythgoren Theorem MAIN IDEA Find length using the Pythgoren Theorem. New Voulry leg hypotenuse Pythgoren Theorem Mth Online glenoe.om Extr Exmples Personl Tutor SelfChek Quiz Three squres with
More informationEQUATIONS OF LINES AND PLANES
EQUATIONS OF LINES AND PLANES MATH 195, SECTION 59 (VIPUL NAIK) Corresponding mteril in the ook: Section 12.5. Wht students should definitely get: Prmetric eqution of line given in pointdirection nd twopoint
More informationChapter 10 Geometry: Angles, Triangles and Distance
hpter 10 Geometry: ngles, Tringles nd Distne In setion 1 we egin y gthering together fts out ngles nd tringles tht hve lredy een disussed in previous grdes. This time the ide is to se student understnding
More informationOrthopoles and the Pappus Theorem
Forum Geometriorum Volume 4 (2004) 53 59. FORUM GEOM ISSN 15341178 Orthopoles n the Pppus Theorem tul Dixit n Drij Grinerg strt. If the verties of tringle re projete onto given line, the perpeniulrs from
More informationMATH PLACEMENT REVIEW GUIDE
MATH PLACEMENT REVIEW GUIDE This guie is intene s fous for your review efore tking the plement test. The questions presente here my not e on the plement test. Although si skills lultor is provie for your
More informationPROJECTILE MOTION PRACTICE QUESTIONS (WITH ANSWERS) * challenge questions
PROJECTILE MOTION PRACTICE QUESTIONS (WITH ANSWERS) * hllenge questions e The ll will strike the ground 1.0 s fter it is struk. Then v x = 20 m s 1 nd v y = 0 + (9.8 m s 2 )(1.0 s) = 9.8 m s 1 The speed
More informationAreas. The area of bounded plane regions can be defined by to the following rules:
Areas The area of ounded plane regions an e defined to the following rules: (A0) The area inside a square of side length 1 m is 1 m 2. (A1) An ongruent polgons enlose equal areas. (A2) The total area of
More informationFactoring Trinomials of the Form. x 2 b x c. Example 1 Factoring Trinomials. The product of 4 and 2 is 8. The sum of 3 and 2 is 5.
Section P.6 Fctoring Trinomils 6 P.6 Fctoring Trinomils Wht you should lern: Fctor trinomils of the form 2 c Fctor trinomils of the form 2 c Fctor trinomils y grouping Fctor perfect squre trinomils Select
More information9.3. The Scalar Product. Introduction. Prerequisites. Learning Outcomes
The Sclr Product 9.3 Introduction There re two kinds of multipliction involving vectors. The first is known s the sclr product or dot product. This is soclled becuse when the sclr product of two vectors
More informationUse Geometry Expressions to create a more complex locus of points. Find evidence for equivalence using Geometry Expressions.
Lerning Objectives Loci nd Conics Lesson 3: The Ellipse Level: Preclculus Time required: 120 minutes In this lesson, students will generlize their knowledge of the circle to the ellipse. The prmetric nd
More informationReasoning to Solve Equations and Inequalities
Lesson4 Resoning to Solve Equtions nd Inequlities In erlier work in this unit, you modeled situtions with severl vriles nd equtions. For exmple, suppose you were given usiness plns for concert showing
More informationVolumes by Cylindrical Shells: the Shell Method
olumes Clinril Shells: the Shell Metho Another metho of fin the volumes of solis of revolution is the shell metho. It n usull fin volumes tht re otherwise iffiult to evlute using the Dis / Wsher metho.
More informationLet us recall some facts you have learnt in previous grades under the topic Area.
6 Are By studying this lesson you will be ble to find the res of sectors of circles, solve problems relted to the res of compound plne figures contining sectors of circles. Ares of plne figures Let us
More informationc b 5.00 10 5 N/m 2 (0.120 m 3 0.200 m 3 ), = 4.00 10 4 J. W total = W a b + W b c 2.00
Chter 19, exmle rolems: (19.06) A gs undergoes two roesses. First: onstnt volume @ 0.200 m 3, isohori. Pressure inreses from 2.00 10 5 P to 5.00 10 5 P. Seond: Constnt ressure @ 5.00 10 5 P, isori. olume
More informationPROBLEMS 13  APPLICATIONS OF DERIVATIVES Page 1
PROBLEMS  APPLICATIONS OF DERIVATIVES Pge ( ) Wter seeps out of conicl filter t the constnt rte of 5 cc / sec. When the height of wter level in the cone is 5 cm, find the rte t which the height decreses.
More informationLesson 4.1 Triangle Sum Conjecture
Lesson 4.1 ringle um onjecture Nme eriod te n ercises 1 9, determine the ngle mesures. 1. p, q 2., y 3., b 31 82 p 98 q 28 53 y 17 79 23 50 b 4. r, s, 5., y 6. y t t s r 100 85 100 y 30 4 7 y 31 7. s 8.
More information( 1 ) Obtain the equation of the circle passing through the points ( 5,  8 ), (  2, 9 ) and ( 2, 1 ).
PROBLEMS 03 CIRCLE Page ( ) Obtain the equation of the irle passing through the points ( 5 8 ) ( 9 ) and ( ). [ Ans: x y 6x 48y 85 = 0 ] ( ) Find the equation of the irumsribed irle of the triangle formed
More informationExample 27.1 Draw a Venn diagram to show the relationship between counting numbers, whole numbers, integers, and rational numbers.
2 Rtionl Numbers Integers such s 5 were importnt when solving the eqution x+5 = 0. In similr wy, frctions re importnt for solving equtions like 2x = 1. Wht bout equtions like 2x + 1 = 0? Equtions of this
More informationGeometry in a Nutshell
Geometry in a Nutshell Henry Liu, 26 November 2007 This short handout is a list of some of the very basic ideas and results in pure geometry. Draw your own diagrams with a pencil, ruler and compass where
More informationSection 54 Trigonometric Functions
5 Trigonometric Functions Section 5 Trigonometric Functions Definition of the Trigonometric Functions Clcultor Evlution of Trigonometric Functions Definition of the Trigonometric Functions Alternte Form
More informationTrigonometry & Pythagoras Theorem
Trigonometry & Pythagoras Theorem Mathematis Skills Guide This is one of a series of guides designed to help you inrease your onfidene in handling Mathematis. This guide ontains oth theory and exerises
More informationWords Symbols Diagram. abcde. a + b + c + d + e
Logi Gtes nd Properties We will e using logil opertions to uild mhines tht n do rithmeti lultions. It s useful to think of these opertions s si omponents tht n e hooked together into omplex networks. To
More information9.1 PYTHAGOREAN THEOREM (right triangles)
Simplifying Rdicls: ) 1 b) 60 c) 11 d) 3 e) 7 Solve: ) x 4 9 b) 16 80 c) 9 16 9.1 PYTHAGOREAN THEOREM (right tringles) c If tringle is right tringle then b, b re the legs * c is clled the hypotenuse (side
More informationSquare Roots Teacher Notes
Henri Picciotto Squre Roots Techer Notes This unit is intended to help students develop n understnding of squre roots from visul / geometric point of view, nd lso to develop their numer sense round this
More informationPolynomial Functions. Polynomial functions in one variable can be written in expanded form as ( )
Polynomil Functions Polynomil functions in one vrible cn be written in expnded form s n n 1 n 2 2 f x = x + x + x + + x + x+ n n 1 n 2 2 1 0 Exmples of polynomils in expnded form re nd 3 8 7 4 = 5 4 +
More information1 Fractions from an advanced point of view
1 Frtions from n vne point of view We re going to stuy frtions from the viewpoint of moern lger, or strt lger. Our gol is to evelop eeper unerstning of wht n men. One onsequene of our eeper unerstning
More informationGeometry Handout 2 ~ Page 1
1. Given: a b, b c a c Guidance: Draw a line which intersects with all three lines. 2. Given: a b, c a a. c b b. Given: d b d c 3. Given: a c, b d a. α = β b. Given: e and f bisect angles α and β respectively.
More informationCOMPRESSION SPRINGS: STANDARD SERIES (INCH)
: STANDARD SERIES (INCH) LC 014A 01 0.250 6.35 11.25 0.200 0.088 2.24 F F M LC 014A 02 0.313 7.94 8.90 0.159 0.105 2.67 F F M LC 014A 03 0.375 9.52 7.10 0.126 0.122 3.10 F F M LC 014A 04 0.438 11.11 6.00
More informationAlgebraic Properties and Proofs
Algebraic Properties and Proofs Name You have solved algebraic equations for a couple years now, but now it is time to justify the steps you have practiced and now take without thinking and acting without
More informationClause Trees: a Tool for Understanding and Implementing Resolution in Automated Reasoning
Cluse Trees: Tool for Understnding nd Implementing Resolution in Automted Resoning J. D. Horton nd Brue Spener University of New Brunswik, Frederiton, New Brunswik, Cnd E3B 5A3 emil : jdh@un. nd spener@un.
More informationEnd of term: TEST A. Year 4. Name Class Date. Complete the missing numbers in the sequences below.
End of term: TEST A You will need penil nd ruler. Yer Nme Clss Dte Complete the missing numers in the sequenes elow. 8 30 3 28 2 9 25 00 75 25 2 Put irle round ll of the following shpes whih hve 3 shded.
More informationMA 15800 Lesson 16 Notes Summer 2016 Properties of Logarithms. Remember: A logarithm is an exponent! It behaves like an exponent!
MA 5800 Lesson 6 otes Summer 06 Rememer: A logrithm is n eponent! It ehves like n eponent! In the lst lesson, we discussed four properties of logrithms. ) log 0 ) log ) log log 4) This lesson covers more
More informationRightangled triangles
13 13A Pythgors theorem 13B Clulting trigonometri rtios 13C Finding n unknown side 13D Finding ngles 13E Angles of elevtion nd depression Rightngled tringles Syllus referene Mesurement 4 Rightngled tringles
More informationIn order to master the techniques explained here it is vital that you undertake the practice exercises provided.
Tringle formule mtytringleformule0091 ommonmthemtilprolemistofindthenglesorlengthsofthesidesoftringlewhen some,utnotllofthesequntitiesreknown.itislsousefultoeletolultethere of tringle from some of
More informationReal Analysis HW 10 Solutions
Rel Anlysis HW 10 Solutions Problem 47: Show tht funtion f is bsolutely ontinuous on [, b if nd only if for eh ɛ > 0, there is δ > 0 suh tht for every finite disjoint olletion {( k, b k )} n of open intervls
More informationFactoring Polynomials
Fctoring Polynomils Some definitions (not necessrily ll for secondry school mthemtics): A polynomil is the sum of one or more terms, in which ech term consists of product of constnt nd one or more vribles
More informationVersion 001 CIRCUITS holland (1290) 1
Version CRCUTS hollnd (9) This printout should hve questions Multiplechoice questions my continue on the next column or pge find ll choices efore nswering AP M 99 MC points The power dissipted in wire
More informationVariable Dry Run (for Python)
Vrile Dr Run (for Pthon) Age group: Ailities ssumed: Time: Size of group: Focus Vriles Assignment Sequencing Progrmming 7 dult Ver simple progrmming, sic understnding of ssignment nd vriles 2050 minutes
More informationSection 55 Solving Right Triangles*
55 Solving Right Tringles 379 79. Geometry. The re of retngulr nsided polygon irumsried out irle of rdius is given y A n tn 80 n (A) Find A for n 8, n 00, n,000, nd n 0,000. Compute eh to five deiml
More informationAREA OF A SURFACE OF REVOLUTION
AREA OF A SURFACE OF REVOLUTION h cut r πr h A surfce of revolution is formed when curve is rotted bout line. Such surfce is the lterl boundr of solid of revolution of the tpe discussed in Sections 7.
More informationPractice Test 2. a. 12 kn b. 17 kn c. 13 kn d. 5.0 kn e. 49 kn
Prtie Test 2 1. A highwy urve hs rdius of 0.14 km nd is unnked. A r weighing 12 kn goes round the urve t speed of 24 m/s without slipping. Wht is the mgnitude of the horizontl fore of the rod on the r?
More informationDETERMINANTS. ] of order n, we can associate a number (real or complex) called determinant of the matrix A, written as det A, where a ij. = ad bc.
Chpter 4 DETERMINANTS 4 Overview To every squre mtrix A = [ ij ] of order n, we cn ssocite number (rel or complex) clled determinnt of the mtrix A, written s det A, where ij is the (i, j)th element of
More informationHomework 3 Solutions
CS 341: Foundtions of Computer Science II Prof. Mrvin Nkym Homework 3 Solutions 1. Give NFAs with the specified numer of sttes recognizing ech of the following lnguges. In ll cses, the lphet is Σ = {,1}.
More informationMath 531, Exam 1 Information.
Math 531, Exam 1 Information. 9/21/11, LC 310, 9:059:55. Exam 1 will be based on: Sections 1A  1F. The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/531fa11/531.html)
More informationMath 135 Circles and Completing the Square Examples
Mth 135 Circles nd Completing the Squre Exmples A perfect squre is number such tht = b 2 for some rel number b. Some exmples of perfect squres re 4 = 2 2, 16 = 4 2, 169 = 13 2. We wish to hve method for
More informationThe Math Learning Center PO Box 12929, Salem, Oregon 97309 0929 Math Learning Center
Resource Overview Quntile Mesure: Skill or Concept: 1010Q Determine perimeter using concrete models, nonstndrd units, nd stndrd units. (QT M 146) Use models to develop formuls for finding res of tringles,
More informationQuick Guide to Lisp Implementation
isp Implementtion Hndout Pge 1 o 10 Quik Guide to isp Implementtion Representtion o si dt strutures isp dt strutures re lled Sepressions. The representtion o n Sepression n e roken into two piees, the
More informationAppendix D: Completing the Square and the Quadratic Formula. In Appendix A, two special cases of expanding brackets were considered:
Appendi D: Completing the Squre nd the Qudrtic Formul Fctoring qudrtic epressions such s: + 6 + 8 ws one of the topics introduced in Appendi C. Fctoring qudrtic epressions is useful skill tht cn help you
More informationGeometry and Measure. 12am 1am 2am 3am 4am 5am 6am 7am 8am 9am 10am 11am 12pm
Reding Scles There re two things to do when reding scle. 1. Mke sure you know wht ech division on the scle represents. 2. Mke sure you red in the right direction. Mesure Length metres (m), kilometres (km),
More informationLINEAR TRANSFORMATIONS AND THEIR REPRESENTING MATRICES
LINEAR TRANSFORMATIONS AND THEIR REPRESENTING MATRICES DAVID WEBB CONTENTS Liner trnsformtions 2 The representing mtrix of liner trnsformtion 3 3 An ppliction: reflections in the plne 6 4 The lgebr of
More informationInterior and exterior angles add up to 180. Level 5 exterior angle
22 ngles n proof Ientify interior n exterior ngles in tringles n qurilterls lulte interior n exterior ngles of tringles n qurilterls Unerstn the ie of proof Reognise the ifferene etween onventions, eﬁnitions
More informationPHY 140A: Solid State Physics. Solution to Homework #2
PHY 140A: Solid Stte Physics Solution to Homework # TA: Xun Ji 1 October 14, 006 1 Emil: jixun@physics.ucl.edu Problem #1 Prove tht the reciprocl lttice for the reciprocl lttice is the originl lttice.
More informationSan Jose Math Circle April 25  May 2, 2009 ANGLE BISECTORS
San Jose Math Circle April 25  May 2, 2009 ANGLE BISECTORS Recall that the bisector of an angle is the ray that divides the angle into two congruent angles. The most important results about angle bisectors
More informationDEFINITIONS. Perpendicular Two lines are called perpendicular if they form a right angle.
DEFINITIONS Degree A degree is the 1 th part of a straight angle. 180 Right Angle A 90 angle is called a right angle. Perpendicular Two lines are called perpendicular if they form a right angle. Congruent
More informationHeron s Formula. Key Words: Triangle, area, Heron s formula, angle bisectors, incenter
Heron s Formula Lesson Summary: Students will investigate the Heron s formula for finding the area of a triangle. The lab has students find the area using three different methods: Heron s, the basic formula,
More informationOperations with Polynomials
38 Chpter P Prerequisites P.4 Opertions with Polynomils Wht you should lern: Write polynomils in stndrd form nd identify the leding coefficients nd degrees of polynomils Add nd subtrct polynomils Multiply
More informationVectors. The magnitude of a vector is its length, which can be determined by Pythagoras Theorem. The magnitude of a is written as a.
Vectors mesurement which onl descries the mgnitude (i.e. size) of the oject is clled sclr quntit, e.g. Glsgow is 11 miles from irdrie. vector is quntit with mgnitude nd direction, e.g. Glsgow is 11 miles
More information4 Geometry: Shapes. 4.1 Circumference and area of a circle. FM Functional Maths AU (AO2) Assessing Understanding PS (AO3) Problem Solving HOMEWORK 4A
Geometry: Shpes. Circumference nd re of circle HOMEWORK D C 3 5 6 7 8 9 0 3 U Find the circumference of ech of the following circles, round off your nswers to dp. Dimeter 3 cm Rdius c Rdius 8 m d Dimeter
More information69. The Shortest Distance Between Skew Lines
69. The Shortest Distnce Between Skew Lines Find the ngle nd distnce between two given skew lines. (Skew lines re nonprllel nonintersecting lines.) This importnt problem is usully encountered in one
More informationIncenter Circumcenter
TRIANGLE: Centers: Incenter Incenter is the center of the inscribed circle (incircle) of the triangle, it is the point of intersection of the angle bisectors of the triangle. The radius of incircle is
More informationMATH 150 HOMEWORK 4 SOLUTIONS
MATH 150 HOMEWORK 4 SOLUTIONS Section 1.8 Show tht the product of two of the numbers 65 1000 8 2001 + 3 177, 79 1212 9 2399 + 2 2001, nd 24 4493 5 8192 + 7 1777 is nonnegtive. Is your proof constructive
More informationExperiment 6: Friction
Experiment 6: Friction In previous lbs we studied Newton s lws in n idel setting, tht is, one where friction nd ir resistnce were ignored. However, from our everydy experience with motion, we know tht
More informationLecture 15  Curve Fitting Techniques
Lecture 15  Curve Fitting Techniques Topics curve fitting motivtion liner regression Curve fitting  motivtion For root finding, we used given function to identify where it crossed zero where does fx
More informationand thus, they are similar. If k = 3 then the Jordan form of both matrices is
Homework ssignment 11 Section 7. pp. 24925 Exercise 1. Let N 1 nd N 2 be nilpotent mtrices over the field F. Prove tht N 1 nd N 2 re similr if nd only if they hve the sme miniml polynomil. Solution: If
More informationWHAT HAPPENS WHEN YOU MIX COMPLEX NUMBERS WITH PRIME NUMBERS?
WHAT HAPPES WHE YOU MIX COMPLEX UMBERS WITH PRIME UMBERS? There s n ol syng, you n t pples n ornges. Mthemtns hte n t; they love to throw pples n ornges nto foo proessor n see wht hppens. Sometmes they
More informationCSU Fresno Problem Solving Session. Geometry, 17 March 2012
CSU Fresno Problem Solving Session Problem Solving Sessions website: http://zimmer.csufresno.edu/ mnogin/mfdprep.html Math Field Day date: Saturday, April 21, 2012 Math Field Day website: http://www.csufresno.edu/math/news
More information9 CONTINUOUS DISTRIBUTIONS
9 CONTINUOUS DISTIBUTIONS A rndom vrible whose vlue my fll nywhere in rnge of vlues is continuous rndom vrible nd will be ssocited with some continuous distribution. Continuous distributions re to discrete
More information32. The Tangency Problem of Apollonius.
. The Tngeny olem of Apollonius. Constut ll iles tngent to thee given iles. This eleted polem ws posed y Apollinius of eg (. 6070 BC), the getest mthemtiin of ntiquity fte Eulid nd Ahimedes. His mjo wok
More information