Heron s Formula for Triangular Area


 Jeffrey Camron Hancock
 1 years ago
 Views:
Transcription
1 Heron s Formul for Tringulr Are y Christy Willims, Crystl Holom, nd Kyl Gifford Heron of Alexndri Physiist, mthemtiin, nd engineer Tught t the museum in Alexndri Interests were more prtil (mehnis, engineering, mesurement) thn theoretil He is pled somewhere round 75 A.D. (±150) 1
2 Heron s Works Automt Mehni Dioptr Metri Pneumti Ctoptri Belopoei Geometri Stereometri Mensure Cheirolistr The Aeolipile Heron s Aeolipile ws the first reorded stem engine. It ws tken s eing toy ut ould hve possily used n industril revolution 000 yers efore the originl.
3 Metri Mthemtiins knew of its existene for yers ut no tres of it existed In 189 mthemtil historin Pul Tnnery found frgment of it in 13 th entury Prisin mnusript In 1896 R. Shöne found the omplete mnusript in Constntinople. Proposition I.8 of Metri gives the proof of his formul for the re of tringle How is Heron s formul helpful? How would you find the re of the given tringle using the most ommon re formul? 1 A h Sine no height is given, it eomes quite diffiult
4 Heron s Formul Heron s formul llows us to find the re of tringle when only the lengths of the three sides re given. His formul sttes: K s ( s )( s )( s ) Where,, nd, re the lengths of the sides nd s is the semiperimeter of the tringle. The Preliminries
5 Proposition 1 Proposition IV. of Eulid s Elements. The isetors of the ngles of tringle meet t point tht is the enter of the tringles insried irle. (Note: this is lled the inenter) Proposition Proposition VI.8 of Eulid s Elements. In rightngled tringle, if perpendiulr is drwn from the right ngle to the se, the tringles on eh side of it re similr to the whole tringle nd to one nother. 5
6 Proposition 3 In right tringle, the midpoint of the hypotenuse is equidistnt from the three verties. Proposition If AHBO is qudrilterl with digonls AB nd OH, then if HOB nd HAB re right ngles (s shown), then irle n e drwn pssing through the verties A, O, B, nd H. 6
7 Proposition 5 Proposition III. of Eulid s Elements. The opposite ngles of yli qudrilterl sum to two right ngles. Semiperimeter The semiperimeter, s, of tringle with sides,, nd, is s 7
8 Heron s Proof Heron s Proof The proof for this theorem is roken into three prts. Prt A insries irle within tringle to get reltionship etween the tringle s re nd semiperimeter. Prt B uses the sme irle insried within tringle in Prt A to find the terms s, s, nd s in the digrm. Prt C uses the sme digrm with qudrilterl nd the results from Prts A nd B to prove Heron s theorem. 8
9 Resttement of Heron s Formul For tringle hving sides of length,, nd nd re K, we hve K s ( s )( s )( s ) where s is the tringle s semiperimeter. Heron s Proof: Prt A Let ABC e n ritrry tringle suh tht side AB is t lest s long s the other two sides. Insrie irle with enter O nd rdius r inside of the tringle. Therefore, OD OE OF. 9
10 Heron s Proof: Prt A (ont.) Now, the re for the three tringles?aob,?boc, nd?coa is found using the formul Are?AOB Are?BOC Are?COA ½(se)(height). ( AB)( OD 1 r 1 ) ( BC)( OE 1 r 1 ) ( AC)( OF 1 r 1 ) Heron s Proof: Prt A (ont.) K Are We know the re of tringle ABC is K. Therefore ( ABC ) Are( AOB) Are( BOC ) Are( COA) If the res lulted for the tringles?aob,?boc, nd?coa found in the previous slides re sustituted into this eqution, then K is K r r r r rs 10
11 Heron s Proof: Prt B When insriing the irle inside the tringle ABC, three pirs of ongruent tringles re formed (y Eulid s Prop. I.6 AAS). AOD BOD AOF BOE COE COF Heron s Proof: Prt B (ont.) Using orresponding prts of similr tringles, the following reltionships were found: AD AF BD BE CE CF AOD AOF BOD BOE COE COF 11
12 Heron s Proof: Prt B (ont.) The se of the tringle ws extended to point G where AG CE. Therefore, using onstrution nd ongruene of tringle: BG BD AD AG BD AD CE ( BD AD CE) 1 1 [( BD BE ) ( AD AF) ( CE CF )] 1 [( BD AD) ( BE CE) ( AF CF )] 1 ( AB BC AC) BG BG BG BG ( ) s BG 1 Heron s Proof: Prt B (ont.) Sine BG s, the semiperimeter of the tringle is the long segment strighten out. Now, s, s, nd s n e found. s BG AB AG Sine AD AF nd AG CE CF, BG AC ( BD AD AG) ( AF CF ) ( BD AD CE) ( AD CE) s BD 1
13 Heron s Proof: Prt B (ont.) Sine BD BF nd AG CE, BG BC ( BD AD AG) ( BE CE) ( BD AD CE) ( BD CE) s AD Heron s Proof: Prt B (ont.) In Summry, the importnt things found from this setion of the proof. ( ) s BG 1 s AG s s BD AD 13
14 Heron s Proof: Prt C The sme irle insried within tringle is used exept three lines re now extended from the digrm. The segment OL is drwn perpendiulr to OB nd uts AB t point K. The segment AM is drwn from point A perpendiulr to AB nd intersets OL t point H. The lst segment drwn is BH. The qudrilterl AHBO is formed. Heron s Proof: Prt C (ont.) Proposition sys the qudrilterl AHBO is yli while Proposition 5 y Eulid sys the sum of its opposite ngles equls two right ngles. AHB AOB right ngles 1
15 Heron s Proof: Prt C (ont.) By ongruene, the ngles round the enter O redue to three pirs of equl ngles to give: α β γ rt ngles Therefore, α β γ rt ngles α Sine Heron s Proof: Prt C (ont.) β γ β α AOB rt ngles Therefore,., nd α AOB rt ngles AHB AOB α AHB 15
16 Heron s Proof: Prt C (ont.) Sine α AHB nd oth ngles CFO nd BAH re right ngles, then the two tringles?cof nd?bha re similr. This leds to the following proportion using from Prt B tht AG CF nd OH r : AB CF AG AH OF r whih is equivlent to the proportion AB AG AH r (*) Heron s Proof: Prt C (ont.) Sine oth ngles KAH nd KDO re right ngles nd vertil ngles AKH nd DKO re equl, the two tringles?kah nd?kdo re similr. This leds to the proportion: AH AK Whih simplifies to AH r OD KD AK KD r KD (**) 16
17 Heron s Proof: Prt C (ont.) The two equtions AB AG AH (*) nd AH AK (**) r r KD re omined to form the key eqution: AB AG AK KD (***) Heron s Proof: Prt C (ont.) By Proposition,?KDO is similr to?odb where?bok hs ltitude ODr. This gives the eqution: KD r r BD whih simplifies ( )( ) to KD BD r (****) (r is the men proportionl etween mgnitudes KD nd BD) 17
18 Heron s Proof: Prt C (ont.) One is dded to eqution (***), the eqution is simplified, then BG/BG is multiplied on the right nd BD/BD is multiplied on the left, then simplified. AB AG AK KD BG BG AD BD BG AG KD BD AB AK 1 1 AG KD AB AG AK KD AG KD BG AD AG KD Using the eqution KD BD r (****) this simplifies to: ( BG) ( AG)( BG) ( )( ) ( AD)( BD) r Heron s Proof: Prt C (ont.) Crossmultiplition of ( BG ) ( AG)( BG) ( BG) ( AG)( BG)( AD)( BD) r Prt B re needed. These re: ( AD)( BD) r produed. Next, the results from BG s s AG s s BD AD 18
19 Heron s Proof: Prt C (ont.) The results from Prt B re sustituted into the eqution: ( BG) ( AG)( BG)( AD)( BD) r r s ( s )( s)( s )( s ) We know rememer from Prt A tht Krs, so the eqution eomes: K s ( s )( s )( s ) Thus proving Heron s Theorem of Tringulr Are Applition of Heron s Formul We n now use Heron s Formul to find the re of the previously given tringle 5 17 s ( ) K ( 3 17)( 3 5)( 3 6)
20 Euler s Proof of Heron s Formul Leonhrd Euler provided proof of Heron s Formul in 178 pper entitled Vrie demonstrtiones geometrie His proof is s follows Euler s Proof (Piture) For referene, this is piture of the proof y Euler. 0
21 Euler s Proof (ont.) ABC Begin with hving sides,, nd nd ngles, β nd γ Insrie irle within the tringle Let O e the enter of the insried irle with rdius r OS OU From the onstrution of the inenter, we know tht segments OA, OB, nd OC iset the ngles of ABC with OAB α β, OBA, γ nd OCA Euler s Proof (ont.) Extend BO nd onstrut perpendiulr from A interseting this extended line t V Denote y N the intersetion of the extensions of segment AV nd rdius OS Beuse AOV is n exterior ngle of AOB, oserve tht AOV OAB OBA α β 1
22 Euler s Proof (ont.) Beuse AOV is right, we know tht nd OAV re omplementry Thus, But α Therefore, α β OAV 90 β γ 90 s well γ OAV OCU AOV Euler s Proof (ont.) Right tringles nd re similr so we get AV / VO CU / OU z / r Also dedue tht nd re similr, s re nd, s well s nd Hene NAS This results in So, OAV NOV BAV AV / AB OV / ON z r AB ON OCU NAS NOV x y SN r ( SN ) r( x y z) rs z BAV
23 Euler s Proof (ont.) Beuse they re vertil ngles, BOS nd VON re ongruent, so OBS 90 BOS 90 VON ANS NAS Hene, nd This results in BOS re similr SN / AS BS / OS SN / x SN y / r ( xy) / r Euler s Proof (ont.) Lstly, Euler onluded tht Are z ( ABC ) rs rs( rs) z( SN )( rs) xy ( ) rs sxyz s( s )( s )( s ) r 3
24 Pythgoren Theorem Heron s Formul n e used s proof of the Pythgoren Theorem Pythgoren Theorem from Heron s Formul Suppose we hve right tringle with hypotenuse of length, nd legs of length nd The semiperimeter is: s
25 5 Pythgoren Thm. from Heron s Formul (ont.) s Similrly s nd s After pplying lger, we get Pythgoren Thm. from Heron s Formul (ont.) ( )( )( )( ) ( ) [ ]( ) [ ] ( ) [ ] ( ) [ ] ( ) [ ] ( ) [ ] ( ) ( ) ( ) ( ) ( )
26 6 Pythgoren Thm. from Heron s Formul (ont.) Returning to Heron s Formul, we get the re of the tringle to e ( )( )( ) ( )( )( )( ) ( ) 16 s s s s K Pythgoren Thm. from Heron s Formul (ont.) Beuse we know the height of this tringle is, we n equte our expression to the expression h K 1 1 ( ) 16 ( ) Equting oth expressions of K nd squring oth sides, we get Crossmultiplition gives us
27 7 Pythgoren Thm. from Heron s Formul (ont.) Tking ll terms to the left side, we hve ( ) ( ) ( ) ( ) [ ] ( ) Thus, Heron s formul provides us with nother proof of the Pythgoren Theorem
Maximum area of polygon
Mimum re of polygon Suppose I give you n stiks. They might e of ifferent lengths, or the sme length, or some the sme s others, et. Now there re lots of polygons you n form with those stiks. Your jo is
More informationSolving BAMO Problems
Solving BAMO Problems Tom Dvis tomrdvis@erthlink.net http://www.geometer.org/mthcircles Februry 20, 2000 Abstrct Strtegies for solving problems in the BAMO contest (the By Are Mthemticl Olympid). Only
More informationIntroduction to Integration Part 2: The Definite Integral
Mthemtics Lerning Centre Introduction to Integrtion Prt : The Definite Integrl Mr Brnes c 999 Universit of Sdne Contents Introduction. Objectives...... Finding Ares 3 Ares Under Curves 4 3. Wht is the
More informationMATH 150 HOMEWORK 4 SOLUTIONS
MATH 150 HOMEWORK 4 SOLUTIONS Section 1.8 Show tht the product of two of the numbers 65 1000 8 2001 + 3 177, 79 1212 9 2399 + 2 2001, nd 24 4493 5 8192 + 7 1777 is nonnegtive. Is your proof constructive
More informationTHE FUNDAMENTAL GROUP AND COVERING SPACES
THE FUNDAMENTAL GROUP AND COVERING SPACES JESPER M. MØLLER Astrct. These notes, from first course in lgeric topology, introduce the fundmentl group nd the fundmentl groupoid of topologicl spce nd use them
More informationOstrowski Type Inequalities and Applications in Numerical Integration. Edited By: Sever S. Dragomir. and. Themistocles M. Rassias
Ostrowski Type Inequlities nd Applictions in Numericl Integrtion Edited By: Sever S Drgomir nd Themistocles M Rssis SS Drgomir) School nd Communictions nd Informtics, Victori University of Technology,
More informationINTERCHANGING TWO LIMITS. Zoran Kadelburg and Milosav M. Marjanović
THE TEACHING OF MATHEMATICS 2005, Vol. VIII, 1, pp. 15 29 INTERCHANGING TWO LIMITS Zorn Kdelburg nd Milosv M. Mrjnović This pper is dedicted to the memory of our illustrious professor of nlysis Slobodn
More informationThere are only finitely many Diophantine quintuples
There are only finitely many Diophantine quintuples Andrej Dujella Department of Mathematis, University of Zagreb, Bijenička esta 30 10000 Zagreb, Croatia Email: duje@math.hr Abstrat A set of m positive
More informationFirst variation. (onevariable problem) January 21, 2015
First vrition (onevrible problem) Jnury 21, 2015 Contents 1 Sttionrity of n integrl functionl 2 1.1 Euler eqution (Optimlity conditions)............... 2 1.2 First integrls: Three specil cses.................
More informationInversion. Chapter 7. 7.1 Constructing The Inverse of a Point: If P is inside the circle of inversion: (See Figure 7.1)
Chapter 7 Inversion Goal: In this chapter we define inversion, give constructions for inverses of points both inside and outside the circle of inversion, and show how inversion could be done using Geometer
More informationWhen Simulation Meets Antichains (on Checking Language Inclusion of NFAs)
When Simultion Meets Antichins (on Checking Lnguge Inclusion of NFAs) Prosh Aziz Abdull 1, YuFng Chen 1, Lukáš Holík 2, Richrd Myr 3, nd Tomáš Vojnr 2 1 Uppsl University 2 Brno University of Technology
More informationGROUPS ACTING ON A SET
GROUPS ACTING ON A SET MATH 435 SPRING 2012 NOTES FROM FEBRUARY 27TH, 2012 1. Left group actions Definition 1.1. Suppose that G is a group and S is a set. A left (group) action of G on S is a rule for
More informationNodal domains on graphs  How to count them and why?
Proeedings of Symposia in Pure Mathematis Nodal domains on graphs  How to ount them and why? Ram Band, Idan Oren and Uzy Smilansky, Abstrat. The purpose of the present manusript is to ollet known results
More informationLIFE AS POLYCONTEXTURALITY *)
Ferury 2004 LIFE AS POLYCONTEXTURALITY *) y Gotthrd Günther Kein Leendiges ist ein Eins, Immer ist's ein Vieles. (Goethe) Prt I : The Concept of Contexture A gret epoch of scientific trdition is out to
More informationOn the Robustness of Most Probable Explanations
On the Robustness of Most Probble Explntions Hei Chn School of Electricl Engineering nd Computer Science Oregon Stte University Corvllis, OR 97330 chnhe@eecs.oregonstte.edu Adnn Drwiche Computer Science
More information4. FIRST STEPS IN THE THEORY 4.1. A
4. FIRST STEPS IN THE THEORY 4.1. A Catalogue of All Groups: The Impossible Dream The fundamental problem of group theory is to systematically explore the landscape and to chart what lies out there. We
More informationRevised Version of Chapter 23. We learned long ago how to solve linear congruences. ax c (mod m)
Chapter 23 Squares Modulo p Revised Version of Chapter 23 We learned long ago how to solve linear congruences ax c (mod m) (see Chapter 8). It s now time to take the plunge and move on to quadratic equations.
More informationTHE CONGRUENT NUMBER PROBLEM
THE CONGRUENT NUMBER PROBLEM KEITH CONRAD 1. Introduction A right triangle is called rational when its legs and hypotenuse are all rational numbers. Examples of rational right triangles include Pythagorean
More informationIf A is divided by B the result is 2/3. If B is divided by C the result is 4/7. What is the result if A is divided by C?
Problem 3 If A is divided by B the result is 2/3. If B is divided by C the result is 4/7. What is the result if A is divided by C? Suggested Questions to ask students about Problem 3 The key to this question
More informationMEP Y9 Practice Book A
1 Base Arithmetic 1.1 Binary Numbers We normally work with numbers in base 10. In this section we consider numbers in base 2, often called binary numbers. In base 10 we use the digits 0, 1, 2, 3, 4, 5,
More informationFindTheNumber. 1 FindTheNumber With Comps
FindTheNumber 1 FindTheNumber With Comps Consider the following twoperson game, which we call FindTheNumber with Comps. Player A (for answerer) has a number x between 1 and 1000. Player Q (for questioner)
More informationHW 9. Problem 14.5. a. To Find:
HW 9 Problem 14.5. To Find: ( The numberverge moleulr weight (b The weightverge moleulr weight ( The degree of polymeriztion for the given polypropylene mteril Moleulr Weight Rnge (g/mol x i w i 8,000
More informationIntroduction (I) Present Value Concepts. Introduction (II) Introduction (III)
Introduction (I) Present Value Concepts Philip A. Viton February 19, 2014 Many projects lead to impacts that occur at different times. We will refer to those impacts as constituting an (inter)temporal
More informationContextualizing NSSE Effect Sizes: Empirical Analysis and Interpretation of Benchmark Comparisons
Contextulizing NSSE Effect Sizes: Empiricl Anlysis nd Interprettion of Benchmrk Comprisons NSSE stff re frequently sked to help interpret effect sizes. Is.3 smll effect size? Is.5 relly lrge effect size?
More informationElements of Abstract Group Theory
Chapter 2 Elements of Abstract Group Theory Mathematics is a game played according to certain simple rules with meaningless marks on paper. David Hilbert The importance of symmetry in physics, and for
More informationAlgorithms for Designing PopUp Cards
Algorithms for Designing PopUp Cards Zachary Abel Erik D. Demaine Martin L. Demaine Sarah Eisenstat Anna Lubiw André Schulz Diane L. Souvaine Giovanni Viglietta Andrew Winslow Abstract We prove that every
More informationMEP Pupil Text 12. A list of numbers which form a pattern is called a sequence. In this section, straightforward sequences are continued.
MEP Pupil Text Number Patterns. Simple Number Patterns A list of numbers which form a pattern is called a sequence. In this section, straightforward sequences are continued. Worked Example Write down the
More informationAn Introductory Course in Elementary Number Theory. Wissam Raji
An Introductory Course in Elementary Number Theory Wissam Raji 2 Preface These notes serve as course notes for an undergraduate course in number theory. Most if not all universities worldwide offer introductory
More informationNotes on finite group theory. Peter J. Cameron
Notes on finite group theory Peter J. Cameron October 2013 2 Preface Group theory is a central part of modern mathematics. Its origins lie in geometry (where groups describe in a very detailed way the
More informationDOE FUNDAMENTALS HANDBOOK MATHEMATICS Volume 2 of 2
DOEHDBK1014/292 JUNE 1992 DOE FUNDAMENTALS HANDBOOK MATHEMATICS Volume 2 of 2 U.S. Department of Energy Washington, D.C. 20585 FSC6910 Distribution Statement A. Approved for public release; distribution
More information