Lesson 3: Isothermal Hydrostatic Spheres. B68: a selfgravitating stable cloud. Hydrostatic selfgravitating spheres. P = "kt 2.


 Horace Robinson
 2 years ago
 Views:
Transcription
1 Lesson 3: Isothermal Hydrostatic Spheres B68: a selfgravitating stable cloud Bok Globule Relatively isolated, hence not many external disturbances Though not main mode of star formation, their isolation makes them good testlaboratories for theories Hydrostatic equilibrium: Assumptions: isothermal cloud spherical symmetry molecular material (µ=.3) dp(r) GM (r)#(r) = " dr r Equation of state (ideal gas): Gravitational potential: P = "kt = "c s µm p dm (r) = 4"r #(r) dr 1
2 The boundary condition problem These equations can be directly integrated from the center, choosing ρ(0). But if we want to construct a cloud with given mass and given external pressure, we must try many ρ(0) to get a match. Example solutions are shown on the next slide. Numerical solutions: Numerical solutions: Plotted logarithmically (which we will usually do from now on) BonnorEbert Sphere
3 Numerical solutions: Different starting ρ o : a family of solutions Numerical solutions: Singular isothermal sphere (limiting solution) Numerical solutions: Boundary condition: Pressure at outer edge = pressure of GMC 3
4 Numerical solutions: Another boundary condition: Mass of clump is given Must replace One boundary ρ c inner condition BC with one too of many outer BCs Summary of BC problem: For insideout integration the paramters are ρ c and r o. However, the physical parameters are M and P o We need to reformulate the equations: Write everything dimensionless Consider the scaling symmetry of the solutions All solutions are scaled versions of each other 4
5 Scalefree formulation dp(r) GM (r)#(r) = " dr r d"(r) "(r)dr = d ln" GM (r) = # dr r c s " = " c e #$ 1/ % " = 4#G$ ( c ' * r & c s ) " = # /c s % 1 d ) M (r) = #(r) ' 4"r dr ' & *, $ 1  M (r) = $ r dp(r) 4"r r (' #(r)g dr + ' r #(r)g P(r) = #(r) r Scalefree formulation substituting ξ and Ψ yields the LaneEmden equation 1 d [ " d" " ] d# d" = e$# "(# = 0) = 0; d" d# #=0 = 0 For M(r) we can write: r % 1 ( M (r) = $ 4"s #(s)ds = ' * & 4"# 0 ) 0 1/ 3/ cs % ( ' * & G ) + d, d+ = M (+) Scalefree formulation Now we consider models with mass of the cloud M(R) where R is at the edge of the cloud, corresponding to ξ=ξ 1. We get: $ 1 ' M (R) = & ) % 4"# 0 ( 1/ 3/ cs $ ' d+ $ & ) * 1 = c ' s d+ & ) R* 1 % G ( d* *1 % G ( d* *1 and therefore: GM (R) R = c s 1 " 1 d# d" "1 5
6 Scalefree formulation Similarly: 8 P(R) = "c c s = s 4#M (R)G $ & 4 d% ) 3 1 ( + ' d$ * " c 4#" c R 3 " 0 3M (R) = $ 1 3( d% /d$) $1 e,% 1 $ 1 Numerical calculations can be used to solve the LaneEmden equation and give R, P(R) and ρ c /ρ 0 Solutions for Ψ and ρ/ρ c Scalefree formulation It turns out that P(R) is maximal for ξ 1 =6.5 # R m = 0.76 c & s % ( $ G" ' 1/ Compare with the expression for the Jeans length % # kt ( " J = ' * & µm H G$ 0 ) 1/ 6
7 Interpretation of maximum pressure When P(R) increases, the central density ρ 0 will increase and R will decrease (fixed M). Cloud mass becomes more and more concentrated toward the center At P(R) =P max gravity is about to overtake If we increase the pressure, cloud starts to collapse and a smaller P(R) would be required for stability Start of an insideout collapse. Dimensionless mass Dimensionless mass: 7
8 Stability of BE spheres Many modes of instability One is if dp o /dr o > 0 Runaway collapse, or Runaway growth, followed by collapse Dimensionless equivalent: dm/d(ρ c /ρ o ) < 0 unstable unstable Stability of BE spheres Maximum density ratio =1 / 14.1 BonnorEbert mass m 1 = 1.18 Ways to cause BE sphere to collapse: Increase external pressure until M BE <M Load matter onto BE sphere until M>M BE 8
9 A simple numerical model Temperature: 30 K Outer radius: 5000 AU Initial condition: BE sphere with ρ c = 1.x1017 g/cm 3 ρ(r) A simple numerical model A more `realistic nonstatic model: Make perturbation, but keep mass the same. ρ(r) A simple numerical model ρ(r) Strong wobbles, but it remains stable 9
10 A simple numerical model Now add a little bit of mass (10%) to nudge it over the BE limit: ρ(r) Cloud collapses in a global way (not really insideout) BE Sphere : Observations of B68 Alves, Lada, Lada 001 Magnetic field support / ambipolar diff. As mentioned in previous chapter, magnetic fields can partly support cloud and prevent collapse. Slow ambipolar diffusion moves fields out of cloud, which could trigger collapse. Models by Lizano & Shu (1989) show this elegantly: Magnetic support only in xy plane, so cloud is flattened. Dashed vertical line is field in beginning, solid: after some time. Field moves inward geometrically, but outward w.r.t. the matter. 10
11 Magnetic field support In presence of Bfield, the stability analysis changes. Magnetic fields can provide support against gravity. Replace Jeans mass with critical mass, defined as: M cr = 0.1 " $ B ' $ M R ' G 1/ #103 M sun & )& ) % 30µG( % pc( Magnetic field support Consider an initially stable cloud. We now compress it. The density thereby increases, but the mass of the cloud stays constant. Jeans mass decreases: M J " 1 # If no magnetic fields: there will come a time when M>M J and the cloud will collapse. But M cr stays constant (magnetic flux freezing) So if Bfield is strong enough to support a cloud, no compression will cause it to collapse. Ambipolar diffusion Forces acting: f L = " 1 8# $B f drift = n n m n n i v% in v drift 11
12 Drag force: Collisions between ions and neutrals. The rate of collisions between ions and neutrals per neutral atom is: n i v" in σ in elastic scattering coefficient v relative velocity of ions as seen from neutral rest frame n I number density of ions <..> average over distribution function ions Momentum transfer: m i ( v r i " v r # m n ) n & % ( $ m n + m i ' Momentum transfer ions > neutrals per unit volume " m f drag = n n m i % n $ '( v r i ( v r n )n i v) in # m n + m i & with v i v n =v drift and m n +m i m i f drag = n n m n n i v" in v drift Example: infinite cylinder of uniform density f grav = "G#r# % & f drift = n i m n n n v$ in v drift ' v = drift "G# r n i n n m n v$ in drift timescale t drift = r v drift assume low ionization rate, neutrals are dominated by H, He $ " = ( n i m i + n n m n ) # n H m H 1+ 4 n ' He & ) % ( n H 1
13 Example: infinite cylinder of uniform density t drift = v" $ in & #Gm H % for <vσ in > cm 3 s 1 n i n H ' 1 ) ( 1+ 4n He /n H ( ) $ t drift " 5 #10 13 & % n i n H HI cloud: n i /n H Ambipolar diffusion not important Dense cloud: n i /n H t drift ~ 5 x 10 6 yr t drift >>t ff, so ambipolar diffusion not important during collapse ' ) years ( Ambipolar diffusion Magnetic pressure builds up during cloud contraction. Ambipolar diffusion acts to reduce magnetic pressure Contraction continues Once collapse set in, magnetic field remains frozen into the matter. 13
Heating & Cooling in Molecular Clouds
Lecture 8: Cloud Stability Heating & Cooling in Molecular Clouds Balance of heating and cooling processes helps to set the temperature in the gas. This then sets the minimum internal pressure in a core
More informationDinamica del Gas nelle Galassie II. Star formation
Dinamica del Gas nelle Galassie II. Star formation Overview on ISM Molecular clouds: composition and properties. Plasmas Charge neutrality, infinite conductivity; Field freezing; Euler equation with magnetic
More informationThreedimensional Simulation of Magnetized Cloud Fragmentation Induced by Nonlinear Flows and Ambipolar Diffusion
accepted by Astrophysical Journal Letters Threedimensional Simulation of Magnetized Cloud Fragmentation Induced by Nonlinear Flows and Ambipolar Diffusion Takahiro Kudoh 1 and Shantanu Basu 2 ABSTRACT
More informationIV. Molecular Clouds. 1. Molecular Cloud Spectra
IV. Molecular Clouds Dark structures in the ISM emit molecular lines. Dense gas cools, Metals combine to form molecules, Molecular clouds form. 1. Molecular Cloud Spectra 1 Molecular Lines emerge in absorption:
More informationSound. References: L.D. Landau & E.M. Lifshitz: Fluid Mechanics, Chapter VIII F. Shu: The Physics of Astrophysics, Vol. 2, Gas Dynamics, Chapter 8
References: Sound L.D. Landau & E.M. Lifshitz: Fluid Mechanics, Chapter VIII F. Shu: The Physics of Astrophysics, Vol., Gas Dynamics, Chapter 8 1 Speed of sound The phenomenon of sound waves is one that
More informationPlanetesimal Dynamics Formation of Terrestrial Planets from Planetesimals
Planetesimal Dynamics Formation of Terrestrial Planets from Planetesimals Protoplanetary disk Gas/Dust Planetesimals...... 10 6 yr 10 56 yr Protoplanets 10 78 yr Terrestrial planets Eiichiro Kokubo National
More informationLecture 19: Planet Formation I. Clues from the Solar System
Lecture 19: Planet Formation I. Clues from the Solar System 1 Outline The Solar System:! Terrestrial planets! Jovian planets! Asteroid belt, Kuiper belt, Oort cloud Condensation and growth of solid bodies
More informationDYNAMICS OF GALAXIES
DYNAMICS OF GALAXIES 2. and stellar orbits Piet van der Kruit Kapteyn Astronomical Institute University of Groningen the Netherlands Winter 2008/9 and stellar orbits Contents Range of timescales Twobody
More informationCloud Formation, Evolution and Destruction
Chapter 4 Cloud Formation, Evolution and Destruction We now begin to trace the journey towards a star. How long does this take? The answer is surprisingly short: a good many clouds already contain new
More informationA i A i. µ(ion) = Z i X i
Lecture 2 Review: calculation of mean atomic weight of an ionized gas (µ) Given a mass fraction X i (or abundance) for an ionic (or atomic) species with atomic weight A i, we can can calculate µ by: For
More information8 Radiative Cooling and Heating
8 Radiative Cooling and Heating Reading: Katz et al. 1996, ApJ Supp, 105, 19, section 3 Thoul & Weinberg, 1995, ApJ, 442, 480 Optional reading: Thoul & Weinberg, 1996, ApJ, 465, 608 Weinberg et al., 1997,
More informationOur Galaxy, the Milky Way
Our Galaxy, the Milky Way In the night sky, the Milky Way appears as a faint band of light. Dusty gas clouds obscure our view because they absorb visible light. This is the interstellar medium that makes
More informationLecture 3 Properties and Evolution of Molecular Clouds. Spitzer space telescope image of Snake molecular cloud (IRDC G11.110.11
Lecture 3 Properties and Evolution of Molecular Clouds Spitzer space telescope image of Snake molecular cloud (IRDC G11.110.11 From slide from Annie Hughes Review CO t in clouds HI: Atomic Hydrogen http://www.atnf.csiro.au/research/lvmeeting/magsys_pres/
More informationPhysics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives
Physics 9e/Cutnell correlated to the College Board AP Physics 1 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring
More informationChapter 7 Neutron Stars
Chapter 7 Neutron Stars 7.1 White dwarfs We consider an old star, below the mass necessary for a supernova, that exhausts its fuel and begins to cool and contract. At a sufficiently low temperature the
More informationSchool of Biotechnology
Physics reference slides Donatello Dolce Università di Camerino a.y. 2014/2015 mail: donatello.dolce@unicam.it School of Biotechnology Program and Aim Introduction to Physics Kinematics and Dynamics; Position
More informationOn a Flat Expanding Universe
Adv. Studies Theor. Phys., Vol. 7, 2013, no. 4, 191197 HIKARI Ltd, www.mhikari.com On a Flat Expanding Universe Bo Lehnert Alfvén Laboratory Royal Institute of Technology, SE10044 Stockholm, Sweden
More informationDifferential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation
Differential Relations for Fluid Flow In this approach, we apply our four basic conservation laws to an infinitesimally small control volume. The differential approach provides point by point details of
More informationDomain walls may form in the early universe during a phase transition involving the spontaneous breaking of a discrete symmetry. If the mass density (
UTPT9318 hepph/9307359 July 1993 Cosmic Balloons B. Holdom 1 Department of Physics University of Toronto Toronto, Ontario Canada M5S 1A7 ABSTRACT Cosmic balloons, consisting of relativistic particles
More informationChapter 4. Electrostatic Fields in Matter
Chapter 4. Electrostatic Fields in Matter 4.1. Polarization A neutral atom, placed in an external electric field, will experience no net force. However, even though the atom as a whole is neutral, the
More information4.1 Momentum equation of the neutral atmosphere
Chapter 4 Dynamics of the neutral atmosphere 4.1 Momentum equation of the neutral atmosphere Since we are going to discuss the motion of the atmosphere of a rotating planet, it is convenient to express
More informationL3: The formation of the Solar System
credit: NASA L3: The formation of the Solar System UCL Certificate of astronomy Dr. Ingo Waldmann A stable home The presence of life forms elsewhere in the Universe requires a stable environment where
More informationENERGY TRANSPORT WITHIN A STAR
M. Pettini: Structure and Evolution of Stars Lecture 8 ENERGY TRANSPORT WITHIN A STAR 8.1 Introduction Up to now, we have considered how energy is generated within the interior of stars by the processes
More informationAS CHALLENGE PAPER 2014
AS CHALLENGE PAPER 2014 Name School Total Mark/50 Friday 14 th March Time Allowed: One hour Attempt as many questions as you can. Write your answers on this question paper. Marks allocated for each question
More informationThe Origin of the Solar System and Other Planetary Systems
The Origin of the Solar System and Other Planetary Systems Modeling Planet Formation Boundary Conditions Nebular Hypothesis Fixing Problems Role of Catastrophes Planets of Other Stars Modeling Planet Formation
More information= = GM. v 1 = Ωa 1 sin i.
1 Binary Stars Consider a binary composed of two stars of masses M 1 and We define M = M 1 + and µ = M 1 /M If a 1 and a 2 are the mean distances of the stars from the center of mass, then M 1 a 1 = a
More informationChapter 8 Steady Incompressible Flow in Pressure Conduits
Chapter 8 Steady Incompressible Flow in Pressure Conduits Outline 8.1 Laminar Flow and turbulent flow Reynolds Experiment 8.2 Reynolds number 8.3 Hydraulic Radius 8.4 Friction Head Loss in Conduits of
More informationPHYSICS 111 HOMEWORK SOLUTION #10. April 8, 2013
PHYSICS HOMEWORK SOLUTION #0 April 8, 203 0. Find the net torque on the wheel in the figure below about the axle through O, taking a = 6.0 cm and b = 30.0 cm. A torque that s produced by a force can be
More informationGauss s Law for Gravity
Gauss s Law for Gravity D.G. impson, Ph.D. Department of Physical ciences and Engineering Prince George s Community College December 6, 2006 Newton s Law of Gravity Newton s law of gravity gives the force
More informationMAE 20 Winter 2011 Assignment 3 solutions
MAE 20 Winter 2011 Assignment 3 solutions 4.3 Calculate the activation energy for vacancy formation in aluminum, given that the equilibrium number of vacancies at 500 C (773 K) is 7.57 10 23 m 3. The
More informationAy 20  Lecture 9 PostMain Sequence Stellar Evolution. This file has many figures missing, in order to keep it a reasonable size.
Ay 20  Lecture 9 PostMain Sequence Stellar Evolution This file has many figures missing, in order to keep it a reasonable size. Main Sequence and the Range of Stellar Masses MS is defined as the locus
More informationGalaxy Formation. Leading questions for today How do visible galaxies form inside halos? Why do galaxies/halos merge so easily?
852015see http://www.strw.leidenuniv.nl/ franx/college/ mfsts2015c91 852015see http://www.strw.leidenuniv.nl/ franx/college/ mfsts2015c92 Galaxy Formation Leading questions for today How do
More informationSteady Heat Conduction
Steady Heat Conduction In thermodynamics, we considered the amount of heat transfer as a system undergoes a process from one equilibrium state to another. hermodynamics gives no indication of how long
More informationLecture 7 Formation of the Solar System. Nebular Theory. Origin of the Solar System. Origin of the Solar System. The Solar Nebula
Origin of the Solar System Lecture 7 Formation of the Solar System Reading: Chapter 9 Quiz#2 Today: Lecture 60 minutes, then quiz 20 minutes. Homework#1 will be returned on Thursday. Our theory must explain
More informationHow did the Solar System form?
How did the Solar System form? Is our solar system unique? Are there other Earthlike planets, or are we a fluke? Under what conditions can Earthlike planets form? Is life common or rare? Ways to Find
More informationLecture 10 Formation of the Solar System January 6c, 2014
1 Lecture 10 Formation of the Solar System January 6c, 2014 2 Orbits of the Planets 3 Clues for the Formation of the SS All planets orbit in roughly the same plane about the Sun. All planets orbit in the
More informationThe Layout of the Solar System
The Layout of the Solar System Planets fall into two main categories Terrestrial (i.e. Earthlike) Jovian (i.e. Jupiterlike or gaseous) [~5000 kg/m 3 ] [~1300 kg/m 3 ] What is density? Average density
More informationGiant Molecular Clouds
Giant Molecular Clouds http://www.astro.ncu.edu.tw/irlab/projects/project.htm Galactic Open Clusters Galactic Structure GMCs The Solar System and its Place in the Galaxy In Encyclopedia of the Solar System
More informationKINETIC MOLECULAR THEORY OF MATTER
KINETIC MOLECULAR THEORY OF MATTER The kineticmolecular theory is based on the idea that particles of matter are always in motion. The theory can be used to explain the properties of solids, liquids,
More informationProceedings of the NATIONAL ACADEMY OF SCIENCES
Proceedings of the NATIONAL ACADEMY OF SCIENCES Volume 55 * Number 1 * January 15, 1966 DYNAMICS OF SPHERICAL GALAXIES, II* BY PHILIP M. CAMPBELL LAWRENCE RADIATION LABORATORY, LIVERMORE, CALIFORNIA Communicated
More informationNatural Convection. Buoyancy force
Natural Convection In natural convection, the fluid motion occurs by natural means such as buoyancy. Since the fluid velocity associated with natural convection is relatively low, the heat transfer coefficient
More informationElliptical Galaxies. Houjun Mo. April 19, 2004. Basic properties of elliptical galaxies. Formation of elliptical galaxies
Elliptical Galaxies Houjun Mo April 19, 2004 Basic properties of elliptical galaxies Formation of elliptical galaxies Photometric Properties Isophotes of elliptical galaxies are usually fitted by ellipses:
More informationProtobinaries. von Cornelia Weber, Bakk.rer.nat. Donnerstag, 23. Mai 13
Protobinaries von Cornelia Weber, Bakk.rer.nat. Overview Motivation Molecular Clouds Young Stellar Objects Multiplicity of YSO Orion Molecular Cloud Aims of my thesis Motivation Binary and Multiple system
More informationDegeneracy of Electrons
Properties of Degenerated FermiGas in Astrophysics HsinYu Chen Introduction The degenerated fermigas is a dominated component in a highly dense region in Astronomy, such as the center of a white dwarf.
More informationChapter 6 Atmospheric Aerosol and Cloud Processes Spring 2015 Cloud Physics Initiation and development of cloud droplets Special interest: Explain how droplet formation results in rain in approximately
More informationChapter 15.3 Galaxy Evolution
Chapter 15.3 Galaxy Evolution Elliptical Galaxies Spiral Galaxies Irregular Galaxies Are there any connections between the three types of galaxies? How do galaxies form? How do galaxies evolve? P.S. You
More information12.307. 1 Convection in water (an almostincompressible fluid)
12.307 Convection in water (an almostincompressible fluid) John Marshall, Lodovica Illari and Alan Plumb March, 2004 1 Convection in water (an almostincompressible fluid) 1.1 Buoyancy Objects that are
More informationPatterns in the Solar System. Patterns in the Solar System. ASTR 105 The Solar System
ASTR 105 The Solar System 1. Orderly motions 2.Two kinds of planets 3.Two kinds of small bodies 4.Exceptions to the rules Today: Group Lab at the end of class Next THURSDAY 03/10: First Group Project Orderly
More informationImaging a sphere of mass M, constant density ρ, radius R, and absorption by mass of κ λ. The the optical depth is. 3M τ = κ λ ρr = κ λ 4πR 3R = κ 3M
1 Lectures 18 and 19 Optical Depth vs. Density Imaging a sphere of mass M, constant density ρ, radius R, and absorption by mass of κ λ. The the optical depth is 3M τ = κ λ ρr = κ λ 4πR 3R = κ 3M λ (1)
More informationNuclear fusion in stars. Collapse of primordial density fluctuations into galaxies and stars, nucleosynthesis in stars
Nuclear fusion in stars Collapse of primordial density fluctuations into galaxies and stars, nucleosynthesis in stars The origin of structure in the Universe Until the time of formation of protogalaxies,
More informationPhysics 2A, Sec B00: Mechanics  Winter 2011 Instructor: B. Grinstein Final Exam
Physics 2A, Sec B00: Mechanics  Winter 2011 Instructor: B. Grinstein Final Exam INSTRUCTIONS: Use a pencil #2 to fill your scantron. Write your code number and bubble it in under "EXAM NUMBER;" an entry
More informationPhysics 2112 Unit 6: Electric Potential
Physics 2112 Unit 6: Electric Potential Today s Concept: Electric Potential (Defined in terms of Path Integral of Electric Field) Unit 6, Slide 1 Big Idea Last time we defined the electric potential energy
More informationExemplar Problems Physics
Chapter Eight GRAVITATION MCQ I 8.1 The earth is an approximate sphere. If the interior contained matter which is not of the same density everywhere, then on the surface of the earth, the acceleration
More informationUNIVERSITY OF OSLO. Please make sure that your copy of the problem set is complete before you attempt to answer anything.
UNIVERSITY OF OSLO Faculty of mathematics and natural sciences Constituent exam in: AST4320 Cosmology and Extragalactic Astronomy Day of examination: Thursday 8. October 2015 Examination hours: 10.00 13.00
More informationNumerical Analysis of the Jeans Instability
June 15, 2010 Background Goal Refine our understanding of Jeans Length and its relation to astrophysical simulations. Currently, it is widely accepted that one needs four cells per Jeans Length to get
More information1. Gravitational forces and potentials (BT 22.1) Intermezzo: divergence and divergence theorem (BT: B.3) 2. Potential for spherical systems (BT 2.
Overview 1. Gravitational forces and potentials (BT 22.1) Intermezzo: divergence and divergence theorem (BT: B.3) Poisson equation Gauss s theorem Potential energy 2. Potential for spherical systems (BT
More informationThe atomic packing factor is defined as the ratio of sphere volume to the total unit cell volume, or APF = V S V C. = 2(sphere volume) = 2 = V C = 4R
3.5 Show that the atomic packing factor for BCC is 0.68. The atomic packing factor is defined as the ratio of sphere volume to the total unit cell volume, or APF = V S V C Since there are two spheres associated
More informationWelcome to the first lesson of third module which is on thinwalled pressure vessels part one which is on the application of stress and strain.
Strength of Materials Prof S. K. Bhattacharya Department of Civil Engineering Indian Institute of Technology, Kharagpur Lecture 15 Application of Stress by Strain Thinwalled Pressure Vessels  I Welcome
More informationSolar Ast ro p h y s ics
Peter V. Foukal Solar Ast ro p h y s ics Second, Revised Edition WI LEY VCH WILEYVCH Verlag Co. KCaA Contents Preface 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.1.1 2.1.2 2.2 2.2.1 2.2.2 2.2.3 2.3
More informationSummary: Four Major Features of our Solar System
Summary: Four Major Features of our Solar System How did the solar system form? According to the nebular theory, our solar system formed from the gravitational collapse of a giant cloud of interstellar
More informationLecture L222D Rigid Body Dynamics: Work and Energy
J. Peraire, S. Widnall 6.07 Dynamics Fall 008 Version.0 Lecture L  D Rigid Body Dynamics: Work and Energy In this lecture, we will revisit the principle of work and energy introduced in lecture L3 for
More informationForces on the Rocket. Rocket Dynamics. Equation of Motion: F = Ma
Rocket Dynamics orces on the Rockets  Drag Rocket Stability Rocket Equation Specific Impulse Rocket otors Thrust orces on the Rocket Equation of otion: = a orces at through the Center of ass Center of
More informationLecture 14. Introduction to the Sun
Lecture 14 Introduction to the Sun ALMA discovers planets forming in a protoplanetary disc. Open Q: what physics do we learn about the Sun? 1. Energy  nuclear energy  magnetic energy 2. Radiation  continuum
More informationModern Atomic Theory
Reading: Ch. 9, sections 14 Ch. 7, sections 56 (lec) Ch. 7, sections 13 (lab) Modern Atomic Theory Homework: Chapter 9: 37*, 39*, 41 Chapter 7: 59, 61*, 63, 65 (lec.) Chapter 7: 39, 41, 43, 47 (lab)
More informationFREESTUDY HEAT TRANSFER TUTORIAL 3 ADVANCED STUDIES
FREESTUDY HEAT TRANSFER TUTORIAL ADVANCED STUDIES This is the third tutorial in the series on heat transfer and covers some of the advanced theory of convection. The tutorials are designed to bring the
More informationNonlinear evolution of unstable fluid interface
Nonlinear evolution of unstable fluid interface S.I. Abarzhi Department of Applied Mathematics and Statistics State University of NewYork at Stony Brook LIGHT FLUID ACCELERATES HEAVY FLUID misalignment
More information2.5 Physicallybased Animation
2.5 Physicallybased Animation 320491: Advanced Graphics  Chapter 2 74 Physicallybased animation Morphing allowed us to animate between two known states. Typically, only one state of an object is known.
More informationEQUILIBRIUM AND ELASTICITY
Chapter 12: EQUILIBRIUM AND ELASTICITY 1 A net torque applied to a rigid object always tends to produce: A linear acceleration B rotational equilibrium C angular acceleration D rotational inertia E none
More informationThe Evolution of GMCs in Global Galaxy Simulations
The Evolution of GMCs in Global Galaxy Simulations image from Britton Smith Elizabeth Tasker (CITA NF @ McMaster) Jonathan Tan (U. Florida) Simulation properties We use the AMR code, Enzo, to model a 3D
More informationChapter 22: Electric Flux and Gauss s Law
22.1 ntroduction We have seen in chapter 21 that determining the electric field of a continuous charge distribution can become very complicated for some charge distributions. t would be desirable if we
More informationIn order to solve this problem it is first necessary to use Equation 5.5: x 2 Dt. = 1 erf. = 1.30, and x = 2 mm = 2 103 m. Thus,
5.3 (a) Compare interstitial and vacancy atomic mechanisms for diffusion. (b) Cite two reasons why interstitial diffusion is normally more rapid than vacancy diffusion. Solution (a) With vacancy diffusion,
More informationLecture 3 Fluid Dynamics and Balance Equa6ons for Reac6ng Flows
Lecture 3 Fluid Dynamics and Balance Equa6ons for Reac6ng Flows 3. 1 Basics: equations of continuum mechanics  balance equations for mass and momentum  balance equations for the energy and the chemical
More informationIn studying the Milky Way, we have a classic problem of not being able to see the forest for the trees.
In studying the Milky Way, we have a classic problem of not being able to see the forest for the trees. A panoramic painting of the Milky Way as seen from Earth, done by Knut Lundmark in the 1940 s. The
More information1 Wetting your feet. 2 Scaling. 8.298 Lies / Check your understanding: Solutions
1 Wetting your feet 1.1 Estimate how many liters are in a barrel of oil and how many barrels of oil the United States imports every year. A: A barrel may be a few feet high, so h 1m, and have a diameter
More informationTopic 3. Evidence for the Big Bang
Topic 3 Primordial nucleosynthesis Evidence for the Big Bang! Back in the 1920s it was generally thought that the Universe was infinite! However a number of experimental observations started to question
More informationGravitational instabilities in protostellar discs and the formation of planetesimals
Gravitational instabilities in protostellar discs and the formation of planetesimals Giuseppe Lodato  Università degli Studi di Milano 17 February 2011  Bologna Gravitational instabilities in protostellar
More informationName Date Per Teacher
Reading Guide: Chapter 28.1 (read text pages 571575) STRUCTURE OF THE SUN 1e Students know the Sun is a typical star and is powered by nuclear reactions, primarily the fusion of hydrogen to form helium.
More informationMotion of a Leaky Tank Car
1 Problem Motion of a Leaky Tank Car Kirk T. McDonald Joseph Henry Laboratories, Princeton University, Princeton, NJ 8544 (December 4, 1989; updated October 1, 214) Describe the motion of a tank car initially
More informationA. Kinetic Molecular Theory (KMT) = the idea that particles of matter are always in motion and that this motion has consequences.
I. MOLECULES IN MOTION: A. Kinetic Molecular Theory (KMT) = the idea that particles of matter are always in motion and that this motion has consequences. 1) theory developed in the late 19 th century to
More informationStatistical Mechanics, Kinetic Theory Ideal Gas. 8.01t Nov 22, 2004
Statistical Mechanics, Kinetic Theory Ideal Gas 8.01t Nov 22, 2004 Statistical Mechanics and Thermodynamics Thermodynamics Old & Fundamental Understanding of Heat (I.e. Steam) Engines Part of Physics Einstein
More informationBe Stars. By Carla Morton
Be Stars By Carla Morton Index 1. Stars 2. Spectral types 3. B Stars 4. Be stars 5. Bibliography How stars are formed Stars are composed of gas Hydrogen is the main component of stars. Stars are formed
More informationSolar cycle. Auringonpilkkusykli. 1844 Heinrich Schwabe: 11 year solar cycle. ~11 years
Sun Solar cycle Auringonpilkkusykli 1844 Heinrich Schwabe: 11 year solar cycle ~11 years Auringonpilkkusykli Solar cycle Butterfly diagram: Edward Maunder 1904 New cycle Spots appear at midlatitudes Migration
More informationPHYSICAL QUANTITIES AND UNITS
1 PHYSICAL QUANTITIES AND UNITS Introduction Physics is the study of matter, its motion and the interaction between matter. Physics involves analysis of physical quantities, the interaction between them
More informationA Guide to Calculate Convection Coefficients for Thermal Problems Application Note
A Guide to Calculate Convection Coefficients for Thermal Problems Application Note Keywords: Thermal analysis, convection coefficients, computational fluid dynamics, free convection, forced convection.
More information39th International Physics Olympiad  Hanoi  Vietnam  2008. Theoretical Problem No. 3
CHANGE OF AIR TEMPERATURE WITH ALTITUDE, ATMOSPHERIC STABILITY AND AIR POLLUTION Vertical motion of air governs many atmospheric processes, such as the formation of clouds and precipitation and the dispersal
More informationAMBIPOLAR DIFFUSION REVISITED
RevMexAA (Serie de Conferencias), 36, 73 8 (29) AMBIPOLAR DIFFUSION REVISITED F. C. Adams,2 29: Instituto de Astronomía, UNAM  Magnetic Fields in the Universe II: From Laboratory and Stars to the Primordial
More informationIntroduction to Nuclear Radiation 9/04. Purpose of the Experiment
Modern Physics Lab Introduction to Nuclear Radiation 9/04 Purpose of the Experiment  become familiar with detectors for radioactive decay products  apply statistical analysis techniques to data  understand
More informationUnits and Dimensions in Physical Chemistry
Units and Dimensions in Physical Chemistry Units and dimensions tend to cause untold amounts of grief to many chemists throughout the course of their degree. My hope is that by having a dedicated tutorial
More information............... [2] At the time of purchase of a Strontium90 source, the activity is 3.7 10 6 Bq.
1 Strontium90 decays with the emission of a βparticle to form Yttrium90. The reaction is represented by the equation 90 38 The decay constant is 0.025 year 1. 90 39 0 1 Sr Y + e + 0.55 MeV. (a) Suggest,
More informationGauss's Law. Gauss's Law in 3, 2, and 1 Dimension
[ Assignment View ] [ Eðlisfræði 2, vor 2007 22. Gauss' Law Assignment is due at 2:00am on Wednesday, January 31, 2007 Credit for problems submitted late will decrease to 0% after the deadline has passed.
More informationBasic Principles in Microfluidics
Basic Principles in Microfluidics 1 Newton s Second Law for Fluidics Newton s 2 nd Law (F= ma) : Time rate of change of momentum of a system equal to net force acting on system!f = dp dt Sum of forces
More information(1) The size of a gas particle is negligible as compared to the volume of the container in which the gas is placed.
Gas Laws and Kinetic Molecular Theory The Gas Laws are based on experiments, and they describe how a gas behaves under certain conditions. However, Gas Laws do not attempt to explain the behavior of gases.
More informationProblem #1 [Sound Waves and Jeans Length]
Roger Griffith Astro 161 hw. # 8 Proffesor ChungPei Ma Problem #1 [Sound Waves and Jeans Length] At typical sealevel conditions, the density of air is 1.23 1 3 gcm 3 and the speed of sound is 3.4 1 4
More informationUnit 8 Lesson 2 Gravity and the Solar System
Unit 8 Lesson 2 Gravity and the Solar System Gravity What is gravity? Gravity is a force of attraction between objects that is due to their masses and the distances between them. Every object in the universe
More informationDifferential Balance Equations (DBE)
Differential Balance Equations (DBE) Differential Balance Equations Differential balances, although more complex to solve, can yield a tremendous wealth of information about ChE processes. General balance
More informationKINETIC THEORY. 1.Name any one scientist who explained the behavior of gases considering it to be made up of tiny particles.
KINETIC THEORY ONE MARK OUESTION: 1.Name any one scientist who explained the behavior of gases considering it to be made up of tiny particles. 2.Based on which idea kinetic theory of gases explain the
More informationNumerical Model for the Study of the Velocity Dependence Of the Ionisation Growth in Gas Discharge Plasma
Journal of Basrah Researches ((Sciences)) Volume 37.Number 5.A ((2011)) Available online at: www.basrascience journal.org ISSN 1817 2695 Numerical Model for the Study of the Velocity Dependence Of the
More informationChapter Biography of J. C. Maxwell Derivation of the Maxwell Speed Distribution Function
Chapter 10 10.1 Biography of J. C. Maxwell 10.2 Derivation of the Maxwell Speed Distribution Function The distribution of molecular speeds was first worked out by Maxwell before the development of statistical
More informationMagnetar seismology. Lars Samuelsson, Nordita Nils Andersson, Southampton Kostas Glampedakis, Tübingen. NORDITA Hirschegg, January 2009
Magnetar seismology Lars Samuelsson, Nordita Nils Andersson, Southampton Kostas Glampedakis, Tübingen Outline QuasiPeriodic Oscillations in Soft Gammaray Repeaters. Can we do seismology? That is, can
More informationStability Of Structures: Basic Concepts
23 Stability Of Structures: Basic Concepts ASEN 3112 Lecture 23 Slide 1 Objective This Lecture (1) presents basic concepts & terminology on structural stability (2) describes conceptual procedures for
More information