TERMINAL MARKINGS AND CONNECTIONS PART WINDING START



Similar documents
We will discuss common industrial applications with guides for the proper use of electric motors on these.

GENERATOR SELECTION. a. Three phase - 120/208V, 3 phase, 4W wye; 277/408, 3 phase, 4W wye; * 120/240V 3 phase, 4W Delta

Unit 33 Three-Phase Motors

SECTION 4 ELECTRIC MOTORS UNIT 17: TYPES OF ELECTRIC MOTORS

GE Industrial Systems. AC Motor Selection and Application Guide

Section 10. Application Manual for NEMA Motors. Special Applications

AC Motor Speed. n s = synchronous speed (in RPM), f = frequency (in Hz), and p = the number of poles

TERMINAL MARKINGS AND INTERNAL WIRING DIAGRAMS SINGLE PHASE AND POLYPHASE MOTORS MEETING NEMA STANDARDS

Motor Protection Voltage Unbalance and Single-Phasing

Introduction. Upon completion of Basics of AC Motors you should be able to:

Buck - Boost Transformers

WYE-DELTA AND SOLID STATE STARTER APPLICATION GUIDE

Equipment: Power Supply, DAI, Synchronous motor (8241), Electrodynamometer (8960), Tachometer, Timing belt.

Motor Specifications. Nameplate

Data Sheet. AC Industrial Electric Motors

INSTALLATION AND MAINTENANCE INSTRUCTIONS FOR THREE PHASE INDUCTION MOTORS

Specifying a Variable Frequency Drive s

Basic Nameplate Information

1 Temperature Derating Guide

What Do All Those Things on an AC Motor Nameplate Mean?

2. A conductor of length 2m moves at 4m/s at 30 to a uniform magnetic field of 0.1T. Which one of the following gives the e.m.f. generated?

Voltage Loss Formula s

GE Industrial Systems. AC Motor Selection and Application Guide

IV. Three-Phase Induction Machines. Induction Machines

DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EE ELECTRICAL MACHINES II UNIT-I SYNCHRONOUS GENERATOR

Synchronous motor. Type. Non-excited motors

Equipment: Power Supply, DAI, Wound rotor induction motor (8231), Electrodynamometer (8960), timing belt.

C Standard AC Motors

Introduction. Three-phase induction motors are the most common and frequently encountered machines in industry

50Hz SUBMERSIBLE MOTORS APPLICATION INSTALLATION MAINTENANCE

AC Replacement for DC Mill-Duty Motors

Test Code: 8094 / Version 1

Rotary Phase Converters

Voltage Drop. Voltage Drop 1

Bulletin 150 Smart Motor Controllers SMC-3 Smart Motor Controller

DIRECT CURRENT GENERATORS

ELECTRIC MOTORS. Energy Efficiency Reference Guide STATOR POLE COMMUTATOR LINE

Electrician s Math and Basic Electrical Formulas

I hope you find them useful and I would appreciate any comments or thoughts you might have for future improvements, corrections or topics.

Technical Guide No High Performance Drives -- speed and torque regulation

Direct Current Motors

Baldor Electric Position on DOE Small Motor Rule

USE OF ARNO CONVERTER AND MOTOR-GENERATOR SET TO CONVERT A SINGLE-PHASE AC SUPPLY TO A THREE-PHASE AC FOR CONTROLLING THE SPEED OF A THREE-PHASE INDUCTION MOTOR BY USING A THREE-PHASE TO THREE-PHASE CYCLOCONVERTER

FREQUENCY CONTROLLED AC MOTOR DRIVE

VARIABLE FREQUENCY DRIVES THEORY, APPLICATION, AND TROUBLESHOOTING

8 Speed control of Induction Machines

Motor Circuit Protection Tables

Contactor and Starter Ratings

Lab 14: 3-phase alternator.

HPS Universal. Single and Three Phase Potted. Buck-Boost Transformers. Buck-Boost Applications & Standard Specification... 80

AN887. AC Induction Motor Fundamentals INTRODUCTION BASIC CONSTRUCTION AND OPERATING PRINCIPLE. Stator

PRODUCT GUIDE. SL Medium Voltage IEC Vacuum Contactors

UNIT 16 ELECTRIC MOTORS

Module Title: Electrotechnology for Mech L7

Lab 8: DC generators: shunt, series, and compounded.

Absolute Rotary Encoder E6CP

Electric Motor Brake Horsepower Calculations

Electronic, Digital and Mechanical Vibration Switches

Low Voltage Fuses For Motor Protection

SYNCHRONOUS MACHINES

Section 8: AC Motors, motor control and motor protection Bill Brown, P.E., Square D Engineering Services

ADJUSTABLE FREQUENCY DRIVES APPLICATION GUIDE

Induction Motor Theory

THREE-PHASE INDUCTION MOTOR March 2007

AC Generators and Motors

Variable Transformers Product Design & Engineering Data

Department of Labor and Industry Electrical Licensing

How To Understand And Understand The Electrical Power System

PowerFlex Dynamic Braking Resistor Calculator

chapter6 Electrical machines and motors Unit 1 outcome 6

Three-Phase Electric Power Distribution for Computer Data Centers

ELECTROPUTERE ROTATING ELECTRICAL MACHINES DIVISION

PREFACE. Your comments or suggestions are welcome and appreciated. They should be sent to:

General Information. ME-business can be accessed through: www. marathonelectric.com.

Power Plant Electrical Distribution Systems

SAFETY PRECAUTIONS AND INSTRUCTIONS FOR USE OF TECHNICAL INFORMATION

SYNCHRONOUS MACHINE TESTING WITH MOTOR CIRCUIT ANALYSIS INSTRUMENTATION

Type: DILM115(RAC240) Article No.: Sales text Contactor,55kW/400V,AC operated. Ordering information

Bulletin 150 SMC Flex Smart Motor Controller Specifications

Three-phase AC circuits

7. Reactive energy compensation

XFE. The cost effective starter for all AC induction motors from 4A 2800A The choice for small to medium industrial applications

Heating, air-conditioning, cooling

ELECTRICAL ENGINEERING Vol. III - Induction Motor and Self-Excited Induction Generator - Tze-Fun Chan

ET 332b Ac Electric Machines and Power Systems

EVER EFFICIENT. EVER RELIABLE. EVER PROFITABLE.

Understanding Energy Efficient Motors

Short Circuit Current Calculations

Three phase circuits

VOLTAGE REGULATOR AND PARALLEL OPERATION

SPEED CONTROL SYSTEM

Appendix C: Conversions and Calculations

One basic concept in math is that if we multiply a number by 1, the result is equal to the original number. For example,

Harmonic Drive acutator P r e c i s i o n G e a r i n g & M o t i o n C o n t r o l

Solid-state soft start motor controller and starter

MOTOR PROTECTION AGAINST SINGLE-PHASING

SHIP SERVICE GENERATORS (AC)

PHASE CONVERSION TECHNOLOGY OVERVIEW

INDUCTION MOTOR PERFORMANCE TESTING WITH AN INVERTER POWER SUPPLY, PART 2

Understanding Variable Speed Drives

Transcription:

TERMINAL MARKINGS AND CONNECTIONS PART WINDING START NEMA NOMENCLATURE 6 LEADS 7 7 3 9 8 Delta 3 9 8 Wye OPER. 9 MODE L L L3 OPEN 7 START 3 7,8,9 T T T3 T7 T8 T9 RUN,7,8 3,9 3 8 MOTOR LEADS 3 7 Double 8 Delta 9 (Extended Delta) NEMA NOMENCLATURE 9 LEADS WYE CONNECTED (LOW VOLTAGE ONLY) T T T3 T7 T8 T9 Together MOTOR LEADS 3 7 8 9 &5&6 NEMA AND IEC NOMENCLATURE LEADS SINGLE VOLTAGE OR LOW VOLTAGE OF DUAL-VOLTAGE MOTORS NEMA 9 6 7 W5 W W6 U U U5 IEC 3 0 8 5 W U6 V6 V5 V V T T T3 T7 T8 T9 NEMA,6, 3,5 7, 8,0 9, IEC U,W V,U W,V U5,W6 V5,U6 W5,V6

TERMINAL MARKINGS AND CONNECTIONS THREE-PHASE MOTORS SINGLE SPEED NEMA NOMENCLATURE 6 LEADS SINGLE VOLTAGE EXTERNAL WYE CONNECTION L L L3 JOIN 3 &5&6 3 6 5 SINGLE VOLTAGE EXTERNAL DELTA CONNECTION 6 L L L3,6, 3,5 3 5 SINGLE AND DUAL VOLTAGE WYE-DELTA CONNECTIONS 6 SINGLE VOLTAGE OPERATING MODE CONNECTION L L L3 JOIN START WYE 3 &5&6 RUN DELTA,6, 3,5 DUAL VOLTAGE* VOLTAGE CONNECTION L L L3 JOIN HIGH WYE 3 &5&6 LOW DELTA,6, 3,5 *Voltage ratio:.73 to. 5 3 6 3 5

TERMINAL MARKINGS AND CONNECTIONS THREE-PHASE MOTORS SINGLE SPEED NEMA NOMENCLATURE 9 LEADS 7 9 6 8 5 DUAL VOLTAGE WYE-CONNECTED 3 VOLTAGE L L L3 JOIN HIGH 3 &7,5&8,6&9 LOW,7,8 3,9 &5&6 6 9 7 DUAL VOLTAGE DELTA-CONNECTED 3 8 5 VOLTAGE L L L3 JOIN HIGH 3 &7,5&8,6&9 LOW,6,7,,8 3,5,9 3

TERMINAL MARKINGS AND CONNECTIONS THREE-PHASE MOTORS SINGLE SPEED NEMA NOMENCLATURE LEADS 7 DUAL VOLTAGE EXTERNAL WYE CONNECTION 3 0 9 8 6 5 VOLTAGE L L L3 JOIN HIGH 3 &7,5&8,6&9, 0&& LOW,7,8 3,9 &5&6, 0&& 3 7 0 9 8 6 5 9 6 3 8 5 7 0 DUAL VOLTAGE WYE-CONNECTED START DELTA-CONNECTED RUN VOLTAGE CONN. L L L3 JOIN HIGH WYE 3 &7,5&8,6&9, 0&& DELTA,,0 3, &7,5&8,6&9 LOW WYE,7,8 3,9 &5&6, 0&& DELTA,6,7,,,8, 3,5,9, 0

TERMINAL MARKINGS AND CONNECTIONS THREE-PHASE MOTORS SINGLE SPEED IEC NOMENCLATURE 6 AND LEADS SINGLE AND DUAL VOLTAGE WYE-DELTA CONNECTIONS SINGLE VOLTAGE OPER. CONN. L L L3 JOIN MODE START WYE U V W U&V&W RUN DELTA U,W V,U W,V DUAL VOLTAGE* VOLT. CONN. L L L3 JOIN HIGH WYE U V W U&V&W LOW DELTA U,W V,U W,V *Voltage ratio:.73 to. W6 W W W5 W U U U5 W U6 V6 V5 V V W5 W W V6 DUAL VOLTAGE WYE-CONNECTED START DELTA-CONNECTED RUN W6 U V5 V U U5 U6 V VOLT. CONN. L L L3 JOIN HIGH WYE U V W U&U5,V&V5, W&W5,U6&V6&W6 DELTA U,W6 V,U6 W,V6 U&U5,V&V5, W&W5 LOW WYE U,U5 V,V5 W,W5 U&V&W, U6&V6&W6 U U V V W DELTA U,U5, V,V5, W,W5, W,W6 U,U6 V,V6 V W U U V 5

TERMINAL MARKINGS AND CONNECTIONS THREE-PHASE MOTORS TWO SPEED, SINGLE WINDING NEMA NOMENCLATURE 6 LEADS CONSTANT TORQUE CONNECTION Low-speed horsepower is half of high-speed horsepower.* 3 5 6 TYPICAL SPEED L L L3 CONNECTION HIGH 6 5 &&3 JOIN WYE LOW 3-5-6 OPEN DELTA VARIABLE TORQUE CONNECTION Low-speed horsepower is one-fourth of high-speed horsepower.* 3 5 6 TYPICAL SPEED L L L3 CONNECTION HIGH 6 5 &&3 JOIN WYE LOW 3-5-6 OPEN WYE CONSTANT HORSEPOWER CONNECTION Horsepower is the same at both speeds. TYPICAL SPEED L L L3 CONNECTION HIGH 6 5 --3 OPEN DELTA LOW 3 &5&6 JOIN WYE 6 * CAUTION: On European motors horsepower variance with speed may not be the same as shown above. 3 5 6

TERMINAL MARKINGS AND CONNECTIONS THREE-PHASE MOTORS TWO SPEED, SINGLE WINDING IEC NOMENCLATURE 6 LEADS U CONSTANT TORQUE CONNECTION V W V U W TYPICAL SPEED L L L3 CONN. HIGH W U V U&V&W JOIN WYE LOW U V W U-V-W OPEN DELTA VARIABLE TORQUE CONNECTION U V W V U W TYPICAL SPEED L L L3 CONN. HIGH W U V U&V&W JOIN WYE LOW U V W U-V-W OPEN WYE 7

TERMINAL MARKINGS AND CONNECTIONS SINGLE-PHASE MOTORS CAPACITOR-START NEMA NOMENCLATURE SINGLE VOLTAGE ROTATION L L CCW,8,5 CW,5,8 P THERMAL PROTECTOR P MAIN (RUN) WINDING 8 AUXILIARY (START) WINDING 5 CAP SWITCH DUAL VOLTAGE (MAIN WINDING ONLY) Auxiliary winding is always at low voltage rating; capacitor should be rated accordingly. THERMAL PROTECTOR MAIN (RUN) WINDING P P 3 8 AUXILIARY (START) WINDING 5 CAP SWITCH VOLTAGE ROTATION L L JOIN HIGH CCW,5 &3&8 CW,8 &3&5 LOW CCW,3,8,,5 CW,3,5,,8 8

TERMINAL MARKINGS AND CONNECTIONS SINGLE-PHASE MOTORS CAPACITOR-START NEMA NOMENCLATURE DUAL VOLTAGE (MAIN AND AUXILIARY WINDING) Capacitors in auxiliary windings are rated for lower voltage. THERMAL PROTECTOR VOLTAGE ROTATION L L JOIN HIGH CCW,8,5 &3,6&7 CW,5,8 &3,6&7 LOW CCW,3,6,8,,5,7 CW,3,5,7,,6,8 The switch in the auxiliary winding circuit has been omitted from this diagram. The connections to the switch must be made so that both auxiliary windings become de-energized when the switch is open. P P MAIN (RUN) WINDING 3 CAP 8 7 6 CAP 5 AUXILIARY (START) WINDING ROTATION: CCW Counter-clockwise CW Clockwise The direction of shaft rotation can be determined by facing the end of the motor opposite the drive. TERMINAL MARKINGS IDENTIFIED BY COLOR -Blue 5-Black P-No color assigned -White 6-No color assigned P-Brown 3-Orange 7-No color assigned -Yellow 8-Red NEMA MG -998 (Rev. 3),.. Note: May not apply for some definite-purpose motors. 9

TERMINAL MARKINGS AND CONNECTIONS FOR DC MOTORS (NEMA NOMENCLATURE) SHUNT MOTOR SHUNT FIELD F + INTERPOLES A ARMATURE A - F LINE COMPOUND MOTOR LINE SHUNT FIELD F + INTERPOLES SERIES FIELD ARMATURE A A S S - F LINE LINE SERIES MOTOR + INTERPOLES SERIES FIELD ARMATURE A A S S - LINE LINE All connections are for counterclockwise rotation facing the end opposite the drive. For clockwise rotation, interchange A and A. Some manufacturers connect the interpole winding on the A side of the armature. When the shunt field is separately excited, the same polarities must be observed for a given rotation. 0

TERMINAL MARKINGS AND CONNECTIONS FOR DC GENERATORS (NEMA NOMENCLATURE) SHUNT GENERATOR SHUNT FIELD F + INTERPOLES A ARMATURE A - F LINE LINE COMPOUND GENERATOR SHUNT FIELD F + INTERPOLES SERIES ARMATURE FIELD A A S S - F LINE LINE All connections are for counterclockwise rotation facing the end opposite the drive. For clockwise rotation, interchange A and A. Some manufacturers connect the interpole winding on the A side of the armature. For the above generators, the shunt field may be either selfexcited or separately excited. When it is self-excited, connections should be made as shown by the dotted lines. When the shunt field is separately excited, it is usually isolated from the other windings of the machine, but the polarity or the voltage applied to the shunt field should be as shown for the particular rotation and armature polarity. NEMA MG -998 (Rev. 3),., Note 5.

FULL-LOAD CURRENTS OF DC MOTORS* (RUNNING AT BASE SPEED) *For conductor slzlng only. FULL-LOAD CURRENT IN AMPERES RATED ARMATURE VOLTAGE HP 90V 0V 80V 0V 500V 550V.5.0 3..0.6.33 5...6.0.5 6.8 5. 3..7.75 9.6 7.6.8 3.8. 9.5 6..7.5 3. 8.3 6.6 7 0.8 8.5 3 5 6. 5 0 7 0 7.5 58 9 3.6. 0 76 38 8 6 5 55 7 0 7 3 3 5 89 3 38 30 06 5 6 0 0 67 6 50 73 83 75 60 06 99 90 75 55 3 00 3 6 8 5 5 05 85 50 506 6 00 675 330 9 OVER 00 HP Approx. Amps/hp 3..7.5 These are average direct-current quantities. Branch-circuit conductors supplying a single motor shall have an ampacity not less than 5 percent of the motor full-load current rating. Armature current varies inversely as applied voltage. Example: 0 hp motor, 300 volt armature 0 Armature current =0 x = amps 300 The above table is based on Table 30.7 of the National Electrical Code, 00. National Electrical Code and NEC are registered trade marks of the National Fire Protection Association, Inc. Quincy, MA 069. 3

FULL-LOAD CURRENTS THREE-PHASE SQUIRREL CAGE AND WOUND-ROTOR MOTORS* *For conductor sizing only FULL-LOAD CURRENT IN AMPERES HP 00V 08V 30V 60V 575V 300V 000V.5.5... 0.9.75 3.7 3.5 3..6.3.8.6...7.5 6.9 6.6 6.0 3.0. 7.8 7.5 6.8 3..7 3.0 0.6 9.6.8 3.9 5 7.5 6.7 5. 7.6 6. 7.5 5.3. 9 0 3. 30.8 8 5 8.3 6. 7 0 6. 59. 5 7 5 78. 7.8 68 3 7 30 9 88 80 0 3 0 0 0 5 50 50 3 30 65 5 60 77 69 5 77 6 6 9 75 9 96 77 0 00 85 73 8 99 6 5 359 33 3 56 5 3 8 50 396 360 80 37 00 55 58 80 0 9 9 8 50 30 60 35 300 36 89 7 350 336 83 8 00 77 38 95 55 50 55 03 59 500 590 7 8 68 OVER 00 HP Approx. Amps/hp.75.6...96.. Branch-circuit conductors supplying a single motor shall have an ampacity not less than 5 percent of the motor full-load current rating. Based on Table 30.50 of the National Electrical Code, 00.

FULL-LOAD CURRENTS THREE-PHASE SYNCHRONOUS MOTORS (UNITY POWER FACTOR) AND SINGLE-PHASE MOTORS* *For conductor sizing only THREE-PHASE SYNCHRONOUS MOTORS FULL-LOAD CURRENT IN AMPERES RATED VOLTAGE HP 60V 575V 300V 000V 00 00 80 0 5 5 00 5 50 50 0 30 7 00 00 60 0 3 50 50 00 50 9 300 300 0 60 35 350 353 8 7 00 03 3 80 6 500 500 00 00 58 600 600 80 0 69 700 705 56 8 800 805 6 6 93 900 905 7 8 0 000 960 768 9 0 SINGLE-PHASE MOTORS FULL-LOAD CURRENT IN AMPERES RATED VOLTAGE HP 5V 00V 08V 30V.67..5...5 5.8 3.3 3..9.3 7...0 3.6.5 9.8 5.6 5..9.75 3.8 7.9 7.6 6.9 6 9. 8.8 8.5 0.5 0 3.8 3. 3 3 9.6 8.7 7 5 56 3. 30.8 8 7.5 80 6 0 0 00 57.5 55 50 Branch-circuit conductors supplying a single motor shall have an ampacity not less than 5 percent of the motor full-load current rating. Based on Table 30.8 of the National Electrical Code, 00. 5

MAXIMUM LOCKED-ROTOR CURRENTS THREE-PHASE SQUIRREL CAGE MOTORS NEMA DESIGNS B, C AND D LOCKED-ROTOR CURRENT IN AMPERES 6 RATED VOLTAGE, 60 Hz HP 00V 30V 60V 575V 300V 000V.5 3 0 0 8.75 9 5 0 3 30 5.5 6 0 0 6 57 50 5 0 3 7 6 3 6 5 06 9 6 37 7.5 6 7 63 5 0 86 6 8 65 5 67 3 6 93 0 333 90 5 6 5 0 365 8 6 30 500 35 7 7 0 667 580 90 3 50 83 75 36 90 60 000 870 35 38 87 50 75 50 085 5 3 08 6 00 665 50 75 580 5 83 5 085 85 907 76 8 0 50 500 70 085 868 7 5 00 3335 900 50 60 90 67 50 00 3650 85 60 365 0 300 5060 00 00 760 0 53 350 5860 500 550 00 50 93 00 6670 5800 900 30 580 333 50 770 6500 350 600 650 37 500 830 750 365 900 75 7 The locked-rotor current of Design B, C and D constant-speed induction motors, when measured with rated voltage and frequency impressed and with rotor locked, shall not exceed the above values. Reference: NEMA MG -998 (Rev. 3),.35.. See NEMA MG -998 (Rev. 3),.35.3 for 50 Hz, 380 volts.

GENERAL SPEED-TORQUE CHARACTERISTICS THREE-PHASE INDUCTION MOTORS Speed (% of synchronous speed) 00 80 60 0 0 Design B Design A Design C Design D (5 % slip) 0 0 50 00 50 00 50 300 Torque (% of full-load torque) LOCKED LOCKED NEMA ROTOR BREAKDOWN ROTOR RELATIVE DESIGN TORQUE TORQUE CURRENT SLIP EFFICIENCY B 70-75%* 75-300%* 600-800% 0.5-5% Medium or High Applications: Fans, blowers, centrifugal pumps and compressors, motor-generator sets, etc., where starting torque requirements are relatively low. C 00-50%* 90-5%* 600-800% -5% Medium Applications: Conveyors, crushers, stirring machines, agitators, reciprocating pumps and compressors, etc., where starting under load is required. D 75% 75% 600-800% 5% Medium Applications: High peak loads with or without flywheels, such as punch presses, shears,elevators, extractors, winches, hoists, oil-well pumping, and wire-drawing machines. Based on NEMA MG 0-00, Table. NEMA Design A is a variation of Design B having higher locked-rotor current. *Higher values are for motors having lower horsepower ratings. 7

FULL-LOAD EFFICIENCIES THREE-PHASE, SQUIRREL CAGE, ENERGY EFFICIENT OPEN MOTORS (NEMA DESIGNS A AND B) POLE POLE 6 POLE HP NOMINAL MINIMUM NOMINAL MINIMUM NOMINAL MINIMUM EFFICIENCY EFFICIENCY EFFICIENCY EFFICIENCY EFFICIENCY EFFICIENCY.0 8.5 80.0 80.0 77.0.5 8.5 80.0 8.0 8.5 8.0 8.5.0 8.0 8.5 8.0 8.5 85.5 8.5 3.0 8.0 8.5 86.5 8.0 86.5 8.0 5.0 85.5 8.5 87.5 85.5 87.5 85.5 7.5 87.5 85.5 88.5 86.5 88.5 86.5 0.0 88.5 86.5 89.5 87.5 90. 88.5 5.0 89.5 87.5 9.0 89.5 90. 88.5 0.0 90. 88.5 9.0 89.5 9.0 89.5 5.0 9.0 89.5 9.7 90. 9.7 90. 30.0 9.0 89.5 9. 9.0 9. 9.0 0.0 9.7 90. 93.0 9.7 93.0 9.7 50.0 9. 9.0 93.0 9.7 93.0 9.7 60.0 93.0 9.7 93.6 9. 93.6 9. 75.0 93.0 9.7 9. 93.0 93.6 9. 00.0 93.0 9.7 9. 93.0 9. 93.0 5.0 93.6 9. 9.5 93.6 9. 93.0 50.0 93.6 9. 95.0 9. 9.5 93.6 00.0 9.5 93.6 95.0 9. 9.5 93.6 50.0 9.5 93.6 95. 9.5 95. 9.5 300.0 95.0 9. 95. 9.5 95. 9.5 350.0 95.0 9. 95. 9.5 95. 9.5 00.0 95. 9.5 95. 9.5 50.0 95.8 95.0 95.8 95.0 500.0 95.8 95.0 95.8 95.0 The full load efficiency of Design A and B motors rated 600 volts or less, when operating at rated voltage and frequency, shall not be less than the minimum efficiency listed in the table above for the motor to be classified as energy efficient. Nominal efficiency represents a value which should be used to compute the energy consumption of a motor or group of motors. Reference: NEMA MG -998 (Rev. 3),.60, Table -. The Energy Policy Act of 99 (USA): The nominal full-load efficiency of electric motors as specified in the Energy Policy Act of 99 is the same as that listed in the table for.0 to 00.0 hp motors. 8

FULL-LOAD EFFICIENCIES THREE-PHASE, SQUIRREL CAGE, ENERGY EFFICIENT ENCLOSED MOTORS (NEMA DESIGNS A AND B) POLE POLE 6 POLE HP NOMINAL MINIMUM NOMINAL MINIMUM NOMINAL MINIMUM EFFICIENCY EFFICIENCY EFFICIENCY EFFICIENCY EFFICIENCY EFFICIENCY.0 75.5 7.0 8.5 80.0 80.0 77.0.5 8.5 80.0 8.0 8.5 85.5 8.5.0 8.0 8.5 8.0 8.5 86.5 8.0 3.0 85.5 8.5 87.5 85.5 87.5 85.5 5.0 87.5 85.5 87.5 85.5 87.5 85.5 7.5 88.5 86.5 89.5 87.5 89.5 87.5 0.0 89.5 87.5 89.5 87.5 89.5 87.5 5.0 90. 88.5 9.0 89.5 90. 88.5 0.0 90. 88.5 9.0 89.5 90. 88.5 5.0 9.0 89.5 9. 9.0 9.7 90. 30.0 9.0 89.5 9. 9.0 9.7 90. 0.0 9.7 90. 93.0 9.7 93.0 9.7 50.0 9. 9.0 93.0 9.7 93.0 9.7 60.0 93.0 9.7 93.6 9. 93.6 9. 75.0 93.0 9.7 9. 93.0 93.6 9. 00.0 93.6 9. 9.5 93.6 9. 93.0 5.0 9.5 93.6 9.5 93.6 9. 93.0 50.0 9.5 93.6 95.0 9. 95.0 9. 00.0 95.0 9. 95.0 9. 95.0 9. 50.0 95. 9.5 95.0 9. 95.0 9. 300.0 95. 9.5 95. 9.5 95.0 9. 350.0 95. 9.5 95. 9.5 95.0 9. 00.0 95. 9.5 95. 9.5 50.0 95. 9.5 95. 9.5 500.0 95. 9.5 95.8 95.0 The full load efficiency of Design A and B motors rated 600 volts or less, when operating at rated voltage and frequency, shall not be less than the minimum efficiency listed in the table above for the motor to be classified as energy efficient. Nominal efficiency represents a value which should be used to compute the energy consumption of a motor or group of motors. Reference: NEMA MG -998 (Rev. 3),.60, Table -. The Energy Policy Act of 99 (USA): The nominal full-load efficiency of electric motors as specified in the Energy Policy Act of 99 is the same as that listed in the table for.0 to 00.0 hp motors. 9

NEMA FRAME ASSIGNMENTS THREE-PHASE OPEN MOTORS GENERAL PURPOSE NEMA 3600 RPM 800 RPM 00 RPM 900 RPM PROGRAM 95 96 95 96 95 96 95 96 HP ORIG. RERATE RERATE ORIG. RERATE RERATE ORIG. RERATE RERATE ORIG. RERATE RERATE 03 8 3T 0 8 5T 5 3 8T.5 03 8 3T 0 8 5T 8 8T 5 3 8T 0 8 5T 8 5T 5 3 8T 5 5 3T 3 8 5T 5 3 8T 5 5 3T 8 5U 5T 5 5 3 8T 5 5 8T 8 5U 5T 3 56U 5T 7.5 5 5 8T 8 5U 3T 3 56U 5T 36 8U 56T 0 8 5U 3T 3 56U 5T 36 8U 56T 36 86U 8T 5 3 56U 5T 36 8U 5T 36 3U 8T 365 36U 86T 0 36 8U 5T 36 86U 56T 365 36U 86T 0 36U 3T 5 36S 86U 56T 36 3U 8T 0 36U 3T 05 365U 36T

30 36S 3S 8TS 365 36U 86T 05 365U 36T 0U 36T 0 365S 36S 86TS 0 36U 3T 0U 36T 5 05U 365T 50 0S 36US 3TS 05S 365US 36T 5 05U 365T 50U U 0T 60 05S 365US 36TS S 0US 36TS 50U U 0T 505 5U 05T 75 S 0US 36TS 5S 05US 365TS 505 5U 05T T 00 5S 05US 365TS 50S US 0TS T 5T 5 50S US 0TS 505S 5US 05TS 5T 50 505S 5US 05TS TS 00 TS 5TS 50 5TS When motors are to be used with V-belts or chain drive, the correct frame size is the one shown but with the suffix letter S omitted. For the corresponding shaft extension dimensions, see Pages 8-3. 5

NEMA FRAME ASSIGNMENTS THREE-PHASE TEFC MOTORS GENERAL PURPOSE NEMA 3600 RPM 800 RPM 00 RPM 900 RPM PROGRAM 95 96 95 96 95 96 95 96 HP ORIG. RERATE RERATE ORIG. RERATE RERATE ORIG. RERATE RERATE ORIG. RERATE RERATE 03 8 3T 0 8 5T 5 3 8T.5 03 8 3T 0 8 5T 8 8T 5 3 8T 0 8 5T 8 5T 5 3 8T 5 5 3T 3 8 8T 5 3 8T 5 5 3T 8 5U 5T 5 5 3 8T 5 5 8T 8 5U 5T 3 56U 5T 7.5 5 5 3T 8 5U 3T 3 56U 5T 36 8U 56T 0 8 5U 5T 3 56U 5T 36 8U 56T 36 86U 8T 5 3 56U 5T 36 8U 5T 36 3U 8T 365 36U 86T 0 36 86U 56T 36 86U 56T 365 36U 86T 0 36U 3T 5 365S 3U 8TS 365 3U 8T 0 36U 3T 05 365U 36T 6

30 0S 36S 86TS 0 36U 86T 05 365U 36T 0U 36T 0 05S 36US 3TS 05 36U 3T 0U 36T 5 05U 365T 50 S 365US 36TS S 365US 36T 5 05U 365T 50U U 0T 60 5S 05US 36TS 5S 05US 36TS 50U U 0T 505 5U 05T 75 50S US 365TS 50S US 365TS 505 5U 05T T 00 505S 5US 05TS 505S 5US 05TS T 5T 5 TS TS 5T 50 5TS 5TS When motors are to be used with V-belt or chain drives, the correct frame size is the frame size shown but with the suffix letter S omitted. For the corresponding shaft extension dimensions, see Pages 8-3. 7

NEMA FRAME DIMENSIONS* FOOT-MOUNTED DC MACHINES F B * Dimensions in inches BA D E E H A FRAME A MAX B MAX D E F BA H.6.75.69.06 0.8 8 3.00..75.50 0.3 56 3.50. 3.00.75 0.3 56H 3.50. 5.00.75 0.3 AT 7.00 6.75 3.50.75 3.50.75 0.3 3AT 7.00 7.5 3.50.75.00.75 0.3 AT 7.00 7.75 3.50.75.50.75 0.3 5AT 7.00 8.5 3.50.75 5.00.75 0.3 6AT 7.00 8.75 3.50.75 5.50.75 0.3 7AT 7.00 9.50 3.50.75 6.5.75 0.3 8AT 7.00 0.5 3.50.75 7.00.75 0.3 9AT 7.00.5 3.50.75 8.00.75 0.3 0AT 7.00.5 3.50.75 9.00.75 0.3 AT 7.00 3.5 3.50.75 0.00.75 0.3 AT 7.00.5 3.50.75.00.75 0.3 6AT 8.00 6.00.00 3..00.50 0. 63AT 8.00 6.50.00 3..50.50 0. 6AT 8.00 7.00.00 3. 5.00.50 0. 65AT 8.00 7.50.00 3. 5.50.50 0. 66AT 8.00 8.0.00 3. 6.5.50 0. 67AT 8.00 9.00.00 3. 7.00.50 0. 68AT 8.00 0.00.00 3. 8.00.50 0. 69AT 8.00.00.00 3. 9.00.50 0. 60AT 8.00.00.00 3. 0.00.50 0. 8AT 9.00 6.50.50 3.75.50.75 0. 83AT 9.00 7.00.50 3.75 5.00.75 0. 8AT 9.00 7.50.50 3.75 5.50.75 0. 85AT 9.00 8.5.50 3.75 6.5.75 0. 86AT 9.00 9.00.50 3.75 7.00.75 0. 87AT 9.00 0.00.50 3.75 8.00.75 0. 88AT 9.00.00.50 3.75 9.00.75 0. 89AT 9.00.00.50 3.75 0.00.75 0. 80AT 9.00 3.00.50 3.75.00.75 0. 3AT 0.50 7.50 5.5.5 5.50 3.50 0. AT 0.50 8.5 5.5.5 6.5 3.50 0. 5AT 0.50 9.00 5.5.5 7.00 3.50 0. 6AT 0.50 0.00 5.5.5 8.00 3.50 0. 7AT 0.50.00 5.5.5 9.00 3.50 0. 8AT 0.50.00 5.5.5 0.00 3.50 0. 9AT 0.50 3.00 5.5.5.00 3.50 0. 0AT 0.50.50 5.5.5.50 3.50 0. 53AT.50 9.50 6.5 5.00 7.00.5 0.53 5AT.50 0.75 6.5 5.00 8.5.5 0.53 55AT.50.50 6.5 5.00 9.00.5 0.53 56AT.50.50 6.5 5.00 0.00.5 0.53 57AT.50 3.50 6.5 5.00.00.5 0.53 58AT.50 5.00 6.5 5.00.50.5 0.53 59AT.50 6.50 6.5 5.00.00.5 0.53

NEMA FRAME DIMENSIONS* FOOT-MOUNTED DC MACHINES CONTINUED * Dimensions in inches FRAME A MAX B MAX D E F BA H 83AT.00.00 7.00 5.50 8.00.75 0.53 8AT.00.50 7.00 5.50 9.50.75 0.53 85AT.00 3.00 7.00 5.50 0.00.75 0.53 86AT.00.00 7.00 5.50.00.75 0.53 87AT.00 5.50 7.00 5.50.50.75 0.53 88AT.00 7.00 7.00 5.50.00.75 0.53 89AT.00 9.00 7.00 5.50 6.00.75 0.53 33AT 6.00.50 8.00 6.5 9.00 5.5 0.66 3AT 6.00.00 8.00 6.5 0.50 5.5 0.66 35AT 6.00.50 8.00 6.5.00 5.5 0.66 36AT 6.00 5.50 8.00 6.5.00 5.5 0.66 37AT 6.00 7.50 8.00 6.5.00 5.5 0.66 38AT 6.00 9.50 8.00 6.5 6.00 5.5 0.66 39AT 6.00.50 8.00 6.5 8.00 5.5 0.66 363AT 8.00.00 9.00 7.00 0.00 5.88 0.8 36AT 8.00 5.5 9.00 7.00.5 5.88 0.8 365AT 8.00 6.5 9.00 7.00.5 5.88 0.8 366AT 8.00 8.00 9.00 7.00.00 5.88 0.8 367AT 8.00 0.00 9.00 7.00 6.00 5.88 0.8 368AT 8.00.00 9.00 7.00 8.00 5.88 0.8 369AT 8.00.00 9.00 7.00 0.00 5.88 0.8 03AT 0.00 5.00 0.00 8.00.00 6.6 0.9 0AT 0.00 6.5 0.00 8.00.5 6.6 0.9 05AT 0.00 7.75 0.00 8.00 3.75 6.6 0.9 06AT 0.00 0.00 0.00 8.00 6.00 6.6 0.9 07AT 0.00.00 0.00 8.00 8.00 6.6 0.9 08AT 0.00.00 0.00 8.00 0.00 6.6 0.9 09AT 0.00 6.00 0.00 8.00.00 6.6 0.9 3AT.00 6.50.00 9.00.50 7.50.06 AT.00 8.50.00 9.00 5.00 7.50.06 5AT.00 0.50.00 9.00 6.50 7.50.06 6AT.00.00.00 9.00 8.00 7.50.06 7AT.00.00.00 9.00 0.00 7.50.06 8AT.00 6.00.00 9.00.00 7.50.06 9AT.00 9.00.00 9.00 5.00 7.50.06 50AT 5.00 7.50.50 0.00.50 8.50.9 503AT 5.00 9.00.50 0.00.00 8.50.9 50AT 5.00.00.50 0.00 6.00 8.50.9 505AT 5.00 3.00.50 0.00 8.00 8.50.9 506AT 5.00 5.00.50 0.00 0.00 8.50.9 507AT 5.00 7.00.50 0.00.00 8.50.9 508AT 5.00 30.00.50 0.00 5.00 8.50.9 509AT 5.00 33.00.50 0.00 8.00 8.50.9 583A 9.00.00.50.50 6.00 0.00.9 58A 9.00 3.00.50.50 8.00 0.00.9 585A 9.00 5.00.50.50 0.00 0.00.9 586A 9.00 7.00.50.50.00 0.00.9 587A 9.00 30.00.50.50 5.00 0.00.9 588A 9.00 33.00.50.50 8.00 0.00.9 683A 3.00 5.00 7.00 3.50 0.00.50.9 68A 3.00 7.00 7.00 3.50.00.50.9 685A 3.00 30.00 7.00 3.50 5.00.50.9 686A 3.00 33.00 7.00 3.50 8.00.50.9 687A 3.00 37.00 7.00 3.50 3.00.50.9 688A 3.00.00 7.00 3.50 36.00.50.9 References and tolerances on dimensions: NEMA MG -998 (Rev. 3),.5.,.5.,.5.3 and.9. Frames to 56H, inclusive The H dimension is Width of Slot. Frames AT to 688A, inclusive The H dimension is Diameter of Hole. 5

NEMA SIZE STARTERS FOR THREE-PHASE MOTORS MAXIMUM HORSEPOWER THREE-PHASE MOTORS NEMA FULL VOLTAGE AUTOTRANSFORMER PART-WINDING WYE-DELTA SIZE STARTING STARTING STARTING STARTING 00V 30V 60V 00V 30V 60V 00V 30V 60V 00V 30V 60V 575V 575V 575V 575V 00.5.5 0 3 3 5 7.5 7.5 0 7.5 7.5 0 0 0 5 0 0 5 0 5 5 0 5 5 0 5 0 0 5 0 3 5 30 50 5 30 50 0 50 75 0 50 75 0 50 00 0 50 00 75 75 50 60 75 50 5 75 00 00 75 00 00 50 50 350 50 50 300 6 50 00 00 50 00 00 300 600 300 350 700 7 300 600 300 600 50 900 500 500 000 8 50 900 50 900 700 00 750 800 500 9 800 600 800 600 300 600 500 500 3000 66

STARTER ENCLOSURES TYPE NEMA ENCLOSURE General Purpose Indoor Dripproof Indoor 3 Dusttight, Raintight, Sleettight Outdoor 3R Raintight, Sleet Resistant Outdoor 3S Dusttight, Raintight, Sleettight Outdoor Watertight, Dusttight, Sleet Resistant Indoor & Outdoor X Watertight, Dusttight, Corrosion-Resistant Indoor & Outdoor 5 Dusttight, Dripproof Indoor 6 Occasionally Submersible, Watertight, Sleet Resistant Indoor & Outdoor 6P Watertight, Sleet Resistant Prolonged Submersion Indoor & Outdoor Dusttight and Driptight Indoor K Dusttight and Driptight, with Knockouts Indoor 3 Oiltight and Dusttight Indoor HAZARDOUS LOCATION STARTERS 7 Class I, Group A, B, C or D Hazardous Locations Indoor 8 Class I, Group A, B, C or D Hazardous Locations Indoor & Outdoor 9 Class II, Group E, F or G Hazardous Locations Indoor 0 Requirements of Mine Safety and Health Administration CONVERSION OF NEMA TYPE NUMBERS TO IEC CLASSIFICATION DESIGNATIONS (Cannot be used to convert IEC Classification Designations to NEMA Type Numbers) NEMA ENCLOSURE TYPE NUMBER 3 3R 3S and X 5 6 and 6P and K 3 IEC ENCLOSURE CLASSIFICATION DESIGNATION IP0 IP IP5 IP IP5 IP56 IP5 IP67 IP5 IP5 Note: This comparison is based on tests specified in IEC Publication 6059 (00-0). Reference: Information in the above tables is based on NEMA 50-997. 67

NEMA SIZE STARTERS FOR SINGLE-PHASE MOTORS CONTINUOUS CURRENT HORSEPOWER SIZE OF RATING AT AT CONTROLLER (AMPERES) 5V 30V 00 9 /3 0 8 7 3 P 36 3 5 5 3 7 / 3 90 7 / 5 Reference: NEMA ICS-993, Table --. DERATING FACTORS FOR CONDUCTORS IN A CONDUIT (PAGES 70-7) PERCENT OF VALUES IN NUMBER OF TABLES AS ADJUSTED CURRENT CARRYING FOR TEMPERATURE IF CONDUCTORS NECESSARY -6 80 7-9 70 0-0 50-30 5 3-0 0 & Above 35 Reprinted with permission from NFPA 70-00, National Electrical Code, copyright 00, National Fire Protection Association, Quincy, Massachusetts 069. 69

COMMON FRACTIONS OF AN INCH DECIMAL AND METRIC EQUIVALENTS FRACTION DECIMAL mm /6 0.056 0.397 /3 0.035 0.79 3/6 0.0688.9 /6 0.0650.588 5/6 0.078.98 3/3 0.09375.38 7/6 0.0938.778 /8 0.500 3.75 9/6 0.06 3.57 5/3 0.565 3.969 /6 0.788.366 3/6 0.8750.763 3/6 0.03 5.59 7/3 0.875 5.556 5/6 0.338 5.953 / 0.5000 6.350 7/6 0.656 6.77 9/3 0.85 7. 9/6 0.9688 7.5 5/6 0.350 7.938 /6 0.38 8.33 /3 0.3375 8.73 3/6 0.35938 9.8 3/8 0.37500 9.55 5/6 0.3906 9.9 3/3 0.065 0.39 7/6 0.88 0.76 7/6 0.3750.3 9/6 0.53.509 5/3 0.6875.906 3/6 0.838.303 / 0.50000.700 FRACTION DECIMAL mm 33/6 0.556 3.097 7/3 0.535 3.9 35/6 0.5688 3.89 9/6 0.5650.88 37/6 0.578.68 9/3 0.59375 5.08 39/6 0.60938 5.78 5/8 0.6500 5.875 /6 0.606 6.7 /3 0.6565 6.669 3/6 0.6788 7.066 /6 0.68750 7.63 5/6 0.703 7.859 3/3 0.7875 8.56 7/6 0.7338 8.653 3/ 0.75000 9.05 9/6 0.7656 9.7 5/3 0.785 9.8 5/6 0.79688 0. 3/6 0.850 0.638 53/6 0.88.03 7/3 0.8375.3 55/6 0.85938.88 7/8 0.87500.5 57/6 0.8906.6 9/3 0.9065 3.09 59/6 0.988 3.6 5/6 0.93750 3.83 6/6 0.953.09 3/3 0.96875.606 63/6 0.9838 5.003 /.00000 5.00 97

USEFUL FORMULAS FORMULAS FOR ELECTRIC MOTORS DIRECT TO FIND CURRENT SINGLE PHASE THREE PHASE Horsepower Current Efficiency E x I x EFF E x I x EFF x PF.73 x E x I x EFF x PF 76 76 76 76 x hp 76 x hp 76 x hp E x EFF E x EFF x PF.73 x E x EFF x PF 76 x hp 76 x hp 76 x hp E x I E x I x PF.73 x E x I x PF Power Factor Input watts E x I Input watts.73 x E x I E = Volts I = Amperes EFF = Efficiency (decimal) PF = Power factor (decimal) hp = Horsepower FORMULAS FOR ELECTRICAL CIRCUITS DIRECT TO FIND CURRENT SINGLE PHASE THREE PHASE Amperes Watts Watts Watts Volts Volts x Power factor.73 x Volts x Power factor Volt- Amperes Volts x Amperes.73 x Volts x Amperes Watts Volts x Amperes Volts x Amperes x Power factor.73 x Volts x Amperes x Power factor OHMS LAW CAPACITANCE IN MICROFARADS AT 60 HZ Ohms = Volts/Amperes (R = E/I) Amperes = Volts/Ohms (I = E/R) Volts = Amperes x Ohms (E = IR) Capacitance = Capacitance = 650 x Amperes Volts.65 x kvar (Volts) 98

USEFUL FORMULAS TEMPERATURE CORRECTION OF WINDING RESISTANCE R C = R H x (K + T C ) (K + T H ) R H = R C x (K + T H ) (K + T C ) MOTOR APPLICATION FORMULAS OUTPUT Horsepower = VALUE OF K Material K Aluminum 5 Copper 3.5 R C = Resistance at temperature T C (Ohms) R H = Resistance at temperature T H (Ohms) T C = Temperature of cold winding ( C) T H = Temperature of hot winding ( C) Torque (lb. ft) x rpm Kilowatts = Torque (N. m) x rpm 55 9550 Torque (lb. ft) = Horsepower x 55 Torque (N. m) = rpm Kilowatts x 9550 rpm For approximation, use: Full-load torque =.5 ft lb per hp per pole pair at 60 Hz Full-load torque = 3. N m per kilowatt per pole pair at 50 hz TIME FOR MOTOR TO REACH OPERATING SPEED Wk ( lb ft ) Speed change ( rpm) Seconds = 308 Avg. accelerating torque ( lb ft) lb ft =.0 kg m J( kg m ) Speed change ( rpm) kg m = 3.73 lb ft Seconds = 955. Avg. accelerating torque ( N m) Wk J } Inertia of load Load rpm = Inertia of rotor + Motor rpm Average accelerating torque = [(FLT + BDT)/] + BDT + LRT 3 Where: BDT = Breakdown torque FLT = Full-load torque LRT = Locked-rotor torque 99

CONVERSION FACTORS Length Area Volume MULTIPLY BY TO OBTAIN Centimeters x.3937 = Inches Feet x.0 = Inches Feet x.308 = Meters Inches x.5 = Centimeters Inches x 5. = Millimeters Kilometers x.6 = Miles Meters x 3.8 = Feet Meters x 39.37 = Inches Meters x.09 = Yards Miles x 580.0 = Feet Miles x.609 = Kilometers Millimeters x.03937 = Inches Yards x.9 = Meters Circular mils x 7.85x0-7 = Square inches Circular mils x.785 = Square mils Square centimeters x.55 = Square inches Square feet x.0 = Square inches Square feet x.099 = Square meters Square inches x 6.5 = Square centimeters Square meters x 0.76 = Square feet Square meters x.96 = Square yards Square millimeters x.0055 = Square inches Square mils x.73 = Circular mils Square yards x.836 = Square meters Cubic centimeters x.06 = Cubic inches Cubic feet x.083 = Cubic meters Cubic feet x 7.8 = Gallons Cubic inches x.55 = Ounces (fluid) Cubic meters x 35.3 = Cubic feet Cubic meters x.308 = Cubic yards Cubic meters x 6. = Gallons Cubic yards x.766 = Cubic meters Gallons x.337 = Cubic feet Gallons x 3.785 = Liters Liters x.6 = Gallons Liters x.057 = Quarts (liquid) Ounces (fluid) x.805 = Cubic inches Quarts (liquid) x.963 = Liters 0