Lab 14: 3-phase alternator.
|
|
|
- Felix Gregory
- 9 years ago
- Views:
Transcription
1 Lab 14: 3-phase alternator. Objective: to obtain the no-load saturation curve of the alternator; to determine the voltage regulation characteristic of the alternator with resistive, capacitive, and inductive loading; to observe the effect of unbalanced load. Equipment: Power Supply, DAI, Synchronous motor/generator module (8241), Squirrel cage induction motor (8221), DC motor (8211), Variable resistance (8311), Variable inductance (8321), Variable capacitance module (8331), Tachometer, Timing belt. Theory: The squirrel cage motor will be used in this exercise to drive the synchronous generator. Since no laboratory experiments were performed on a motor of this type, the following overview may be useful. The simplest and most widely-used rotor for induction motors is the so-called squirrel cage rotor, front which the squirrel cage induction motor gets its name. The squirrel cage rotor consists of a laminated iron core which is slotted lengthwise around its periphery. Solid bars of copper or aluminum are tightly pressed or embedded into the rotor slots. At both ends of the rotor, short-circuiting rings are welded or brazed to the bars to make a solid structure. The short-circuited bars, because their resistance is much less than the core, do not have to be specially insulated from the core. In some rotors the bars and end rings are cast as a single integral structure for placement on the core. The shortcircuiting elements actually form shorted turns that have high currents induced in them by the stator field flux. Compared to the intricately wound and arranged wound rotor or the armature of the DC motor, the squirrel cage rotor is relatively simple. It is easy to manufacture and is essentially troublefree in actual service. In an assembled squirrel cage induction motor, the periphery of the rotor is separated from the stator by a very small air gap. The width of this air gap, in fact, is as small as mechanical clearance needs will permit. This insures that the strongest possible electromagnetic induction action will take place. When power is applied to the stator of a practical induction motor, a rotating magnetic field is created by any one of the means you learned about. As the field begins to revolve, its flux lines cut the shorted turns embedded around the surface of the squirrel cage rotor and generate voltages in them by electromagnetic induction. Because these turns are short-circuits with very low resistance, the induced voltages cause high currents to circulate in the rotor bars. The circulating rotor currents then produce their own strong magnetic fields. These local rotor flux fields produce their own magnetic poles, which are attracted to the rotating field. Thus, the rotor revolves with the main field. The starting torque of the basic squirrel cage induction motor is low, because at rest the rotor has a relatively large inductive reactance (XL) with respect to its resistance (R). Under these conditions we would expect the rotor current to lag rotor voltage by 90 degrees. We thus say that the power factor in the circuit is low. This means that the motor is inefficient as a load and cannot derive really useful energy for its operation from the power source. Page 1
2 Despite the inefficiency, torque is developed and the motor begins to turn. As it starts turning, the difference in speed between rotor and rotating field, or slip, goes from a maximum of 100 percent to some intermediate value, say 50 percent As the slip decreases in this manner, the frequency of' the voltages induced in the rotor decreases, because the rotating field cuts conductors at a decreased rate; this, in turn, causes the overall inductive reactance in the circuit to decrease. As inductive reactance decreases, the power factor begins to increase. This improvement is reflected as an increase in torque and a subsequent increase in speed. When the slip drops to some value between 2 and 10 percent, the motor speed stabilizes. This stabilization occurs because every tendency for the motor speed to increase to where slip will drop below 2 percent is naturally offset by the fact that, as the rotor approaches within 2 percent of the synchronous speed, the effects of reduced induction overcome the previous tendency to increase torque as the motor is speeded up from start. Thus, the motor exhibits an automatic speed control characteristic similar to that of the DC shunt motor. The terms alternating current generator, synchronous generator, synchronous alternator, and alternator are commonly used interchangeably in engineering literature. Because synchronous generators are so much more commonly used than induction generators, the term alternator, as often used, and as used here, applies only to synchronous generators. Alternators are, by far, the most important source of electric energy. Alternators generate an AC voltage whose frequency depends entirely upon the speed of rotation. The generated voltage value depends upon the speed, the dc field excitation and the power factor of the load. As the DC field excitation of an alternator is increased, its speed being held constant, the magnetic flux, and hence, the output voltage, will also increase in direct proportion to the current. However, with progressive increases in DC field current, the flux will eventually reach a high enough value to saturate the iron in the alternator. Saturation in the iron means that there will be a smaller increase in flux for a given increase in DC field current. Because the generated voltage is directly related to the magnetic flux intensity, it can be used as a measure of the degree of saturation. The three phases of the alternator are mechanically spaced at equal intervals from each other, and therefore, the respective generated voltages are not in phase, but are displaced from each other by 120 electrical degrees. When an alternator delivering full rated output voltage is suddenly subjected to a short-circuit, very large currents will initially flow. However, these large short-circuit currents drop off rapidly to safe values if the short-circuit is maintained. The output voltage of an alternator depends essentially upon the total flux in the air-gap. At no load, this flux is established and determined exclusively by the DC field excitation. Under load, however, the air-gap flux is determined by the ampere-turns of the rotor and the ampere-turns of the stator. The latter may aid or oppose the MMF (magnetomotive force) of the rotor depending upon the power factor of the load. Leading power factors assist the rotor, and lagging power factors oppose it. Page 2
3 Because the stator MMF has such an important effect upon the magnetic flux, the voltage regulation of alternators is quite poor, and the dc field current must continuously be adjusted to keep the voltage constant under variable load conditions. If one phase of a 3-phase alternator is heavily loaded, its voltage will decrease due to the IR and IX L drops in the stator winding. This voltage drop cannot be compensated by modifying the dc field current because the voltages of the other two phases will also be changed. Therefore, it is essential that 3-phase alternators do not have loads that are badly unbalanced. The alternator regulation can be calculated as where E nl and E fl are the no-load and full-load voltages. Experiment: Enl Efl regulation = 100 % (14-1) E 1) Connect the circuit shown in Figure The speed of the squirrel cage motor will be assumed constant through the experiment. In the Metering window, enable three AC voltmeters and one DC ammeter. fl Figure 14-1 Couple the squirrel cage motor to the alternator with the timing belt. Set the alternator field rheostat at its utmost clockwise position for zero resistance. Make sure that the PS control knob is at its zero position. Page 3
4 2) Turn ON the PS. The motor should be running. Turn ON the switch on the synchronous motor/generator. Measure and record in a Data table the values of the excitation current I 1 and the voltages induced on the three winding E 1, E 2, and E 3 for the excitation currents from 0 to 0.9 A with the increment of 0.1 A. 3) Set the DC excitation current to approximately 0.2 A. Start the Oscilloscope and observe three voltages generated by the alternator. You may use the following channel setting for a better representation: 50 V/div, 10 ms/div. Import the scope data to a txt file. 4) Start the Phasor analyzer and observe the three phasors corresponding to the three output voltages. Print the phasor analyzer to a pdf-file using the PDF Creator. 5) Adjust the DC excitation until the generated voltages equal approximately to 208 V. Record the values of the excitation current and the three voltages generated in your data table. Turn OFF the PS without touching the voltage adjustment control. Reconnect your voltmeters to measure the voltages across each of the three windings and turn ON the PS. Measure and record in the Data table the values of the DC excitation current and the three voltages generated. Return the voltage to zero and turn OFF the PS. Disassemble your circuit and uncouple the motor and the generator. 6) Replace the squirrel cage motor by the DC motor and construct the circuit shown in Figure Note that the DC motor is connected to the fixed DC source while a variable DC is applied to the alternator rotor. Figure 14-2 Page 4
5 Couple the DC motor to the alternator with the timing belt. Connect the tachometer to the BNC terminal on the DC motor. Set the DC motor field rheostat at its utmost counterclockwise position for maximum resistance. Set the load resistance of each section to 300 Ω. 7) Turn ON the PS and adjust the DC motor rheostat for a motor speed of 1800 rpm. Note: this speed must be kept constant for the remainder of this experiment. Close the switch S on the synchronous motor and adjust the DC excitation until the output voltage of the alternator is approximately 120 V. Measure and record in a new Data table the values for full-load currents I 1 and I 2 and the output voltage. Open the Phasor analyzer window and assess the phase angle between the alternator voltage E 1 and the load current I 1. Print the result to a pdffile. Turn OFF all three switches on the resistance module for no load on the alternator. Measure and record in the Data table the values for full-load currents I 1 and I 2 and the output voltage. Remember to readjust the motor speed to 1800 rpm if necessary. Return the voltage to zero and turn OFF the PS. 8) Replace the resistive load by the inductive load. Set the load reactance of each section to 300 Ω. Turn ON the PS and adjust the DC motor rheostat for a motor speed of 1800 rpm. Adjust the DC excitation until the output voltage of the alternator is approximately 120 V. Measure and record in your Data table the values for full-load currents I 1 and I 2 and the output voltage. Evaluate (by means of the Phasor analyzer) the phase angle between the alternator voltage E 1 and the load current I 1. Print the result to a pdf-file. Turn OFF all three switches on the resistance module for no load on the alternator. Measure and record in the Data table the values for full-load currents I 1 and I 2 and the output voltage. Remember to readjust the motor speed to 1800 rpm if necessary. Return the voltage to zero and turn OFF the PS. 9) Replace the inductive load by the capacitive load. Set the load reactance of each section to 300 Ω. Turn ON the PS and adjust the DC motor rheostat for a motor speed of 1800 rpm. Adjust the DC excitation until the output voltage of the alternator is approximately 120 V. Measure and record in your Data table the values for full-load currents I 1 and I 2 and the output voltage. Evaluate (by means of the Phasor analyzer) the phase angle between the alternator voltage E 1 and the load current I 1. Print the result to a pdf-file. Turn OFF all three switches on the resistance module for no load on the alternator. Measure and record in the Data table the values for full-load currents I 1 and I 2 and the output voltage. Remember to readjust the motor speed to 1800 rpm if necessary. Return the voltage to zero and turn OFF the PS. 10) Construct the circuit shown in Figure Note that only one of the alternator phases has a load. Page 5
6 Figure 14-3 Turn ON the PS and adjust the DC motor rheostat for a motor speed of 1800 rpm. Adjust the DC excitation until the voltage across the load is approximately 208 V. Measure and record the three alternator output voltages. 11) Set up one of the programmable meters to read the frequency of voltage E 1. With the voltage across the load being approximately 208 V, measure and record the motor speed (it should be close to 1800 rpm). Next, by adjusting the field rheostat on the DC motor, adjust the motor speed to 1775, 1750, 1725, and 1700 rpm while measuring and recording the voltage E 1 and its frequency. Record these values (speed, voltage and frequency) into a new data table. In your report: 1) Using Matlab and the data collected in Part 2, calculate and plot the average output voltage of the alternator as a function of DC excitation current. Does this graph represent a linear dependence? Discuss possible reasons for non-linearity. 2) Explain why an AC voltage is generated in the absence of DC excitation? 3) Load to Matlab the oscilloscope data you collected in Part 3. On the same axes, plot the three output voltages as function of time (the plot should look similar to the oscilloscope screen seen in the lab). Make your graphs distinguishable. Judging from these plots, what do you conclude about the phase difference between the three generated voltages? Page 6
7 4) Include in your report the screenshot for the Phasor analyzer you printed to a pdf-file in Part 4. Does this result support your previous conclusion regarding the phase difference between the three generated voltages? 5) Report and compare the results of two measurements you took in Part 5. Was the DC excitation current approximately the same for both measurements? Do the measured voltages correspond to the ones coming from a normal 3-phase supply? 6) For the data collected in Part 7, calculate and report the alternator regulation with resistive loading. What is the phase angle between the voltage across the alternator winding and the current flowing through the load? Use the Phasor plot you saved in Part 7 to support your answer. 7) For the data collected in Part 8, calculate and report the alternator regulation with inductive loading. What is the phase angle between the voltage across the alternator winding and the current flowing through the load? Use the Phasor plot you saved in Part 8 to support your answer. 8) For the data collected in Part 8, calculate and report the alternator regulation with capacitive loading. What is the phase angle between the voltage across the alternator winding and the current flowing through the load? Use the Phasor plot you saved in Part 8 to support your answer. 9) Propose an explanation to the phenomenon you observed while changing types of alternator load. Based on your observations, would it be dangerous to connect an alternator to a long transmission line if the line acts like a capacitor (i.e., has a capacitive reactance)? Explain. 10) Report the three alternator output voltages you have recorded in Part 10 for a single-phase load. What is your conclusion regarding unequal loading of alternators? 11) Load the data you have recorded in Part 11. Plot the dependence of the generated voltage as a function of the prime mover s speed. On the separate axes, plot the dependence of the generated voltage s frequency as a function of the prime mover s speed. Comment on the resulting graphs. Page 7
Lab 8: DC generators: shunt, series, and compounded.
Lab 8: DC generators: shunt, series, and compounded. Objective: to study the properties of DC generators under no-load and full-load conditions; to learn how to connect these generators; to obtain their
Equipment: Power Supply, DAI, Wound rotor induction motor (8231), Electrodynamometer (8960), timing belt.
Lab 13: Wound rotor induction motor. Objective: to examine the construction of a 3-phase wound rotor induction motor; to understand exciting current, synchronous speed and slip in this motor; to determine
Equipment: Power Supply, DAI, Synchronous motor (8241), Electrodynamometer (8960), Tachometer, Timing belt.
Lab 9: Synchronous motor. Objective: to examine the design of a 3-phase synchronous motor; to learn how to connect it; to obtain its starting characteristic; to determine the full-load characteristic of
Equipment: Power Supply, DAI, Universal motor (8254), Electrodynamometer (8960), timing belt.
Lab 12: The universal motor. Objective: to examine the construction of the universal motor; to determine its no-load and full-load characteristics while operating on AC; to determine its no-load and full-load
DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EE2302 - ELECTRICAL MACHINES II UNIT-I SYNCHRONOUS GENERATOR
1 DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING Constructional details Types of rotors EE2302 - ELECTRICAL MACHINES II UNIT-I SYNCHRONOUS GENERATOR PART A 1.
DIRECT CURRENT GENERATORS
DIRECT CURRENT GENERATORS Revision 12:50 14 Nov 05 INTRODUCTION A generator is a machine that converts mechanical energy into electrical energy by using the principle of magnetic induction. This principle
2. A conductor of length 2m moves at 4m/s at 30 to a uniform magnetic field of 0.1T. Which one of the following gives the e.m.f. generated?
Extra Questions - 2 1. A straight length of wire moves through a uniform magnetic field. The e.m.f. produced across the ends of the wire will be maximum if it moves: a) along the lines of magnetic flux
Equipment: Power Supply, DAI, Transformer (8341), Variable resistance (8311), Variable inductance (8321), Variable capacitance (8331)
Lab 5: Single-phase transformer operations. Objective: to examine the design of single-phase transformers; to study the voltage and current ratios of transformers; to study the voltage regulation of the
13 ELECTRIC MOTORS. 13.1 Basic Relations
13 ELECTRIC MOTORS Modern underwater vehicles and surface vessels are making increased use of electrical actuators, for all range of tasks including weaponry, control surfaces, and main propulsion. This
NO LOAD & BLOCK ROTOR TEST ON THREE PHASE INDUCTION MOTOR
INDEX NO. : M-142 TECHNICAL MANUAL FOR NO LOAD & BLOCK ROTOR TEST ON THREE PHASE INDUCTION MOTOR Manufactured by : PREMIER TRADING CORPORATION (An ISO 9001:2000 Certified Company) 212/1, Mansarover Civil
SYNCHRONOUS MACHINES
SYNCHRONOUS MACHINES The geometry of a synchronous machine is quite similar to that of the induction machine. The stator core and windings of a three-phase synchronous machine are practically identical
Motor Fundamentals. DC Motor
Motor Fundamentals Before we can examine the function of a drive, we must understand the basic operation of the motor. It is used to convert the electrical energy, supplied by the controller, to mechanical
8 Speed control of Induction Machines
8 Speed control of Induction Machines We have seen the speed torque characteristic of the machine. In the stable region of operation in the motoring mode, the curve is rather steep and goes from zero torque
Synchronous motor. Type. Non-excited motors
Synchronous motor A synchronous electric motor is an AC motor in which the rotation rate of the shaft is synchronized with the frequency of the AC supply current; the rotation period is exactly equal to
Principles and Working of DC and AC machines
BITS Pilani Dubai Campus Principles and Working of DC and AC machines Dr Jagadish Nayak Constructional features BITS Pilani Dubai Campus DC Generator A generator consists of a stationary portion called
Unit 33 Three-Phase Motors
Unit 33 Three-Phase Motors Objectives: Discuss the operation of wound rotor motors. Discuss the operation of selsyn motors. Discuss the operation of synchronous motors. Determine the direction of rotation
Basics of Electricity
Basics of Electricity Generator Theory PJM State & Member Training Dept. PJM 2014 8/6/2013 Objectives The student will be able to: Describe the process of electromagnetic induction Identify the major components
Introduction. Three-phase induction motors are the most common and frequently encountered machines in industry
Induction Motors Introduction Three-phase induction motors are the most common and frequently encountered machines in industry - simple design, rugged, low-price, easy maintenance - wide range of power
Principles of Adjustable Frequency Drives
What is an Adjustable Frequency Drive? An adjustable frequency drive is a system for controlling the speed of an AC motor by controlling the frequency of the power supplied to the motor. A basic adjustable
SECTION 4 ELECTRIC MOTORS UNIT 17: TYPES OF ELECTRIC MOTORS
SECTION 4 ELECTRIC MOTORS UNIT 17: TYPES OF ELECTRIC MOTORS UNIT OBJECTIVES After studying this unit, the reader should be able to Describe the different types of open single-phase motors used to drive
Equipment: Power Supply, DAI, Variable resistance (8311), Variable inductance (8321)
Lab 4: 3-phase circuits. Objective: to study voltage-current relationships in 3-phase circuits; to learn to make delta and Y connections; to calculate and measure real, apparent, and reactive powers. Equipment:
Direct Current Motors
Direct Current Motors DC MOTORS The DC machine can operate as a generator and as a motor. Chap 5. Electrical Machines by Wildi, 6 e Lecturer: R. Alba-Flores Alfred State College Spring 2008 When a DC machine
CHAPTER 5 SYNCHRONOUS GENERATOR
CHPTER 5 SYNCHRONOUS GENERTOR Summary: 1. Synchronous Generator Construction 2. The Speed of Rotation of a Synchronous Generator 3. The Internal Generated Voltage of a Synchronous Generator 4. The Equivalent
FREQUENCY CONTROLLED AC MOTOR DRIVE
FREQUENCY CONTROLLED AC MOTOR DRIVE 1.0 Features of Standard AC Motors The squirrel cage induction motor is the electrical motor motor type most widely used in industry. This leading position results mainly
Three-Phase Induction Motor
EXPERIMENT Induction motor Three-Phase Induction Motors 208V LL OBJECTIVE This experiment demonstrates the performance of squirrel-cage induction motors and the method for deriving electrical equivalent
UNIVERSITY OF WATERLOO ELECTRICAL & COMPUTER ENGINEERING DEPARTMENT ME269 ELECTROMECHANICAL DEVICES AND POWER PROCESSING.
UNIVERSITY OF WATERLOO ELECTRICAL & COMPUTER ENGINEERING DEPARTMENT ME269 ELECTROMECHANICAL DEVICES AND POWER PROCESSING. Group # First Name Last Name UserID @uwaterloo.ca Experiment #3: DIRECT CURRENT
Motors and Generators
Motors and Generators Electro-mechanical devices: convert electrical energy to mechanical motion/work and vice versa Operate on the coupling between currentcarrying conductors and magnetic fields Governed
AC Induction Motor Slip What It Is And How To Minimize It
AC Induction Motor Slip What It Is And How To Minimize It Mauri Peltola, ABB Oy, Helsinki, Finland The alternating current (AC) induction motor is often referred to as the workhorse of the industry because
AC Generators and Motors
AC Generators and Motors Course No: E03-008 Credit: 3 PDH A. Bhatia Continuing Education and Development, Inc. 9 Greyridge Farm Court Stony Point, NY 10980 P: (877) 322-5800 F: (877) 322-4774 [email protected]
Inductors in AC Circuits
Inductors in AC Circuits Name Section Resistors, inductors, and capacitors all have the effect of modifying the size of the current in an AC circuit and the time at which the current reaches its maximum
AC Motor Speed. n s = synchronous speed (in RPM), f = frequency (in Hz), and p = the number of poles
AC Induction Motors Simplest and most rugged electric motor Consists of wound stator and rotor assembly AC in the primary member (stator) induces current in the secondary member (rotor) Combined electromagnetic
Keywords: synchronous generator, synchronous motor, automatic voltage regulator, V- curves, synchronizing power, hunting, excitation system
SYNCHRONOUS MACHINES Tze-Fun Chan Hong Kong Polytechnic University, Hong Kong, China Keywords: synchronous generator, synchronous motor, automatic voltage regulator, V- curves, synchronizing power, hunting,
Induction Motor Theory
PDHonline Course E176 (3 PDH) Induction Motor Theory Instructor: Jerry R. Bednarczyk, P.E. 2012 PDH Online PDH Center 5272 Meadow Estates Drive Fairfax, VA 22030-6658 Phone & Fax: 703-988-0088 www.pdhonline.org
How To Understand And Understand The Electrical Power System
DOE-HDBK-1011/4-92 JUNE 1992 DOE FUNDAMENTALS HANDBOOK ELECTRICAL SCIENCE Volume 4 of 4 U.S. Department of Energy Washington, D.C. 20585 FSC-6910 Distribution Statement A. Approved for public release;
Single-Phase AC Synchronous Generator
ST Series Single-Phase AC Synchronous Generator Instructions for Operation and Maintenance English to English translation by R.G. Keen, May 2004. ST Series of Single-Phase AC Synchronous Generators Description
CHAPTER 4 DESIGN OF INTEGRAL SLOT AND FRACTIONAL SLOT BRUSHLESS DC MOTOR
47 CHAPTER 4 DESIGN OF INTEGRAL SLOT AND FRACTIONAL SLOT BRUSHLESS DC MOTOR 4.1 INTRODUCTION This chapter deals with the design of 24 slots 8 poles, 48 slots 16 poles and 60 slots 16 poles brushless dc
AC generator theory. Resources and methods for learning about these subjects (list a few here, in preparation for your research):
AC generator theory This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,
*ADVANCED ELECTRIC GENERATOR & CONTROL FOR HIGH SPEED MICRO/MINI TURBINE BASED POWER SYSTEMS
*ADVANCED ELECTRIC GENERATOR & CONTROL FOR HIGH SPEED MICRO/MINI TURBINE BASED POWER SYSTEMS Jay Vaidya, President Electrodynamics Associates, Inc. 409 Eastbridge Drive, Oviedo, FL 32765 and Earl Gregory,
Renewable Energy Laboratory for Engineering Students
dspace User Conference 2010 India Sept 24 th 10 Renewable Energy Laboratory for Engineering Students H.T Jadhav, S. D. Joshi Rajarambapu Institute Of Technology ABSTRACT Renewal Energy is now included
IV. Three-Phase Induction Machines. Induction Machines
IV. Three-Phase Induction Machines Induction Machines 1 2 3 4 5 6 7 8 9 10 11 12 13 Example 1: A 480V, 60 Hz, 6-pole, three-phase, delta-connected induction motor has the following parameters: R 1 =0.461
Prof. Krishna Vasudevan, Prof. G. Sridhara Rao, Prof. P. Sasidhara Rao
6 Synchronous motor 6.1 Principle of operation In order to understand the principle of operation of a synchronous motor, let us examine what happens if we connect the armature winding (laid out in the
AND8008/D. Solid State Control Solutions for Three Phase 1 HP Motor APPLICATION NOTE
Solid State Control Solutions for Three Phase 1 HP Motor APPLICATION NOTE INTRODUCTION In all kinds of manufacturing, it is very common to have equipment that has three phase motors for doing different
The DC Motor/Generator Commutation Mystery. Commutation and Brushes. DC Machine Basics
The DC Motor/Generator Commutation Mystery One small, yet vital piece of the DC electric motor puzzle is the carbon brush. Using the correct carbon brush is a key component for outstanding motor life,
The purposes of this experiment are to test Faraday's Law qualitatively and to test Lenz's Law.
260 17-1 I. THEORY EXPERIMENT 17 QUALITATIVE STUDY OF INDUCED EMF Along the extended central axis of a bar magnet, the magnetic field vector B r, on the side nearer the North pole, points away from this
Synchronous generators are built in large units, their rating ranging from tens to hundreds of megawatts.
II. Synchronous Generators Synchronous machines are principally used as alternating current (AC) generators. They supply the electric power used by all sectors of modern societies: industrial, commercial,
INDUCTION REGULATOR. Objective:
INDUCTION REGULATOR Objective: Using a wound rotor induction motor an Induction Regulator, study the effect of rotor position on the output voltage of the regulator. Also study its behaviour under load
Power Quality Paper #3
The Effect of Voltage Dips On Induction Motors by: M D McCulloch 1. INTRODUCTION Voltage depressions caused by faults on the system affect the performance of induction motors, in terms of the production
Introduction. Upon completion of Basics of AC Motors you should be able to:
Table of Contents Introduction...2 AC Motors...4 Force and Motion...6 AC Motor Construction... 12 Magnetism... 17 Electromagnetism... 19 Developing a Rotating Magnetic Field...24 Rotor Rotation...29 Motor
EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 4 - ALTERNATING CURRENT
EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 4 - ALTERNATING CURRENT 4 Understand single-phase alternating current (ac) theory Single phase AC
VOLTAGE REGULATOR AND PARALLEL OPERATION
VOLTAGE REGULATOR AND PARALLEL OPERATION Generator sets are operated in parallel to improve fuel economy and reliability of the power supply. Economy is improved with multiple paralleled generators by
ET 332b Ac Electric Machines and Power Systems
Instructor: Dr. Carl Spezia, PE Office: Engr. D110 Phone: 453-7839 E-mail: [email protected] ET 332b Ac Electric Machines and Power Systems Office Hours: 9:00 am - 10:00 am M-W-F 2:00 pm - 3:00 pm M-W-F
DC GENERATOR THEORY. LIST the three conditions necessary to induce a voltage into a conductor.
DC Generators DC generators are widely used to produce a DC voltage. The amount of voltage produced depends on a variety of factors. EO 1.5 LIST the three conditions necessary to induce a voltage into
Module Title: Electrotechnology for Mech L7
CORK INSTITUTE OF TECHNOLOGY INSTITIÚID TEICNEOLAÍOCHTA CHORCAÍ Autumn Examinations 2012 Module Title: Electrotechnology for Mech L7 Module Code: ELEC7007 School: School of Mechanical, Electrical and Process
Welcome to Linear Controls Quarterly Training
Welcome to Linear Controls Quarterly Training Introduction to Power Generation Objectives Supply attendees with basic knowledge of power generators and voltage regulators and provide the fundamentals of
Occupational Profile: Electrical & Electronics Engineering Technician
Occupational Profile: Electrical & Electronics Engineering Technician A competent Electrical & Electronics Engineering Technician should be able to demonstrate the following skills and competences: 1.
Edmund Li. Where is defined as the mutual inductance between and and has the SI units of Henries (H).
INDUCTANCE MUTUAL INDUCTANCE If we consider two neighbouring closed loops and with bounding surfaces respectively then a current through will create a magnetic field which will link with as the flux passes
Chapter 22: Electric motors and electromagnetic induction
Chapter 22: Electric motors and electromagnetic induction The motor effect movement from electricity When a current is passed through a wire placed in a magnetic field a force is produced which acts on
Digital Energy ITI. Instrument Transformer Basic Technical Information and Application
g Digital Energy ITI Instrument Transformer Basic Technical Information and Application Table of Contents DEFINITIONS AND FUNCTIONS CONSTRUCTION FEATURES MAGNETIC CIRCUITS RATING AND RATIO CURRENT TRANSFORMER
BALDOR ELECTRIC COMPANY SERVO CONTROL FACTS A HANDBOOK EXPLAINING THE BASICS OF MOTION
BALDOR ELECTRIC COMPANY SERVO CONTROL FACTS A HANDBOOK EXPLAINING THE BASICS OF MOTION MN1205 TABLE OF CONTENTS TYPES OF MOTORS.............. 3 OPEN LOOP/CLOSED LOOP..... 9 WHAT IS A SERVO..............
5. Measurement of a magnetic field
H 5. Measurement of a magnetic field 5.1 Introduction Magnetic fields play an important role in physics and engineering. In this experiment, three different methods are examined for the measurement of
AC Generators. Basic Generator
AC Generators Basic Generator A basic generator consists of a magnetic field, an armature, slip rings, brushes and a resistive load. The magnetic field is usually an electromagnet. An armature is any number
SHIP SERVICE GENERATORS (AC)
CHAPTER 14 SHIP SERVICE GENERATORS (AC) INTRODUCTION All generators change mechanical energy into electrical energy. This is the easiest way to transfer power over distances. Fuel is used to operate the
PHASOR DIAGRAMS HANDS-ON RELAY SCHOOL WSU PULLMAN, WA. RON ALEXANDER - BPA
PHASOR DIAGRAMS HANDS-ON RELAY SCHOOL WSU PULLMAN, WA. RON ALEXANDER - BPA What are phasors??? In normal practice, the phasor represents the rms maximum value of the positive half cycle of the sinusoid
Ampere's Law. Introduction. times the current enclosed in that loop: Ampere's Law states that the line integral of B and dl over a closed path is 0
1 Ampere's Law Purpose: To investigate Ampere's Law by measuring how magnetic field varies over a closed path; to examine how magnetic field depends upon current. Apparatus: Solenoid and path integral
HIGH SPEED PERMANENT MAGNET SYNCHRONOUS MOTOR / GENERATOR DESIGN FOR FLYWHEEL APPLICATIONS
HIGH SPEED PERMANENT MAGNET SYNCHRONOUS MOTOR / GENERATOR DESIGN FOR FLYWHEEL APPLICATIONS Aleksandr Nagorny, Ph.D. National Research Council Outline Introduction Selection of the Rated Point The major
MILWAUKEE SCHOOL OF ENGINEERING LABORATORY SESSION 5 MAGNETIZATION CURVE OF A DC GENERATOR
ILWUKEE SCHL F ENGINEEING LBTY SESSIN 5 GNETIZTIN CUE F DC GENET CUTIN: High voltages are present in this Laboratory Experiment! Do not make any connections with the power on! The power must be turned
NATIONAL CERTIFICATE (VOCATIONAL)
NATIONAL CERTIFICATE (VOCATIONAL) SUBJECT GUIDELINES ELECTRICAL PRINCIPLES AND PRACTICE NQF Level 4 September 2007 ELECTRICAL PRINCIPLES AND PRACTICE LEVEL 4 CONTENTS INTRODUCTION 1 DURATION AND TUITION
1. The diagram below represents magnetic lines of force within a region of space.
1. The diagram below represents magnetic lines of force within a region of space. 4. In which diagram below is the magnetic flux density at point P greatest? (1) (3) (2) (4) The magnetic field is strongest
Reading assignment: All students should read the Appendix about using oscilloscopes.
10. A ircuits* Objective: To learn how to analyze current and voltage relationships in alternating current (a.c.) circuits. You will use the method of phasors, or the vector addition of rotating vectors
Full representation of the real transformer
TRASFORMERS EQVALET CRCT OF TWO-WDG TRASFORMER TR- Dots show the points of higher potential. There are applied following conventions of arrow directions: -for primary circuit -the passive sign convention
Chen. Vibration Motor. Application note
Vibration Motor Application note Yangyi Chen April 4 th, 2013 1 Table of Contents Pages Executive Summary ---------------------------------------------------------------------------------------- 1 1. Table
REPORT ON CANDIDATES WORK IN THE CARIBBEAN ADVANCED PROFICIENCY EXAMINATION MAY/JUNE 2008 ELECTRICAL AND ELECTRONIC TECHNOLOGY (TRINIDAD AND TOBAGO)
CARIBBEAN EXAMINATIONS COUNCIL REPORT ON CANDIDATES WORK IN THE CARIBBEAN ADVANCED PROFICIENCY EXAMINATION MAY/JUNE 2008 ELECTRICAL AND ELECTRONIC TECHNOLOGY (TRINIDAD AND TOBAGO) Copyright 2008 Caribbean
COMPUTER AIDED ELECTRICAL DRAWING (CAED) 10EE65
COMPUTER AIDED ELECTRICAL DRAWING (CAED) EE Winding Diagrams: (i) DC Winding diagrams (ii) AC Winding Diagrams Terminologies used in winding diagrams: Conductor: An individual piece of wire placed in the
Lecture 6: AC machinery fundamentals
Lecture 6: AC machinery fundamentals 1 Instructor: Dr. Gleb V. Tcheslavski Contact: [email protected] Office Hours: TBD; Room 030 Class web site: http://ee.lamar.edu/gleb/ind ex.htm Preliminary notes AC
Science and Reactor Fundamentals Electrical CNSC Technical Training Group. Table of Contents
Electrical Science and Reactor Fundamentals Electrical i Table of Contents 1 Objectives... 1 1.1 BASIC ELECTRICAL THEORY... 1 1.2 TRANSFORMERS... 1 1.3 GENERATORS... 2 1.4 PROTECTION... 3 2 BASIC ELECTRICAL
chapter6 Electrical machines and motors Unit 1 outcome 6
Electrical machines and motors chapter6 Unit 1 outcome 6 The principles of magnetism are central to many of the tasks you will carry out as an electrician. Magnetism, like gravity, is a fundamental force.
ELECTRICAL ENGINEERING
ELECTRICAL ENGINEERING The master degree programme of Teacher Training in Electronical Engineering is designed to develop graduates competencies in the field of Curriculum Development and Instructional
ELECTRIC MOTORS. Energy Efficiency Reference Guide STATOR POLE COMMUTATOR LINE
ELECTRIC MOTORS Energy Efficiency Reference Guide STATOR POLE N BRUSH COMMUTATOR S LINE DISCLAIMER: Neither CEA Technologies Inc. (CEATI), the authors, nor any of the organizations providing funding support
6. Synchronous machine dynamics
1 6. Synchronous machine dynamics In the middle of eighties, the present Type 59 synchronous machine model program was implemented and put into practical use in EMTP. In the first half of nineties, also
Topics to cover: 1. Structures and Drive Circuits 2. Equivalent Circuit. Introduction
Chapter 12. Brushless DC Motors Topics to cover: 1. Structures and Drive Circuits 2. Equivalent Circuit 3. Performance 4. Applications Introduction Conventional dc motors are highly efficient and their
CONTINUOUS AUTOMATED FLUX MONITORING FOR TURBINE GENERATOR ROTOR CONDITION ASSESSMENT
CONTINUOUS AUTOMATED FLUX MONITORING FOR TURBINE GENERATOR ROTOR CONDITION ASSESSMENT Abstract J. Kapler, S. Campbell, M. Credland Iris Power Engineering Inc. Toronto, Canada Flux monitoring via permanently
UNIT 3 AUTOMOBILE ELECTRICAL SYSTEMS
UNIT 3 AUTOMOBILE ELECTRICAL SYSTEMS Automobile Electrical Structure 3.1 Introduction Objectives 3.2 Ignition System 3.3 Requirement of an Ignition System 3.4 Types of Ignition 3.4.1 Battery or Coil Ignition
Application Note. So You Need to Measure Some Inductors?
So You Need to Measure Some nductors? Take a look at the 1910 nductance Analyzer. Although specifically designed for production testing of inductors and coils, in addition to measuring inductance (L),
ELECTRICAL ENGINEERING Vol. III - Induction Motor and Self-Excited Induction Generator - Tze-Fun Chan
INDUCTION MOTOR AND SELFEXCITED INDUCTION GENERATOR TzeFun Chan The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China Keywords: threephase induction motor, singlephase induction motor,
Data Sheet. AC Industrial Electric Motors
Data Pack B Issued ovember 2005 1502325812 Data Sheet AC Industrial Electric Motors Standards organisations The RS-ABB range of ac induction motors is produced to common European standards, these being
ATTACHMENT F. Electric Utility Contact Information Utility Name. For Office Use Only
ATTACHMENT F CATEGORY 2 GENERATOR INTERCONNECTION APPLICATION FOR ALL PROJECTS WITH AGGREGATE GENERATOR OUTPUT OF MORE THAN 20 KW BUT LESS THAN OR EQUAL TO 150 KW Also Serves as Application for Category
PART I THEORY, CONSTRUCTION, AND OPERATION
PART I THEORY, CONSTRUCTION, AND OPERATION 1 CHAPTER 1 PRINCIPLES OF OPERATION OF SYNCHRONOUS MACHINES The synchronous electrical generator (also called alternator) belongs to the family of electric rotating
Control of Motor Characteristics by Squirrel-Cage Rotor Design
394 CHAPTER 7 INDUCTION MOTORS Control of Motor Characteristics by Squirrel-Cage Rotor Design The reactance X 2 in an induction motor equivalent circuit represents the referred form of the rotor s leakage
ST Style Generator. Owners/Operators Manual
ST Style Generator Owners/Operators Manual LLC 216 Airport Rd NE Milledgeville, GA 31061 478-453-9358-Office 478-457-5524- Tom Cell 478-251-2914- Chris Cell Table of Contents Page 2. Table of Contents
Chapter 6. Synchronous Machines
48550 Electrical Energy Technology Chapter 6. Synchronous Machines Topics to cover: 1) Introduction 2) Synchronous machine structures 3) Rotating magnetic field 4) Equivalent circuit model 5) Performance
Chapter 16. Current Transformer Design. Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.
Chapter 16 Current Transformer Design Table of Contents 1. Introduction 2. Analysis of the Input Current Component 3. Unique to a Current Transformer 4. Current Transformer Circuit Applications 5. Current
Traditional Design of Cage Rotor Induction Motors. Ronald G. Harley and Yao Duan Georgia Institute of Technology November, 2009
Traditional Design of Cage Rotor Induction Motors Ronald G. Harley and Yao Duan Georgia Institute of Technology November, 2009 Rating considerations Dimensions of a machine depend on Torque at a specific
7. Reactive energy compensation
593 7. Reactive energy compensation 594 7. REACTIVE ENERGY COMPENSATION Reactive energy compensation is an important element for reducing the electricity bill and improving the quality of the electrical
Chapter 11 SERVO VALVES. Fluid Power Circuits and Controls, John S.Cundiff, 2001
Chapter 11 SERVO VALVES Fluid Power Circuits and Controls, John S.Cundiff, 2001 Servo valves were developed to facilitate the adjustment of fluid flow based on the changes in the load motion. 1 Typical
Vehicle Design Summit Electric Hub Motor (V2) Eric Conner Harvey Tang Matthew Peddie
Vehicle Design Summit Electric Hub Motor (V2) Eric Conner Harvey Tang Matthew Peddie Motivation The AHPV from VDS 1.0 used an expensive, NGM electric hub motor, costing roughly $8000. (picture on right)
USER MANUAL THE RESOLVER
USR MANUAL TH RSOLVR ICP Department 4 has developed and produced a wide range of transmitter type resolvers for military and industrial applications. From a mechanical viewpoint, these products have been
Lab E1: Introduction to Circuits
E1.1 Lab E1: Introduction to Circuits The purpose of the this lab is to introduce you to some basic instrumentation used in electrical circuits. You will learn to use a DC power supply, a digital multimeter
Understanding the Alternator
http://www.autoshop101.com THIS AUTOMOTIVE SERIES ON ALTERNATORS HAS BEEN DEVELOPED BY KEVIN R. SULLIVAN PROFESSOR OF AUTOMOTIVE TECHNOLOGY AT SKYLINE COLLEGE SAN BRUNO, CALIFORNIA ALL RIGHTS RESERVED
C Standard AC Motors
C Standard AC Standard AC C-1 Overview, Product Series... C-2 Constant... C-9 C-21 C-113 Reversible C-147 Overview, Product Series Constant Reversible Electromagnetic Brake C-155 Electromagnetic Brake
