Power-to-Gas (P2G ): Chancen für künftige Energieversorgung und Mobilität



Similar documents
The Energy Transition in Germany Past, Present and Future

Energy Infrastructure Day. Why does a consultant become shareholder of a Power-to-Gas company? Hans Poser, Munich, 6 November 2014

Storing bioenergy and renewable electricity in the natural gas grid

Berlin, June 14, nd Annual Electricity Price & Load Forecasting Forum June Tim Buber

Integrating End-User and Grid Focused Batteries and Long-Term Power-to-Gas Storage for Reaching a 100 % Renewable Energy Supply

Smart Energy Systems Energy Efficient Buildings and the Design of future Sustainable Energy Systems

POWER-TO-GAS TURN-KEY SYSTEMS

Merit Order of Energy Storages by 2030 The Impact of Technological Megatrends on Future Electricity Prices. Berlin, November 27, 2012

Peaks of Electric and Wind Power - Where to go? Power-to-Liquid (Silicon Fire-Methanol)

Hydrogen as Storage Option in the Energy System of the Future

Power to Gas - state of the art and perspectives

Power to Gas - an economic approach?

Future Energy Systems

From today s systems to the future renewable energy systems. Iva Ridjan US-DK summer school AAU Copenhagen 17 August 2015

Dezentrale versus zentrale Energieversorgung 2050 (centralized versus decentralized energy supply 2050)

RENEWABLE ENERGY MIX FOR EGYPT

Magazine for Smart Gas Technologies, Infrastructure and Utilisation. Offering a Solution to the Energy Storage Problem? AUTHORS

Workshop Putting Science into Standards: Power-to-Hydrogen and HCNG

State of the art of solid biomass technologies in Germany

Heating technology mix in a future German energy system dominated by renewables

The Energy Turnaround in Europe and its Consequences for Renewable Generation, Energy Infrastructure and end-use

CFA Lectures Renewable Energy Investments: Opportunities and Risks

Cheap electricity through world s most efficient fuel cell technology

Power-to-Gas: Technology and Business Model Progress Presentation to the IPHE Workshop

Cutting Edge Technologies: Industry Insights

Germany s Renewable Energy Promotion

Fuel cell microchp: Greener and cheaper energy for all

Prioritizing biomass in the sustainable Smart Society. Henrik Wenzel University of Southern Denmark

Elektrolyse - Potenziale zur Integration regenerativer Stromproduktion

Why Cities will have the Key Role in 100% Renewable Power Systems

Anwendungen mit der Fronius Energiezelle

High temperature electrolysis (SOEC) for the production of renewable fuels

Power-to-heat. DIW - Forum on Flexibility Options Berlin,

Innovative processes for thermochemical SNG production from biomass

Financing Hydrogen Projects Business cases and political support

Green Gases Practical concepts for reliable sustainable energy supply

Comparison of Recent Trends in Sustainable Energy Development in Japan, U.K., Germany and France

Gasförmige und flüssige synthetische Energieträger aus Biomasse Stand der Entwicklungen an der TU Wien. Hermann HOFBAUER, TU Wien

Hydrogen Production from Biogas by Sorption-Enhanced Steam Methane Reforming (SE-SMR)

urban energy transition research topics, methods and aims in architecture and urban planning

Half the cost Half the carbon

Renewable Energy Sources Act (EEG) Key features, development and perspectives

LANDFILL GAS TO ENERGY- COMBINED ENGINE AND ORC-PROCESS

Technical challenges and R&D in the field of electricity supply systems

John Bøgild Hansen, Haldor Topsøe. Energinet.dk s VE gas dag 2011 En industriaktørs synspunkter

"Renewable Energies in NRW- Opportunities and Challenges "Erneuerbare Energien in NRW - Chancen und Herausforderungen

Potential of Steam Energy in PV-Hybrid Systems. Prof. Dr.-Ing. Klaus Brinkmann

Biogas - Trends in Germany Biogas as a key in future energy systems

Simulation of a base case for future IGCC concepts with CO 2 capture

RENEWABLE ENERGY IN ENERGY SCENARIOS FOR GERMANY

Siemens Fuel Gasification Technology Stoffliche Nutzung der Braunkohle

AGFW-Statement. Public Consultation. Roadmap for a low carbon economy. Frankfurt am Main, 8th December 2010 Or

A 100% renewable Barbados and lower energy bills

with global applications Higher national employment Lower emissions of greenhouse gases More efficient use of resources

Is Power to Gas Feasible in Japan?

HYDROPOWER AND POWER-TO-GAS STORAGE OPTIONS: THE BRAZILIAN ENERGY SYSTEM CASE

Smart Grids initiative. Electrical Engineering Institute of Renewable Energies Dipl.-Wirtsch.-Ing. Alexander von Scheven 1

Renewable energy opportunities in the transformation of the energy system

GERMANY AS A SOLAR ROLE MODEL FOR THE WORLD?

Germany's energy transition: Status quo and Challenges.

Hydrogenics Investor Presentation January 2014

EDISON- Grüner Strom mit Elektroautos

Independent planners in fermentation

Electrolysis for grid balancing Where are we?

From solid fuels to substitute natural gas (SNG) using TREMP

Green Energy in Europe - Potentials and Prospects

From forest to gas in the transmission system. Ulf Molén,

Physics and Economy of Energy Storage

CO 2 Conversion to Methane Project

Life Cycle Assessment of Swiss Electricity Mixes

Audi e-gas-project. Life Cycle Assessment

TOWARDS HYDROGEN ENERGY ECONOMY IN INDIA

Business Model for Power to Gas/Liquids - Potentials, Challenges and Uncertainties

Introduction to portfolio of Hydrogen Production, Distribution and Storage projects. Nikolaos Lymperopoulos, Project Manager

PHOTOVOLTAICS IN THE GERMAN POWER SYSTEM

Regional Smart Electricity Markets

FACTS The most important data on renewable energy in Germany. Clear and concise.

Perspectives on Upstream, Midstream and Greenstream Integration

Trends from the use of biogas technology in Germany

MWRA Energy Efforts & Savings FY02 to FY11 Ten Year Summary Report

Coupling the electricity and heat sectors - the key to the transformation of the energy system

New Burner Technology for Low Grade Biofuels

Extracting CO 2 from seawater: Climate change mitigation and renewable liquid fuel

Establishing a European Green Gas Market - Steps toward a low carbon economy

Biomethane in Vehicles. October 2008

Progressive Performance Audi on the way to the leading premium brand

IDEAS Energy Innovation Contest 2012 Winners

Germany's renewable energy sector in the context of energy transition.

Preparatory Paper on Focal Areas to Support a Sustainable Energy System in the Electricity Sector

Looking ahead: Future Scenarios for Europe s Power Supply Grid

New technical solutions for energy efficient buildings

12.5: Generating Current Electricity pg. 518

310 Exam Questions. 1) Discuss the energy efficiency, and why increasing efficiency does not lower the amount of total energy consumed.

The development of storage demand in Germany's energy transi6on. Results of the latest VDE Study

Old markets, new markets and new market modells für Energy Storage. Ideas derived from technical requirements. Institut für Elektrische Energietechnik

/HNR: V1.0. John Bernander, Bioenergi som motor, Oslo

Biogas and Biomethane

De energievoorziening in 2040;

BIOENERGY IN GERMANY: STATUS QUO AND OUTLOOK

Renewable Energies in Egypt Activities of TU Berlin. Dipl.-Ing. Johannes Wellmann TU Berlin, Campus El Gouna

Transcription:

EnBW, Waldaupark, Stuttgart, 12.10.2012 Power-to-Gas (P2G ): Chancen für künftige Energieversorgung und Mobilität M. Specht, U. Zuberbühler Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg Mit Beiträgen von: F. Baumgart, A. Brinner, B. Feigl, V. Frick, M. Löffler, S. Schwarz, B. Stürmer und:

Agenda: Power-to-Gas (P2G ) ZSW Results Goal Principle of P2G -Process Layout / Construction / Experimental Results / Development Status 25kW el Plant, 250kW el Plant,. Facts / Frame Conditions (CO 2 Resources, Economics) Conclusion

Power-to-Gas (P2G ): Ziele Verstetigung der fluktuierenden Erneuerbaren Energien Saisonale Speicherung > 1 Woche Kraftstoff für nachhaltige Mobilität Reduktion der Agrarfläche für Energiepflanzen

Long Term Storage of Renewable Energy (RE) via P2G -FAQ - Wie erfolgt die Langzeit-Energiespeicherung heute? Welche Speicherkapazität für Erneuerbare Energie wird benötigt? Was ist der beste Pfad EE herzustellen und zu speichern? Kann die bestehende Infrastruktur zur Speicherung und Verteilung genutzt werden? Umwelteinflüsse: Landverbrauch für Speicherung und Energieübertragung? Wo kommt das CO2 für das P2G-Verfahren her? Was ist der zukünftige Kraftstoff für Mobilität?

Energy Consumption and Storage Capacity in Germany (2008) Electricity Natural gas Liquid fuels 1) Consumption [TWh/a] 615 930 707 Average power [GW] 70 106 2) 81 Storage capacity [TWh] 0,04 3) 217 4) 250 5) Calculated operating range of installed storage capacity 6) [h] 0,6 2000 3100 1) Petrol, diesel, kerosene 2) Seasonally fluctuating 3) Pumped hydro storage 4) 47 Underground gas storage facilities [Landesamt für Bergbau, Energie und Geologie (LBEG), Hannover] 5) Provisioning of petrol, diesel, kerosene and heating oil 6) Related to average power Required storage capacity for electricity grid in DE: tens of TWh! Required fuel demand for mobility: hundreds of TWh!

Agenda: Power-to-Gas (P2G ) ZSW Results Goal Principle of P2G -Process Layout / Construction / Experimental Results / Development Status 25kW el Plant, 250kW el Plant,. Facts / Frame Conditions (CO 2 Resources, Economics) Conclusion

Principle of P2G : Coupling of Electrolysis, CO 2 -Source, Methanisation, and Gas Feed-in

Methanation of CO x Methanation: 3 H 2 + CO CH 4 + H 2 O ΔH R0 = -206,4 kj/mol 4 H 2 + CO 2 CH 4 + 2 H 2 O ΔH R0 = -164,9 kj/mol Shift- Reaction: H 2 O + CO H 2 + CO 2 ΔH R0 = -41,5 kj/mol

Concept of Power-to-Gas (P2G ) and Interconnection with Mobility Electricity grid Gas distribution system Wind Solar Power plant / Combined heat & power POWER GENERATION ELECTRICITY STORAGE Gas storage H 2 Electrolysis / H 2 buffer H 2 CH 4 Methanation CO 2 CO 2 CO 2 buffer CO 2 Electricity H 2 SNG Mobility Battery Electric Vehicle Fuel Cell Vehicle CNG Vehicle

Agenda: Power-to-Gas (P2G ) ZSW Results Goal Principle of P2G -Process Layout / Construction / Experimental Results / Development Status 25kW el Plant, 250kW el Plant,. Facts / Frame Conditions (CO 2 Resources, Economics) Conclusion

Power-to-Gas - Technology: Process Flow Sheet of 25kW el -P2G -Plant

25kW el -P2G -Plant: Technical Realisation for SolarFuel Company CH 4 -Filling station ca. 15 kg, 200 bar CO 2 - Recovery Electrolyser

25kW el -P2G - Container: Operation with CO 2 and at Biogas Plants with Biogas and PSA Off-Gas Beta-Anlage 2011-Anlage an Biogasanlage Werlte 2011 Morbach 2009 Alpha-Anlage Stuttgart Source: SolarFuel

Power-to-Gas - Concept: Option 1- Interconnection with Biogas Plant (via Biogas) Grid Gas distribution system Wind Solar Biomass CCPP / µ-chp POWER GENERATION ELECTRICITY STORAGE Gas storage Biogas plant Biogas CH 4 /CO 2 Electrolysis / H 2 buffer CH 4 /CO 2 buffer H 2 Biogas CH 4 /CO 2 Methanation H 2 CH 4 Heat CCPP: Combined Cycle Power Plant; µ-chp: micro Combined Heat and Power Plant

25kW el -P2G - Container: Operation with Biogas at Morbach (juwi) Biogas Plant 100 CH4 H2 CO2 O2 100 90 90 80 80 y_ch 4 [Vol-%] 70 60 50 40 30 70 60 50 40 30 y_co 2, y_h 2, y_o 2 [Vol-%] 20 20 10 10 0 0 00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 Dauer [hh:mm]

Power-to-Gas - Concept: Option 2- Interconnection with Biogas Plant (via Off-gas) Grid Gas distribution system Wind Solar Biomass CCPP / µ-chp POWER GENERATION ELECTRICITY STORAGE Gas storage Biogas plant with Bio-CH 4 production Off-gas (CO 2 ) Electrolysis / H 2 buffer CO 2 buffer Heat H 2 CO 2 Methanation H 2 CH 4 CH 4 CCPP: Combined Cycle Power Plant; µ-chp: micro Combined Heat and Power Plant

25kW el -P2G Container (25 kw e ): Operation with Off-Gas at Werlte Biogas Plant CH4 H2 CO2 O2 Measurement of Gas Composition: Source ZSW 100 90 80 100 90 80 y_ch 4 [Vol-%] 70 60 50 40 30 70 60 50 40 30 y_co 2, y_h 2, y_o 2 [Vol-%] 20 20 10 10 0 00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00 12:00 0 Dauer [hh:mm] Gasanalysis: Source EWE AG

Goals of the Ongoing 250kW el -P2G -Project (1) Further development of P2G technology Process optimisation (efficiency, dynamics,.) Scalability of methanisation reactor Transfer of operating data: 250 kw 6 MW Transition to commercialization Start of operation: end of 2012 Co-operation partners of ZSW: Electrolysis Stacks for 250 kw e System

Goals of the Ongoing 250kW el -P2G -Project (2) Disparity in fixed bed reactor Methanation technologies in 250kW el -P2G -Project Number of fixed bed reactors Cooling agent Interstage cooling Gas recirculation Cooling Circuit H 2 O Educt Gas Gas Recirculation Cost reduction potential of electrolysis, methanation, etc. Cooling Circuit Energy-economic integration SNG

Installation of 250kWel-P2G -Plant at Gas Storage Area in Stuttgart-Vaihingen Source: http://maps.google.de

Installation of 250kW el -P2G -Plant at Gas Storage Area in Stuttgart-Vaihingen ZSW P2G Plant Facility

Installation of 250kW el -P2G -Plant at Gas Storage Area in Stuttgart-Vaihingen Methanisation Grid Connection CO 2 -Storage Recycle Gas Compressor Electrolyser Gas Storage

Electrolyser 250kW el -P2G : Plant Design

250kW el -P2G : Plant Construction Public Fund:

250kW el -P2G : Plant Construction Methanisation Recycle Gas Compressor Grid Power Station 1MW Public Fund: Electrolysis

250kWel-P2G : Plant Completion Public Fund:

250kW el -P2G : Plant Completion Public Fund:

250kW el -P2G : Final Acceptance Test of Electrolysis Technical data of the electrolysis system - measured at Final Acceptance Test: Pressure: 6 11bar a (100% load) DC-Power (max.): 280 kw at 430 ma/cm 2 H 2 production rate: 65 Nm 3 /h Gas purity: 0,11 Vol.-% H 2 ino 2 (P N ) Status of implementation: Completion: 31.05.2012 Commissioning: 22.06.2012 Final Acceptance Test (FAT): 25.06.2012 Electrolysis stack A = 1000 cm 2 i = 430 ma/cm 2 P = 80 kw max.

Schematic Diagram of a P2G - IPSEpro Simulation Settings Energy demand electrolysis: System pressure: Grid pressure: 4 kwh el /m 3 N H2 7 bar abs 16 bar abs

Simulation Result: Influence of Electrolysis Efficiency on P2G System Efficiency (Power-to-SNG) 70 65 System efficiency [%] 60 55 50 45 40 3,5 3,7 3,9 4,1 4,3 4,5 4,7 4,9 5,1 Electrolysis power requirement [kwh el /m N 3 H2 ]

SolarFuel Layout of 6000kW el -P2G - Plant in Werlte (Audi e-gas Project) Electrolysis Methanisation

Sustainable Mobility: 6000kW el -P2G - Plant in Werlte for Fueling Audi Vehicles with e-gas e-gas-project signing of contract Audi/SolarFuel at 4.11.2011

Agenda: Power-to-Gas (P2G ) ZSW Results Goal Principle of P2G -Process Layout / Construction / Experimental Results / Development Status 25kW el Plant, 250kW el Plant,. Facts / Frame Conditions (CO 2 Resources, Economics) Conclusion

Biogenic Carbon Resources for P2G Is enough biogenic carbon for P2G available?

Biogenic CO 2 (CO) Resources: via Anaerobic Digestion, Ethanol Production, Gasification Anaerobic Digestion: C 6 H 12 O 6 3 CH 4 + 3 CO 2 Ethanol Production: C 6 H 12 O 6 2 C 2 H 5 OH + 2 CO 2 Thermo-chemical Gasification: Biomass H 2, CO, CO 2

CO 2 / Carbon Potential in Germany for the Production of C-based Fuels Carbon Resource CO 2 C Biogas Plants SNG Production Potential [t/a] [t/a ] [TWh gas /a] CH 4 Gas Share 7.3 * 10 6 2.0 * 10 6 39 CO 2 Gas Share 5.1 * 10 6 1.4 * 10 6 27 Energetic Biomass Utilisation in DE today (without Biogas) 73 * 10 6 20 * 10 6 385 Non-renewable Trash 25 * 10 6 6.8 * 10 6 130 Cement / Limestone Production 17 * 10 6 4.8 * 10 6 92 CCPP/CCU 1) (or SOFC/CCU) 27 * 10 6 7.3 * 10 6 135 Fossile Power Plants 309 * 10 6 84 * 10 6 1618 CO 2 from Air unlimited 1) Direct CO 2 recycling: CCPP/CCU: Combined Cycle Power Plant / Carbon Capture and Utilisation 25 GW, 3000 h/a, η = 50 %, CO 2 retention: 90 % SNG: Substitute Natural Gas

P2G - Economics What are the costs of a P2G plant?

Cost Estimate of Electrolysis and Overall P2G -Plant /kw > 8 cent/kwh H2 (4000 h/a; without electricity costs) 4000 < 2 cent/kwh H2 (4000 h/a; without electricity costs) 2000 Goal overall plant Goal Electrolysis 1000 300 t

Agenda: Power-to-Gas (P2G ) ZSW Results Goal Principle of P2G -Process Layout / Construction / Experimental Results / Development Status 25kW el Plant, 250kW el Plant,. Facts / Frame Conditions (CO 2 Resources, Economics) Conclusion

Conclusion: Advantages of P2G - Technology Inspiriert von der Natur: P2G = künstliche Photosynthese Biomasse und Erneuerbare Energie sind ideale Partner Methan ist ein ideales Speichermedium für Erneuerbare Energie Nahezu unbegrenzte Speicherkapazität im Gasnetz mit Untergrund speichern Stabilisierung der Stromnetze (positive und negative Regelenergie) Vereinigung der Energiesektoren Strom- und Gasnetz sowie Mobilität

Thanks for your kind attention. An interesting discussion! P2G -ROADMAP