Lezioni di Tecnologie e Materiali per l Elettronica



Similar documents
Introduction to VLSI Fabrication Technologies. Emanuele Baravelli

Conductivity of silicon can be changed several orders of magnitude by introducing impurity atoms in silicon crystal lattice.

ELEC 3908, Physical Electronics, Lecture 15. BJT Structure and Fabrication

Advanced VLSI Design CMOS Processing Technology

Graduate Student Presentations

Lecture 030 DSM CMOS Technology (3/24/10) Page 030-1

Semiconductor doping. Si solar Cell

Integrated Circuit Packaging and Thermal Design

AN900 APPLICATION NOTE

VLSI Fabrication Process

Implementation Of High-k/Metal Gates In High-Volume Manufacturing

Solar Photovoltaic (PV) Cells

Chapter 7-1. Definition of ALD

Introduction to CMOS VLSI Design

Chapter 1 Introduction to The Semiconductor Industry 2005 VLSI TECH. 1

CRYSTAL DEFECTS: Point defects

Grad Student Presentation Topics PHGN/CHEN/MLGN 435/535: Interdisciplinary Silicon Processing Laboratory

Damage-free, All-dry Via Etch Resist and Residue Removal Processes

Wafer Manufacturing. Reading Assignments: Plummer, Chap 3.1~3.4

For Touch Panel and LCD Sputtering/PECVD/ Wet Processing

The MOSFET Transistor

Sheet Resistance = R (L/W) = R N L

CONTENTS. Preface Energy bands of a crystal (intuitive approach)

Fabrication and Manufacturing (Basics) Batch processes

Printed Circuits. Danilo Manstretta. microlab.unipv.it/ AA 2012/2013 Lezioni di Tecnologie e Materiali per l Elettronica

Introduction to Semiconductor Manufacturing Technology. Chapter 1, Introduction. Hong Xiao, Ph. D.

Photolithography. Class: Figure Various ways in which dust particles can interfere with photomask patterns.

Coating Technology: Evaporation Vs Sputtering

How To Implant Anneal Ion Beam

Vacuum Evaporation Recap

INF4420. Outline. Layout and CMOS processing technology. CMOS Fabrication overview. Design rules. Layout of passive and active componets.

A Plasma Doping Process for 3D FinFET Source/ Drain Extensions

INTRODUCTION TO ION IMPLANTATION Dr. Lynn Fuller, Dr. Renan Turkman Dr Robert Pearson

Types of Epitaxy. Homoepitaxy. Heteroepitaxy

Etching Etch Definitions Isotropic Etching: same in all direction Anisotropic Etching: direction sensitive Selectivity: etch rate difference between

III. Wet and Dry Etching

Lecture 12. Physical Vapor Deposition: Evaporation and Sputtering Reading: Chapter 12. ECE Dr. Alan Doolittle

Winbond W2E512/W27E257 EEPROM

Contamination. Cleanroom. Cleanroom for micro and nano fabrication. Particle Contamination and Yield in Semiconductors.

Silicon-On-Glass MEMS. Design. Handbook

IBS - Ion Beam Services

Chapter 5. Second Edition ( 2001 McGraw-Hill) 5.6 Doped GaAs. Solution

h e l p s y o u C O N T R O L

DESIGN, FABRICATION AND ELETRICAL CHARACTERIZATION OF SOI FINFET TRANSISTORS

Chapter 11 PVD and Metallization

Results Overview Wafer Edge Film Removal using Laser

Dry Etching and Reactive Ion Etching (RIE)

STMicroelectronics. Deep Sub-Micron Processes 130nm, 65 nm, 40nm, 28nm CMOS, 28nm FDSOI. SOI Processes 130nm, 65nm. SiGe 130nm

1700V Bi-Mode Insulated Gate Transistor (BIGT) on Thin Wafer Technology

DEVELOPMENTS & TRENDS IN FEOL MATERIALS FOR ADVANCED SEMICONDUCTOR DEVICES Michael Corbett mcorbett@linx-consulting.com Semicon Taiwan2015

Ultra-High Density Phase-Change Storage and Memory

Semiconductors, diodes, transistors

Dependence of the thickness and composition of the HfO 2 /Si interface layer on annealing

Dry Film Photoresist & Material Solutions for 3D/TSV

FEATURE ARTICLE. Figure 1: Current vs. Forward Voltage Curves for Silicon Schottky Diodes with High, Medium, Low and ZBD Barrier Heights

Figure Process flow from starting material to polished wafer.

CS257 Introduction to Nanocomputing

MEMS Processes from CMP

Nanotechnologies for the Integrated Circuits

CVD SILICON CARBIDE. CVD SILICON CARBIDE s attributes include:

Study of tungsten oxidation in O 2 /H 2 /N 2 downstream plasma

CO2005: Electronics I (FET) Electronics I, Neamen 3th Ed. 1

Application Notes FREQUENCY LINEAR TUNING VARACTORS FREQUENCY LINEAR TUNING VARACTORS THE DEFINITION OF S (RELATIVE SENSITIVITY)

Solid-State Physics: The Theory of Semiconductors (Ch ) SteveSekula, 30 March 2010 (created 29 March 2010)

Module 7 Wet and Dry Etching. Class Notes

Improved Contact Formation for Large Area Solar Cells Using the Alternative Seed Layer (ASL) Process

Chapter 5: Diffusion. 5.1 Steady-State Diffusion

High power picosecond lasers enable higher efficiency solar cells.

2. Deposition process

Tableting Punch Performance Can Be Improved With Precision Coatings

Picosun World Forum, Espoo years of ALD. Tuomo Suntola, Picosun Oy. Tuomo Suntola, Picosun Oy

Solid State Detectors = Semi-Conductor based Detectors

1.Introduction. Introduction. Most of slides come from Semiconductor Manufacturing Technology by Michael Quirk and Julian Serda.

JePPIX Course Processing Wet and dry etching processes. Huub Ambrosius

OLED display. Ying Cao

What is this course is about? Design of Digital Circuitsit. Digital Integrated Circuits. What is this course is about?

Microstockage d énergie Les dernières avancées. S. Martin (CEA-LITEN / LCMS Grenoble)

CYCLOTENE Advanced Electronics Resins (Photo BCB) Processing Procedures for 20µm Photo-BCB Layers Using XUS35078 type 3

Development of New Inkjet Head Applying MEMS Technology and Thin Film Actuator

MOS (metal-oxidesemiconductor) 李 2003/12/19

Fabrication of PN-Junction Diode by IC- Fabrication process

ADVANCED WAFER PROCESSING WITH NEW MATERIALS. ASM International Analyst and Investor Technology Seminar Semicon West July 15, 2015

Defect Engineering in Semiconductors

Miniaturizing Flexible Circuits for use in Medical Electronics. Nate Kreutter 3M

Tecnologie convenzionali nell approccio top-down; I: metodi e problematiche per la deposizione di film sottili

Exploring the deposition of oxides on silicon for photovoltaic cells by pulsed laser deposition

Lecture 11. Etching Techniques Reading: Chapter 11. ECE Dr. Alan Doolittle

Sandia Agile MEMS Prototyping, Layout Tools, Education and Services Program

Crystalline solids. A solid crystal consists of different atoms arranged in a periodic structure.

Fabrication and Characterization of N- and P-Type a-si:h Thin Film Transistors

3D NAND Technology Implications to Enterprise Storage Applications

Le nanotecnologie: dal Laboratorio al Mercato. Fabrizio Pirri Politecnico di Torino Istituto Italiano di Tecnologia

T.M.M. TEKNIKER MICROMACHINING

Lecture 2 - Semiconductor Physics (I) September 13, 2005

Winbond W971GG6JB-25 1 Gbit DDR2 SDRAM 65 nm CMOS DRAM Process

Deposition Overview for Microsytems

AC coupled pitch adapters for silicon strip detectors

Transcription:

Lezioni di Tecnologie e Materiali per l Elettronica Danilo Manstretta danilo.manstretta@unipv.it microlab.unipv.it

Outline Passive components Resistors Capacitors Inductors Printed circuits technologies Materials and fabrication steps Assembling Monolithic IC technologies Fabrication steps (thermal oxidation, thermal diffusion, ) IC technologies (CMOS, BiCMOS) Packaging and Thermal Design Lezioni di Tecnologie e Materiali per l'elettronica 2

Semiconductor Technologies Point-contact Ge transistor, 1948 J. Bardeen, W. Brattain, W. Shockley (Bell Labs) Integrated Circuit, 1958 J. Kilby (Texas Instruments) Silicon Integrated Circuit, 1961 R. Noyce (Fairchild Semiconductor) Lezioni di Tecnologie e Materiali per l'elettronica 3

Planar IC Technologies Jack Kilby and Texas Instruments received U.S. patent #3,138,743 for miniaturized electronic circuits. Robert Noyce and the Fairchild Semiconductor Corporation received U.S. patent #2,981,877 for a silicon based integrated circuit. Lezioni di Tecnologie e Materiali per l'elettronica 4

Moore Law (1965) G. Moore prediction, 1965 Actual data N(y+n) = N(y) 2 n Annual doubling Complexity (measured as number of transistors) of the most complex ICs G. Moore, Plenary talk, ISSCC 2003 Lezioni di Tecnologie e Materiali per l'elettronica 5

Moore Law (1975) G. Moore prediction, 1975 Actual data N(y+n) = N(y) (1+k) n Memories k~0.5 Logic k~0.35 Two-year doubling Complexity (measured as number of transistors) of the most complex ICs G. Moore, Plenary talk, ISSCC 2003 Lezioni di Tecnologie e Materiali per l'elettronica 6

Wafer Size How many transistors can we process together? Lezioni di Tecnologie e Materiali per l'elettronica 7

Batch Processing 12 inches wafer ~ 700cm 2 50 wafer shuttle contains ~ 35000 dice Lezioni di Tecnologie e Materiali per l'elettronica 8

Introduction to IC Technologies Semiconductor materials Wafer fabrication process Production steps: Thermal oxidation Thermal diffusion Ion implantation Thin film deposition Epitaxial growth Lithography MOS transistors Bipolar transistors Integrated Circuit (Physical layout) Integrated Circuit (Die photograph) Lezioni di Tecnologie e Materiali per l'elettronica 9

Active Devices CMOS Technology Bipolar Technology Drain Collector Gate Bulk Base Source Emitter Lezioni di Tecnologie e Materiali per l'elettronica 10

MOS Capacitance Physical Layout (Cross section) Equivalent Circuit Poly-Si ( Capacitance TOP metal ) p sub G - - - - - - - - - - - - - B n+ Gate oxide Capacitance BOTTOM plate C C ox WL Tecnologie e Materiali per l'elettronica 11

Resistors Well resistors ~200W/sq sheet resistance High parasitic capacitance Non-linear resistance n+ n+ N well p sub Poly resistors ~200W/sq sheet resistance Linear resistance Field oxide poly p sub Tecnologie e Materiali per l'elettronica 12

Technology Cross-Section Metal stack in a recent CMOS technology Cu and Al interconnect Inter-layer VIA holes 11 ox 3.4510 F / m 12 o 8.8510 F / m 10 Si 1.0410 F / m 7 Cu 5.7 10 S / m 510 10 2 m /Vs Tecnologie e Materiali per l'elettronica 13

Passive Devices Thick Metal Thick Metal Capacitance TOP metal Cu Cu High-K Dielectric Capacitance BOTTOM metal Metal-Insulator-Metal (MiM) capacitor ( C u ~2-5fF/m 2 ) Center-Tapped Inductor inductance < ~15nH ) Tecnologie e Materiali per l'elettronica 14

MiM Capacitors Capacitance TOP metal Thick Metal Cu Thick Metal Cu C bottom B R s L C T C top High-K Dielectric Capacitance BOTTOM metal S MiM capacitor Physical layout (cross section) Equivalent circuit TOP DIELECTRIC BOTTOM substrate Device parasitics Tecnologie e Materiali per l'elettronica 15

MiM Caps: Self-Resonance CROSS SECTION T B T B TOP VIEW capacitive Inductive (parasitic) Z HIGHER SELF- RESONANCE FREQUENCY LOWER SELF- RESONANCE FREQUENCY T T w sr Log w B B Tecnologie e Materiali per l'elettronica 16

MOSFET Operation W V KT N DS I D ncoxv GS VTH V DS L A B ln 2 q ni V TH V FB 2 B 4qN C A ox S B C ox t ox ox C gs Vds0 C ox WL SOURCE GATE DRAIN n i =1.45 10 10 cm -3 at 300K Lezioni di Tecnologie e Materiali per l'elettronica 17

Monolithic Silicon Si Atomic density: 5 10 22 cm -3 Silicon Properties at 300K R a 1,18Å r 11,7 ( SiO 2 r 3,9 ) E g 1,12eV T f 1412 C TH 1,5 W/Kcm Lezioni di Tecnologie e Materiali per l'elettronica 18

Mobility and Conductivity Generic Si: J drift E N-type Si: qn n qp E p n N p D n N 2 i J E qn E D drift D n P-type Na=10 14 cm -3 r=150 W cm Na=10 19 cm -3 r=9m W cm Lezioni di Tecnologie e Materiali per l'elettronica 19

Sheet Resistance I V R L r Wt R L W R =r/t Lezioni di Tecnologie e Materiali per l'elettronica 20

Scaling and Time Delay C gs Vds0 C ox WL L L Rr R Wt W L R CoxWL R CoxL W 2 Scaling of device size leads to shorter time delay and higher (maximum) operating frequency! Lezioni di Tecnologie e Materiali per l'elettronica 21

HOW INTEGRATED CIRCUITS ARE MADE IC PROCESS FLOW Lezioni di Tecnologie e Materiali per l'elettronica 22

Si Wafer Fabrication Wafer size Diameter 8-12 inches Thickness 300m-1.2mm Lezioni di Tecnologie e Materiali per l'elettronica 23

Si Wafer Fabrication During wafer production a controlled amount of impurity (dopant) is inserted together with silicon Typically p-type impurity (e.g. Boron) for CMOS processes Lezioni di Tecnologie e Materiali per l'elettronica 24

Thermal Oxidation Creates a thin silicon di-oxide (SiO 2 ) dielectric layer of excellent quality Thermally grown SiO 2 is used as: Gate oxide in MOS transistors (~25Å in 90nm CMOS) Isolation between substrate and metal layers (field oxide) Mask for doping diffusion SiO 2 Original Si surface substrate p Lezioni di Tecnologie e Materiali per l'elettronica 25

Thermal Oxidation Setup Wet oxidation Oxide growth Lezioni di Tecnologie e Materiali per l'elettronica 26

Arrhenius Law Like may other chemical reactions, thermal oxidation is governed by Arrhenius law. Reaction speed varies exponentially with temperature: C 0 C e E A KT K = 1.38 10-23 J/K = 8.6 10-5 ev/k E A = 1.18 ev (dry oxidation:o 2 ) E A = 0.79 ev (wet oxidation: H 2 O) Temperature dependence of reaction speed. Example: speed at 1100 C speed at 100 C 0.1m per hour 1.5 10-12 m per hour Need for a very accurate temperature control! Lezioni di Tecnologie e Materiali per l'elettronica 27

Thermal Diffusion Introduces a controlled amount of impurities (dopant) in the area directly below the surface (n/p-well for contact, isolation, etc.) Impurities substitute Si atoms N-type (donor atoms): As, P, Sb P-type (acceptor atoms): B Misfit Factor = R A,sub / R A,Si Lezioni di Tecnologie e Materiali per l'elettronica 28

Dopant Diffusion Steps Predeposition Dopant gas: PH 3, AsH 3, B 2 H 6 Doping elements are introduced in a shallow region beneath the surface Drive-in Doping elements diffuse inside the substrate. Thermal diffusion setup is similar to thermal oxidation setup. The process is controlled by the reaction temperature. Lezioni di Tecnologie e Materiali per l'elettronica 29

Dopant Profiles: Drive-in Peak doping concentration is always at the Si surface Constant source diffusion (predeposition) Doping is carried out on an already doped Si substrate A p-n junction is formed at a certain depth below the surface: junction depth JUNCTION DEPTH Lezioni di Tecnologie e Materiali per l'elettronica 30

Doping profiles limited precision Further thermal cycles alter the dopant profiles Diffusion takes place in two dimensions: lateral diffusion limits planar selectivity as a function of doping depth Diffusion Mask Lezioni di Tecnologie e Materiali per l'elettronica 31

Ion Implantation Introduces a well controlled amount of dopant in the substrate Can be a substitute for thermal diffusion or just for predeposition Must be followed by a thermal cycle (annealing) to repair damages Lezioni di Tecnologie e Materiali per l'elettronica 32

Ion Implantation F q v B Lezioni di Tecnologie e Materiali per l'elettronica 33

Technology Cross-Section Metal layers stack in a recent CMOS technology Cu and Al interconnect Inter-layer VIA holes Lezioni di Tecnologie e Materiali per l'elettronica 34

Passive Devices Metal-Insulator-Metal (MiM) capacitor Center-Tapped Inductor Thick Metal Thick Metal Capacitance TOP metal Cu Cu High-K Dielectric Capacitance BOTTOM metal Lezioni di Tecnologie e Materiali per l'elettronica 35

Thin Film Deposition METAL LAYERS STACK Important parameters: Uniformity: constant layer thickness Processing temperature Cost per wafer Step coverage Lezioni di Tecnologie e Materiali per l'elettronica 36

Thin Film Deposition Conductive layers: Al, Cu, poly-si, W, other metals Dielectric layers: SiO 2, silicon nitride (Si 3 N 4 ) Lezioni di Tecnologie e Materiali per l'elettronica 37

Chemical Vapor Deposition (CVD) 1. The chemical reaction of one or more gas compounds creates the desired material in gas (vapor) form. 2. A thin film of material is formed through deposition from vapor state. 3. Substrate heating enhances the chemical reaction, accelerating the deposition process (Temperatures up to 1000 C) 4. Alternatively plasma can be used to enhance reaction (plasma enhanced CVD) at moderate temperatures (up to 400 C) There are three main types: Atmospheric-pressure CVD Low-pressure CVD (LPCVD) Plasma enhanced CVD (PECVD) Water cooled chamber Wafer Gas Heater Quarz Reactor Lezioni di Tecnologie e Materiali per l'elettronica 38

Physical Vapor Deposition (PVD) 1. The atoms of the material to be deposed reach high kinetic energy in a vacuum chamber 2. Thanks to vacuum condition, atoms reach the substrate (target) with few or no collisions 3. A thin layer with crystalline structure is formed Lezioni di Tecnologie e Materiali per l'elettronica 39

PVD: Evaporation Joule heating Filament Electron beam The desired material is vaporized through heating in a vacuum chamber Joule heating, electron beam, pulsed laser beam, filament evaporation (current), flash evaporation Lezioni di Tecnologie e Materiali per l'elettronica 40

PVD: Sputtering I V B (~kv) - + Al target DC plasma Al Ar+ Ar+ Al Ar plasma Deposited Al film Wafer Plasma is a low pressure gas where a high energy electric field is used to drive ionization creating a large number of ions and free electrons Fine particles of the desired material are ejected from a solid target by applying plasma excitation Lezioni di Tecnologie e Materiali per l'elettronica 41

Vapor Phase Epitaxy (VPE) * It is a type of CVD where the deposed layer (epitaxial layer) has crystalline structure High temperature (1000-1250 C) is required Dopant is added in the reaction chamber during deposition Si epi layer SiCl H Si 4HCl 4 2 2 Si - Substrate * Crescita epitassiale Lezioni di Tecnologie e Materiali per l'elettronica 42

Expitaxial Layer Uniform doping concentration Abrupt doping concentration step Higher mobility compared to doping through overcompensation Autodoping: impurities in the reactor atmosphere alter doping in the epitaxial layer Outdiffusion: impurities in the Si wafer diffuse into the epitaxial layer Buried layers alter the shapes in the epitaxial layer Lezioni di Tecnologie e Materiali per l'elettronica 43

Lithographic Process Design Mask Wafer Lezioni di Tecnologie e Materiali per l'elettronica1 44

Lithographic Process Resist application Soft bake Exposure Develop Cycle Hard baking Etching Lezioni di Tecnologie e Materiali per l'elettronica 45

Resists for Lithography Photo-resists are composite materials made of: Organic polymer Photoactive compound Solvent (eliminated during soft-bake) Positive resist Higher resolution Negative resist Lower resolution Lezioni di Tecnologie e Materiali per l'elettronica 46

Photolithographic Masks Masks set Mask making: electron beam lithography (step and repeat) Each mask includes: Alignment marks Mask making patterns Cr, Cr 2 O 3, Fe 2 O 3, Process monitor patterns quartz Lezioni di Tecnologie e Materiali per l'elettronica 47

Mask Making Electron beam lithography Resist activated directly by directive electron beam, without mask Resolution < 1nm Very low throughput (very high cost) Lezioni di Tecnologie e Materiali per l'elettronica 48

Printing Techniques Techniques: Contact Proximity Projection Exposure of a portion of the wafer (low throughput) High resolution (depends on l) Requires excellent planarity of the wafer for proper focusing Lezioni di Tecnologie e Materiali per l'elettronica 49

Step and Repeat WAFER STEPPER Exposition carried out on a limited area (field), then wafer is repositioned and exposition is repeated on an adjacent area Focus and alignment after each step low throughput De-magnification: 4-10:1 Excellent chip resolution: better than mask resolution Lezioni di Tecnologie e Materiali per l'elettronica 50

Chemical Mechanical Polishing - CMP Elastic film Thick dielectric film deposition Wafer is polished using abrasives and etching agents Enhanced local and long range planarity Lezioni di Tecnologie e Materiali per l'elettronica 51

References Reading Material: Dispense di G. Torelli. Introduzione alla tecnologia dei circuiti integrati su silicio. 2006. (IC Technologies) Dispense del corso Microfabrication Technology, UCB http://organics.eecs.berkeley.edu/~viveks/ee143/ Tecnologie e Materiali per l'elettronica 52