CLASS NOTES. We bring down (copy) the leading coefficient below the line in the same column.

Similar documents
JUST THE MATHS UNIT NUMBER 1.8. ALGEBRA 8 (Polynomials) A.J.Hobson

Zeros of Polynomial Functions

Zeros of a Polynomial Function

Zero: If P is a polynomial and if c is a number such that P (c) = 0 then c is a zero of P.

2.5 Zeros of a Polynomial Functions

2.3. Finding polynomial functions. An Introduction:

POLYNOMIAL FUNCTIONS

Polynomial and Synthetic Division. Long Division of Polynomials. Example 1. 6x 2 7x 2 x 2) 19x 2 16x 4 6x3 12x 2 7x 2 16x 7x 2 14x. 2x 4.

3.1. RATIONAL EXPRESSIONS

Zeros of Polynomial Functions

Alum Rock Elementary Union School District Algebra I Study Guide for Benchmark III

March 29, S4.4 Theorems about Zeros of Polynomial Functions

Zeros of Polynomial Functions

Partial Fractions. Combining fractions over a common denominator is a familiar operation from algebra:

SOLVING POLYNOMIAL EQUATIONS

Pre-Calculus II Factoring and Operations on Polynomials

Partial Fractions. p(x) q(x)

a 1 x + a 0 =0. (3) ax 2 + bx + c =0. (4)

3.2 The Factor Theorem and The Remainder Theorem

Definition 8.1 Two inequalities are equivalent if they have the same solution set. Add or Subtract the same value on both sides of the inequality.

63. Graph y 1 2 x and y 2 THE FACTOR THEOREM. The Factor Theorem. Consider the polynomial function. P(x) x 2 2x 15.

Negative Integer Exponents

Integrals of Rational Functions

Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any.

MATH Fundamental Mathematics IV

ALGEBRA 2 CRA 2 REVIEW - Chapters 1-6 Answer Section

1.7. Partial Fractions Rational Functions and Partial Fractions. A rational function is a quotient of two polynomials: R(x) = P (x) Q(x).

Polynomial Degree and Finite Differences

SECTION 0.6: POLYNOMIAL, RATIONAL, AND ALGEBRAIC EXPRESSIONS

Rational Exponents. Squaring both sides of the equation yields. and to be consistent, we must have

The Euclidean Algorithm

Chapter 4. Polynomial and Rational Functions. 4.1 Polynomial Functions and Their Graphs

This is a square root. The number under the radical is 9. (An asterisk * means multiply.)

Graphing Rational Functions

Polynomial Expression

2.4 Real Zeros of Polynomial Functions

6 EXTENDING ALGEBRA. 6.0 Introduction. 6.1 The cubic equation. Objectives

PREPARATION FOR MATH TESTING at CityLab Academy

2-5 Rational Functions

Polynomials. Dr. philippe B. laval Kennesaw State University. April 3, 2005

MA107 Precalculus Algebra Exam 2 Review Solutions

College Algebra - MAT 161 Page: 1 Copyright 2009 Killoran

Paramedic Program Pre-Admission Mathematics Test Study Guide

Solving Quadratic Equations

Properties of Real Numbers

1.3 Algebraic Expressions

Partial Fractions Examples

expression is written horizontally. The Last terms ((2)( 4)) because they are the last terms of the two polynomials. This is called the FOIL method.

The Factor Theorem and a corollary of the Fundamental Theorem of Algebra

Algebra 1 Course Title

Determinants can be used to solve a linear system of equations using Cramer s Rule.

Answers to Basic Algebra Review

Chapter 7 - Roots, Radicals, and Complex Numbers

3.3 Real Zeros of Polynomials

Math Common Core Sampler Test

Solving Rational Equations

Application. Outline. 3-1 Polynomial Functions 3-2 Finding Rational Zeros of. Polynomial. 3-3 Approximating Real Zeros of.

The Method of Partial Fractions Math 121 Calculus II Spring 2015

0.8 Rational Expressions and Equations

ALGEBRA 2: 4.1 Graph Quadratic Functions in Standard Form

Copyrighted Material. Chapter 1 DEGREE OF A CURVE

Algebra Unpacked Content For the new Common Core standards that will be effective in all North Carolina schools in the school year.

Quotient Rings and Field Extensions

Florida Math Correlation of the ALEKS course Florida Math 0028 to the Florida Mathematics Competencies - Upper

Algebra Practice Problems for Precalculus and Calculus

MTH 092 College Algebra Essex County College Division of Mathematics Sample Review Questions 1 Created January 17, 2006

b) since the remainder is 0 I need to factor the numerator. Synthetic division tells me this is true

Basic Properties of Rational Expressions

Math 0980 Chapter Objectives. Chapter 1: Introduction to Algebra: The Integers.

When factoring, we look for greatest common factor of each term and reverse the distributive property and take out the GCF.

FRACTIONS MODULE Part I

Partial Fractions. (x 1)(x 2 + 1)

Procedure for Graphing Polynomial Functions

Some Polynomial Theorems. John Kennedy Mathematics Department Santa Monica College 1900 Pico Blvd. Santa Monica, CA

Polynomials and Factoring

Polynomial and Rational Functions

Polynomial Expressions and Equations

Factoring Trinomials using Algebra Tiles Student Activity

Integer roots of quadratic and cubic polynomials with integer coefficients

Definitions 1. A factor of integer is an integer that will divide the given integer evenly (with no remainder).

Lesson 9: Radicals and Conjugates

Discrete Mathematics: Homework 7 solution. Due:

Method To Solve Linear, Polynomial, or Absolute Value Inequalities:

0.4 FACTORING POLYNOMIALS

1 Homework 1. [p 0 q i+j p i 1 q j+1 ] + [p i q j ] + [p i+1 q j p i+j q 0 ]

2.3 Solving Equations Containing Fractions and Decimals

2x + y = 3. Since the second equation is precisely the same as the first equation, it is enough to find x and y satisfying the system

Math Circle Beginners Group October 18, 2015

Solve addition and subtraction word problems, and add and subtract within 10, e.g., by using objects or drawings to represent the problem.

Five 5. Rational Expressions and Equations C H A P T E R

Factoring Polynomials

Math 319 Problem Set #3 Solution 21 February 2002

7.7 Solving Rational Equations

Algebra II End of Course Exam Answer Key Segment I. Scientific Calculator Only

Some facts about polynomials modulo m (Full proof of the Fingerprinting Theorem)

Math Review. for the Quantitative Reasoning Measure of the GRE revised General Test

Unit 6: Polynomials. 1 Polynomial Functions and End Behavior. 2 Polynomials and Linear Factors. 3 Dividing Polynomials

COLLEGE ALGEBRA. Paul Dawkins

7. Some irreducible polynomials

Algebra and Geometry Review (61 topics, no due date)

Transcription:

SYNTHETIC DIVISION CLASS NOTES When factoring or evaluating polynomials we often find that it is convenient to divide a polynomial by a linear (first degree) binomial of the form x k where k is a real number. In certain problems we must use trial-and-error to find a particular value of k. The resulting process of repeated divisions can be tedious and time-consuming. The use of synthetic division (instead of long division) can save a lot of time and effort. It must be emphasized that synthetic division may only be used when dividing a polynomial by a binomial of the form x k. Illustration: Suppose we wish to divide the polynomial P(x) = 5x 3 6x 2 28x 2 by x 3. The k-value is 3 (the number subtracted from x in the binomial x 3). P(x) is a polynomial of degree 3, and the four coefficients of P(x) are 5, 6, 28, and 2. The division may now be expressed as shown below. Note that there is a blank space above the horizontal line. We bring down (copy) the leading coefficient below the line in the same column. 5 We now multiply 5 (the number below the line in the first column) by the k-value (3) and write the result in the next column (second column) above the line. 15 5 Then we add the two numbers that are above the line in the second column and write the sum below the line. 15 5 9 We now multiply 9 (the number below the line in the second column) by the k-value (3) and write the result in the next column (third column) above the line. 1

15 27 5 9 Then we add the two numbers that are above the line in the third column and write the sum below the line. 15 27 5 9 1 We repeat the previous two steps one last time to get the final result. 15 27 3 5 9 1 5 The first three numbers below the line (5, 9, and -1) are the coefficients of the quotient. The last number below the line (-5) is the remainder R. We can therefore rewrite the division as the sum of a polynomial (the quotient) and a rational (the remainder divided by the divisor). 5x 3 6x 2 28x 2 x 3 = 5x 2 + 9x 1 + 5 x 3 NOTE: We can see that P(3) = 5(3) 3 6(3) 2 28(3) 2 = 5. i.e. the value of P(k) is equal to the remainder, R, when we divide P(x) by x k. More on this later (Remainder Theorem). Example: Perform the division 3x 4 4x 2 + 9x 6 x + 2 and rewrite as a polynomial plus rational. NOTE: The divisor may be written x ( 2) k = 2. Furthermore, the numerator, which is a polynomial of degree 4, has five terms. The five terms are 3x 4 + 0x 3 4x 2 + 9x 6. We use synthetic division to find the quotient and remainder. 2 3 0 4 9 6 6 12 16 14 3 6 8 7 8 The quotient is 3x 3 6x 2 + 8x 7 and the remainder is 8. 3x 4 4x 2 + 9x 6 x + 2 = 3x 3 6x 2 + 8x 7 + 8 x + 2 Exercises: Perform each division and rewrite as a polynomial plus a rational. 2

1. x 3 + 7x 2 + 15 x + 4 3. 4x 4 7x 3 + 9x 2 3x 8 x 1 2. 2x 4 + 7x 3 x + 5 x + 3 4. 3x 5 4x + 1 x 2 Answers to Exercises: 1. 4 1 7 0 15 4 12 48 1 3 12 63 x 3 + 7x 2 + 15 x + 4 = x 2 + 3x 12 + 63 x + 4 2. 3 2 7 0 1 5 6 3 9 24 2 1 3 8 19 2x 4 + 7x 3 x + 5 x + 3 = 2x 3 + x 2 3x + 8 + 19 x + 3 3. 1 4 7 9 3 8 4 3 6 3 4 3 6 3 5 4x 4 7x 3 + 9x 2 3x 8 x 1 = 4x 3 3x 2 + 6x + 3 + 5 x 1 4. 2 3 0 0 0 4 1 6 12 24 48 88 3 6 12 24 44 89 3x 5 4x + 1 x 2 = 3x 4 + 6x 3 + 12x 2 + 24x + 44 + 89 x 2 REMAINDER THEOREM At the end of the previous illustration we saw that P(3) = 5. Similarly, in the example we saw that P( 2) = 8). In both cases the value of the polynomial at x = k is equal to the remainder R. The same principle applies in each of the exercises above. This principle illustrates the Remainder Theorem. Remainder Theorem: If the polynomial P(x) is divided by x k, then the remainder R is equal to P(k). P(k) = R One application of the Remainder Theorem is the evaluation of polynomials at given k-values. Illustration: Suppose we wish to evaluate the polynomial P(x) = 2x 4 + x 3 3x 2 + 5x + 4 at k = 7. Typically a student will find P( 7) by replacing each x in the equation for P by 7. This P( 7) = 2( 7) 4 + ( 7) 3 3( 7) 2 + 5( 7) + 4 or P( 7) = 4281. Even with the help of a calculator this can be a tedious and frustrating calculation, especially if the number of terms is large. If the student has learned Synthetic Division and is comfortable with it, then he/she will find that the Remainder Theorem is a faster and more reliable way to find P( 7). 3

7 2 1 3 5 4 14 91 616 4277 2 13 88 611 4281 P( 7) = 4281 Exercises: In each of the following evaluate the polynomial P(x) at the given k-value. 1. P(x) = 2x 3 8x 2 4x + 5 at k = 6 2. P(x) = 5x 4 3x 2 + 2x 1 at k = 4 3. P(x) = 6x 4 x 3 + 9x 2 7 at k = 7 4. P(x) = 4x 5 + 2x 4 5x 3 + 6x 2 3x 8 at k = 5 Answers to Exercises: 1. 6 2 8 4 5 12 24 120 2 4 20 125 P(6) = 125 2. 3. 4 5 0 3 2 1 20 80 308 1224 5 20 77 306 1223 7 6 1 9 0 7 42 287 2072 14504 6 41 296 2072 14497 P( 4) = 1223 P(7) = 14497 4. 5 4 2 5 6 3 8 20 90 425 2095 10460 4 18 85 419 2092 10468 P( 5) = 10468 FACTOR THEOREM We have seen that if a polynomial P(x) is divided by x k to get the quotient Q(x) and remainder R, then we can write P(x) x k = Q(X ) + R. And we know, by the Remainder Theorem, that x k P(k) = R. It follows that if P(k) = 0 then R = 0 and P(x) = Q(x). This last equation may be x k rewritten P(x) = (x k) Q(x) which means that x k is a factor of P(x). Factor Theorem: The polynomial x k is a factor of polynomial P(x) if and only if P(k) = 0. Example: Given that P( 3) = 0 rewrite the polynomial P(x) = 6x 3 +19x 2 +2x 3 as the product of two factors. Solution: By the Factor Theorem we know that x + 3 is one factor of P(x). To get the other factor we can use synthetic division to divide P(x) by x + 3 (keeping in mind that k = 3). 4

3 6 19 2 3 18 3 3 6 1 1 0 P(x) = (x + 3)(6x 2 + x 1) Exercises: In each of the following rewrite the polynomial P(x) as the product of two factors. 1. P(x) = x 4 + 2x 3 7x 2 20x 12 given P( 2) = 0 2. P(x) = 2x 5 + x 4 30x 3 35x 2 + 38x + 24 given P(4) = 0 Answers to Exercises: 1. 2 1 2 7 20 12 2 0 14 12 1 0 7 6 0 P(x) = (x + 2)(x 3 7x 6) 2. 4 2 1 30 35 38 24 8 36 24 44 24 2 9 6 11 6 0 P(x) = (x 4)(2x 4 + 9x 3 + 6x 2 11x 6) FACTORING POLYNOMIALS OF HIGHER DEGREE (degree higher than 2) Terminology: A zero of a polynomial P is a number k such that P(k) = 0 (we worked with zeros in the preceding section). A zero of P is called a root or solution of the polynomial P(x) = 0. Clearly the technical difference between zeros and roots is of little importance to us. Furthermore, the term zero can be confusing to the student (a zero of the polynomial is not necessarily equal to zero). Therefore, in the remainder of this discussion the term root will be used exclusively. The Rational Roots Test: Suppose the polynomial P(x) has integer coefficients. If the rational number n d (in lowest terms) is a root of P then the numerator n is a factor of the constant term of P and the denominator d is a factor of the leading coefficient. The Integer Roots Test: Suppose the polynomial P(x) has integer coefficients with leading coefficient 1. If the integer k is a root of P then k is a factor of the constant term of polynomial P. The Rational Roots Test and the Integer Roots Test can only give us possible roots of a given polynomial. We must test these possible values (using synthetic division) to determine which, if any, of the possibilities are actual roots. Once we have the actual root(s) then we can write the polynomial in factored form. Example 1: Completely factor the polynomial P(x) = x 3 5x 2 2x + 24. 5

Solution: Polynomial P has integer coefficients with leading coefficient 1. We can therefore apply the Integer Roots Test. Any possible integer root of P must be a factor of the constant term 24. The possible integer roots are 1, 2, 3, etc. as well as their negatives. The complete list can be written as ±1, ±2, ±3, ±4, ±6, ±12, ±24. This gives a total of 14 possible integer roots! At most three of these can be actual roots. It is also possible that none of them are actual roots. They must be tested one by one using synthetic division (trial-and-error). If we try k = 1 we get a non-zero remainder which is, as we know, P(1). 1 1 5 2 24 1 4 6 1 4 6 30 P(1) = 30 P(1) 0 Therefore k = 1 is not a root of P. Similarly k = 1 and k = 2 are not roots of P. However, as shown below, k = 2 is a root of P. It follows, by the Factor Theorem, that x + 2 is one of the factors of P. 2 1 5 2 24 2 14 24 1 7 12 0 P(x) = (x + 2)(x 2 7x + 12) We see that the other factor, in addition to x + 2, is x 2 7x + 12. This second factor can itself be factored using the techniques of High School algebra. Or it can be factored by continuing to test the possible integer roots. The final, factored, form is P(x) = (x + 2)(x 3)(x 4). Example 2: Completely factor the polynomial P(x) = x 5 26x 3 + 12x 2 + 97x + 60. Solution: The possible integer roots are ±1, ±2, ±3, ±4, ±5, ±6, ±10, etc. (applying the Integer Roots Test). We find that k = 1 is a root of P. 1 1 0 26 12 97 60 1 1 25 37 60 1 1 25 37 60 0 P(x) = (x + 1)(x 4 x 3 25x 2 + 37x + 60) Working with the other (second) factor we test k = 1 a second time (roots can repeat!) and find that it is also a root of the second factor. 1 1 1 25 37 60 1 2 23 60 1 2 23 60 0 P(x) = (x + 1)(x + 1)(x 3 2x 2 23x + 60) Working with the third factor we find that k = 3 is a root. 3 1 2 23 60 3 3 60 1 1 20 0 P(x) = (x + 1) 2 (x 3)(x 2 + x 20) 6

As in Example 1, the quadratic factor x 2 + x 20 can be factored by using the techniques of High School algebra or by continuing to test the possible integer roots. The factored form is P(x) = (x + 1) 2 (x 3)(x + 5)(x 4) Example 3: Completely factor the polynomial P(x) = 6x 4 5x 3 + 26x 2 25x 20. Solution: Because the leading coefficient is not equal to 1, we apply the Rational Roots Test. Suppose that n d is a rational root of P Then the possible values of the numerator are ±1, ±2, ±4, ±5, ±10, ±20. The possible values of the denominator are ±1, ±2, ±3, ±6. We find the possible combinations (n divided by d) of the above numbers. The possible rational roots are ±1, ±2, ±4, ±5, ±10, ±20, ± 1 2, ± 5 2, ± 1 3, ± 2 3, ± 4 3, ± 5 3, ± 10 3, ± 20 3, ± 1 6, ± 5 6. We find that k = 1 2 is a root of P. 1 2 6 5 26 25 20 3 4 15 20 6 8 30 40 0 P(x) = ( x + 1 ) (6x 3 8x 2 + 30x 40) 2 Working with the second factor we find that k = 4 3 is a root. 4 3 6 8 30 40 8 0 40 6 0 30 0 P(x) = ( x + 1 ) ( x 4 ) (6x 2 + 30) 2 3 The quadratic factor 6x 2 +30 can be rewritten 6(x 2 +5). This quadratic factor can not be factored further. The final (simplified) factored form is ( P(x) = 6 x + 1 ) ( x 4 ) (x 2 +5) which can be rewritten as P(x) = (2x +1)(3x 4)(x 2 +5). 2 3 Exercises: Completely factor each of the following polynomials. 1. P(x) = x 4 27x 2 14x + 120 2. P(x) = x 4 + x 3 15x 2 + 23x 10 3. P(x) = 4x 4 9x 3 25x 2 + 36x + 36 4. P(x) = 3x 5 +10x 4 11x 3 46x 2 4x +24 Solutions: 1. The possible integer roots are ±1, ±2, ±3, ±4, ±5, ±6, ±10, etc. (Integer Roots Test). We test these possibilities (using synthetic division) to find the actual roots of the polynomial. 2 1 0 27 14 120 2 4 46 120 1 2 23 60 0 k = 2 is a root P(x) = (x 2)(x 3 +2x 2 23x 60) 7

We continue by testing for roots in the second factor. 3 1 2 23 60 3 3 60 1 1 20 0 k = 3 is a root P(x) = (x 2)(x +3)(x 2 x 20) The third factor may be factored by the techniques of High School algebra. P(x) = (x 2)(x + 3)(x + 4)(x 5) 2. The possible integer roots are ±1, ±2, ±5, ±10 (Integer Roots Test). We test these possibilities to find the actual roots of the polynomial. 1 1 1 15 23 10 1 2 13 10 1 2 13 10 0 k = 1 is a root P(x) = (x 1)(x 3 +2x 2 13x+10) We continue testing for roots in the second factor. As mentioned earlier, it is important to test the same root a second time. Roots can, and sometimes do, repeat. 1 1 2 13 10 1 3 10 1 3 10 0 k = 1 is a root (again) P(x) = (x 1)(x 1)(x 2 +3x 10) The third factor may be factored by the techniques of High School algebra. P(x) = (x 1) 2 (x + 5)(x 2) 3. The Rational Roots Test allows us to find the possible rational roots: ±1, ±2, ±3, ±4, ±6, ±9, ±12, ±18, ±36, ± 1 2, ±3 2, ±9 2, ±1 4, ±3 4, ±9 4 We test these possibilities to find the actual roots of the polynomial. 2 4 9 25 36 36 8 2 54 36 4 1 27 18 0 k = 2 is a root P(x) = (x 2)(4x 3 x 2 27x 18) We continue by testing for roots in the second factor. 2 4 1 27 18 8 18 18 4 9 9 0 k = 2 is a root P(x) = (x 2)(x+2)(4x 2 9x 9) The third factor may be factored by the techniques of High School algebra. P(x) = (x 2)(x + 2)(x 3)(4x + 3) 8

4. The possible rational roots are ±1, ±2, ±3, ±4, ±6, ±8, ±12, ±24, ± 1 3, ± 2 3, ± 4 3, ± 8 3. We test these possibilities to find the actual roots of the polynomial. 1 3 10 11 46 4 24 3 7 18 28 24 3 7 18 28 24 0 k = 1 is a root P(x) = (x+1)(3x 4 +7x 3 18x 2 28x+24) We continue by testing for roots in the second factor. 2 3 7 18 28 24 6 26 16 24 3 13 8 12 0 k = 2 is a root P(x) = (x+1)(x 2)(3x 3 +13x 2 +8x 12) We continue by testing for roots in the third factor. 2 3 13 8 12 6 14 12 3 7 6 0 k = 2 is a root P(x) = (x+1)(x 2)(x+2)(3x 2 +7x 6) The fourth factor may be factored by the techniques of High School algebra. P(x) = (x + 1)(x 2)(x + 2)(3x 2)(x + 3) Drill Exercises: Completely factor each of the following polynomials. 1. x 3 + 5x 2 12x 36 2. x 3 6x 2 7x + 60 3. x 4 + 9x 3 6x 2 116x + 168 4. x 5 6x 4 15x 3 + 80x 2 + 84x 144 5. x 4 + 8x 3 + 5x 2 74x 120 6. x 5 + 6x 4 28x 3 110x 2 117x 40 7. 2x 3 + x 2 85x + 42 8. 24x 3 62x 2 + 31x + 12 9. 20x 4 + 12x 3 33x 2 5x + 6 10. 9x 5 + 30x 4 92x 3 498x 2 685x 300 11. 8x 4 20x 3 18x 2 + 81x 54 12. 72x 5 + 90x 4 383x 3 287x 2 + 254x 40 Answers to Drill Exercises: 1. (x + 6)(x + 2)(x 3) 2. (x + 3)(x 4)(x 5) 3. (x + 7)(x + 6)(x 2) 2 4. (x + 3)(x + 2)(x 1)(x 4)(x 6) 5. (x + 5)(x + 4)(x + 2)(x 3) 6. (x + 8)(x 5)(x + 1) 3 7. (x + 7)(2x 1)(x 6) 8. (4x + 1)(2x 3)(3x 4) 9. (2x + 3)(2x + 1)(5x 2)(x 1) 10. (x + 3)(x + 1)(x 4)(3x + 5) 2 11. (x + 2)(2x 3) 3 12. (2x + 5)(3x + 4)(4x 1)(3x 1)(x 2) 9