# a 1 x + a 0 =0. (3) ax 2 + bx + c =0. (4)

Size: px
Start display at page:

Download "a 1 x + a 0 =0. (3) ax 2 + bx + c =0. (4)"

Transcription

1 ROOTS OF POLYNOMIAL EQUATIONS In this unit we discuss polynomial equations. A polynomial in x of degree n, where n 0 is an integer, is an expression of the form P n (x) =a n x n + a n 1 x n a 1 x + a 0 (1) where a n 0,a n 1,...,a 0 are constants. When P n (x) is set equal to zero, the resulting equation P n (x) =a n x n + a n 1 x n a 1 x + a 0 = 0 () is called a polynomial equation of degree n. In this unit we are concerned with the number of solutions of polynomial equations, the nature of these solutions (be they real or complex, rational or irrational), and techniques for finding the solutions. We call values of x that satisfy equation () roots or solutions of the equation. They are also called zeros of the polynomial P n (x). When n = 1, equation () is called a linear equation (or equation of degree 1), a 1 x + a 0 =0. (3) Its only solution is x = a 0 /a 1. Quadratic equations (equations of degree ) are obtained when n =. It is customary in this case to denote coefficients as follows ax + bx + c =0. (4) They were solved in the material on Complex Numbers. In this unit we concentrate on polynomials of degree three and higher. The next simplest polynomial equation after linear and quadratic is the cubic, and after that the quartic, ax 3 + bx + cx + d =0, (5) ax 4 + bx 3 + cx + dx + e =0. (6) There are procedures that give roots for both of these equations, but they are of so little practical use in this day of the electronic calculator and personal computer, we relegate them to the exercises at the end of this section (see Exercises 33 and 40). A more modern approach is to use the analytic methods of this unit, if possible, or numerical methods. It is interesting to note that no algebraic formulas can be given for roots of polynomial equations that have degree greater than or equal to five. For such equations, it is usually necessary to use numerical methods to find roots. When an exact solution of a polynomial equation can be found, it can be removed from the equation, yielding a simpler equation to solve for the remaining roots. The process by which this is done is a result of the remainder and factor theorems. Theorem 1 Remainder Theorem When a polynomial P n (x) is divided by bx a, the remainder is P n (a/b); that is, P n (x) can be expressed in the form where Q n 1 (x) is a polynomial of degree n 1. P n (x) =(bx a)q n 1 (x)+p n (a/b), (7) Proof There is no question that when a polynomial of degree n is divided by bx a, the quotient is a polynomial of degree n 1 and the remainder is a constant, 1

2 P n (x) =(bx a)q n 1 (x)+r, (long division tells us this). Substitution of x = a/b immediately yields R = P n (a/b). Example 1 Find the remainders when P (x) =x 4 x + x + 5 is divided by (a) x + 3 and (b) x +3. Solution (a) According to the remainder theorem, the remainder is P ( 3)=( 3) 4 ( 3) +( 3) + 5 = 65. This is much easier than using the long division to the right. (b) Theorem 1 indicates that the remainder is P ( 3/) = ( 3/) 4 ( 3/) +( 3/) + 5 = 65/16. Polynomial P n (x) and divisor bx a in the remainder theorem need not be real; they can be complex. We illustrate in the following example. x 3-3x +7x-0 x+3) x4-x + x+5 x 4 +3x 3-3x 3 -x -3x 3-9x 7x + x 7x+1x -0 x+5-0x Example Determine the remainder when P (x) =ix 3 3x +4+i is divided by ix +. Solution The remainder is P ( /i) =P (i) =i(i) 3 3(i)+4+i =8 6i +4+i =1 5i. An immediate consequence of the remainder theorem is the factor theorem. Theorem Factor Theorem bx a is a factor of P n (x) if and only if P n (a/b) =0. The factor theorem is very useful in solving polynomial equations. It does not find solutions, however. What it does do is simplify the problem each time a solution is found. To illustrate, consider the quartic equation P (x) =x 4 +x 3 + x x =0. (8a) A moment s reflection indicates that x = 1 satisfies the equation. The factor theorem then implies that x 1 is a factor of the quartic. The remaining cubic factor can be obtained by long division or synthetic division (if you have learned it). The division can also be done mentally. The result is P (x) =x 4 +x 3 + x x =(x 1)(x 3 +3x +4x +). What this means is that equation (8a) can be replaced by P (x) =(x 1)(x 3 +3x +4x +)=0. (8b) To find further solutions of quartic equation (8a), we need only examine the cubic x 3 +3x + 4x + in (8b) for its zeros. Once we notice that a zero is x = 1, we may factor x + 1 from the cubic and replace (8b) with P (x) =(x 1)(x + 1)(x +x +)=0. (8c) The remaining two solutions are given by the quadratic formula, x = ± 4 8 = ± 4 = ± i = 1 ± i. Thus quartic equation (8a) has two real solutions x = ±1 and two complex solutions x = 1 ± i. A solution of the equation x 3 x + x 6=0isx =3/ (we show how we found it shortly). We therefore factor x 3 from the cubic,

3 The remaining two solutions are complex (x 3)(x + x +)=0. x = 1 ± 1 4(1)() = 1 ± 7i. The factor theorem enables us to remove a known solution from a polynomial equation, thereby replacing the original polynomial with a polynomial of lower degree. This presupposes two things. First that the equation has a solution, and secondly that we can find it. The following theorem addresses the first question. Theorem 3 Fundamental Theorem of Algebra 1 Every polynomial of degree n 1 has exactly n linear factors (which may not all be different). For example, the quartic polynomial in (8a) has four different linear factors x 4 +x 3 + x x =(x 1)(x + 1)(x +1+i)(x +1 i); (9) the cubic polynomial x 3 3x +3x 1 has three linear factors all the same, x 3 3x +3x 1=(x 1) 3 ; (10) and the following eighth degree polynomial has three distinct linear factors, but a total of eight factors, x 8 +7x 7 86x 5 95x x x 540x 648 = (x +3) 4 (x ) 3 (x +1). (11) Each linear factor in (9), (10), or (11) leads to a zero of the polynomial. For (9), the zeros are ±1 and 1 ± i; for (10), they are 1, 1, 1; and for (11), they are 3, 3, 3, 3,,,, 1. In the case of (10) and (11), there are repetitions. We say that x = 1 is a zero of multiplicity 3 for the polynomial in (10); the multiplicity corresponds to the number of times the factor x 1 appears in the factorization. Each of the zeros in (9) is of multiplicity 1. In (11), x = 3 has multiplicity 4, the zero x = has multiplicity 3, and x = 1 has multiplicity 1. These examples suggest that the sum of the multiplicities of the zeros of a polynomial is equal to the degree of the polynomial. This is confirmed in the following alternative version of the Fundamental Theorem of Algebra. Theorem 4 Fundamental Theorem of Algebra Every polynomial of degree n 1 has exactly n zeros (counting multiplicities). Our discussions will be confined to polynomials with real coefficients, but Theorems 3 and 4 are valid even when coefficients are complex numbers. What is difficult to prove in Theorem 4 is the existence of one zero. (This is usually done with material from a course on complex function theory.) Once existence of one zero is established, the factor theorem immediately implies that there are precisely n zeros, and that the polynomial can be factored into n linear factors. When coefficients of a polynomial are real, complex zeros must occur in complex conjugate pairs. This is proved in the next theorem. Theorem 5 If z is a complex zero of a polynomial with real coefficients, then so also is z. Proof Suppose z is a zero of P (x) =a n x n + + a 1 x + a 0, where coefficients a n,...,a 0 are real. Then, a n z n + + a 1 z + a 0 =0. We show that P (z) = 0. If we take complex conjugates of both sides of this equation, and use the results of Exercise 37 in the Complex Numbers unit, 3

4 0=a n z n + + a 1 z + a 0 = a n z n + + a 1 z + a 0 (part (a) of the exercise) = a n z n + + a 1 z + a 0 (part (c) of the exercise) = a n z n + + a 1 z + a 0 (part (e) of the exercise) = P (z). We have seen a number of examples of this result. The quartic equation (8) has two real solutions x = ±1 and two complex conjugate solutions x = 1 ± i. The quartic equation x 4 +5x +4=(x + 1)(x + 4) = 0 has two pairs of complex conjugate roots, x = ±i and x = ±i. When a real polynomial P (x) has a pair of complex zeros, say x = a ± bi, then two linear factors of P (x) are x a bi and x a + bi; that is, P (x) can be expressed in the form P (x) =(x a bi)(x a + bi)q(x), (1a) where Q(x) is a polynomial of degree two less that P (x). If the complex factors are multiplied together the result is P (x) =[x ax +(a + b )]Q(x), (1b) where a and a + b are real. In other words, the pair of complex linear factors in (1a) is equivalent to the real quadratic factor in (1b). Since this can be done for each and every pair of complex conjugate roots, we have the following result. Theorem 6 Every real polynomial can be factored into the product of real linear and irreducible real quadratic factors. What we mean by irreducible is that the quadratic factor cannot be factored into real linear factors. For instance, x + 7 is an irreducible quadratic, x 7 is not. EXERCISES In Exercises 1 4, what is the remainder when the first polynomial is divided by the second? 1. x 4 +3x 3 x +1, x. x 3 x +4x +5, x+1 3. x 4 3x 3 +x + x +10, 3x x 3 +3x x +, 3x 1 In Exercises 5 8, find a polynomial with as low a degree as possible with the given zeros. Assume each zero has multiplicity 1 unless otherwise specified. 5. 3,, 4 6. (multiplicity ), 3, 4 (multiplicity 3) 7. 1 (multiplicity 3), , 1, 3, (multiplicity ) 9. Can x 4 +5x + have a real zero? 10. If +3i is a zero of the polynomial x 3 +7x +5x + 39, find its other zeros. 11. If 1 + i is a zero of the polynomial x 4 + x 3 +3x 8x + 14, find its other zeros. 1. Prove that a polynomial of odd degreee with real coefficients must have at least one real zero. Is this also true for complex polynomials? 13. Prove that if P (x) is a polynomial having only even powers of x, and P (a) = 0, then P (x) is divisible by x a. 4

5 In Exercises 14 18, find k in order that the first polynomial be a factor of the second. 14. x, x 3 + kx +5x x +1, x 3 +4x + kx x +3, x 4 +7x 3 + kx 1x x 3, x 4 + kx 3 6x 8x x +1, 6x 4 + x 3 +53x + kx Find the remainder when x 999 +x x 1 is divided by x For what value(s) of k will the polynomial 5x 5 +4x 4 + kx 3 +x + x + 1 have remainder 15 when divided by x Find the value(s) of k so that k is the remainder when x 3 kx 14x +15k is divided by x 5.. Find the value(s) of k so that k is the remainder when x 3 x +(k +1)x + 10 is divided by x +1. In Exercises 3 5, find h and k in order that the first two polynomials be factors of the third. 3. x +4, x 6, x 4 + hx 3 44x + kx x, x 5, x 5 15x 4 + hx 3 + kx + 74x x +3, x 3, x 6 +16x 4 + hx 3 + kx Show that when α 1, α and α 3 are the zeros of a cubic polynomial ax 3 + bx + cx + d, then: (a) α 1 + α + α 3 = b a (b) α 1 α + α 1 α 3 + α α 3 = c a (c) α 1 α α 3 = d a 7. (a) What are the equations in Exercise 6 for the cubic polynomial P (x) =x 3 +3x +x +5. (b) The equations in (a) represent three equations in the three zeros of P (x). If we solve them, we find the three zeros. Eliminate two of the zeros to find a single equation in the remaining zero. How do you like the equation? 8. This exercise generalizes the results of Exercise 6. Suppose that the zeros of a polynomial a n x n + + a 1 x + a 0 are α 1, α,..., α n (where some of the α j may be repeated). Show that: (a) α 1 + α + + α n = a n 1 a n (b) α 1 α α n =( 1) n a 0 a n (c) the sum of the products of the roots in pairs is a n /a n ; that is, ( ) ( ) α1 α + + α 1 α n + a α α α n + + ( α n α n 1 + α n α n ) + αn 1 α n = a n a n. 9. Show that the only way a n x n + a n 1 x n a 1 x + a 0 = 0 can have n + 1 distinct zeros is for all coefficients to be zero. 30. Suppose that P 1 (x) and P (x) are polynomials of degree n. Use the result of Exercise 9 to show that if P 1 (x) =P (x) atn + 1 distinct points, then P 1 (x) =P (x) for all x. 31. Give a formal definition of what it means for x = a to be a zero of multiplicity k for a polynomial P (x). 3. Suppose n points are chosen on the circumference of a circle. Each point is joined to every other point. This divides the interior of the circle into various parts. Let N(n) be the maximum number of parts so formed. Drawings indicate that N(1) = 1, N() =, N(3) = 4, N(4) = 8, and N(5) = 16. One might be led to believe that N(n) = n 1. This is however incorrect since N(6) = 31. It is known that the formula for N(n) is a quartic polynomial. Find it. What is N(7)? 5

6 33. In this exercise we develop a procedure for solving cubic equations. Such equations can always be expressed in the form x 3 + bx + cx + d =0. (a) Show that the change of variable y = x + b/3 replaces the cubic in x with the following equation in y y 3 + py + q =0, where p = c b 3, q = d bc 3 + b3 7. This equation is called the reduced cubic (reduced in the sense that there is no y term). (b) Show that the change of variable y = z p/(3z) replaces the reduced cubic in y with z 6 + qz 3 p3 7 =0, a quadratic equation in z 3. Once this equation is solved for the two values of z 3, cube roots yield values for z, and the transformation x = z p/(3z) b/3 gives solutions of the original cubic. At most three distinct values result. Should values of z 3 be complex, it would be necessary to take cube roots of complex numbers. Although we learned how to do this in Unit Complex Numbers, the cubics in Exercises are specially chosen so that z 3 is real. In Exercises 34 39, use the procedure in Exercise 33 (and the suggestions) to find solutions for the cubic equation. 34. x 3 6x +11x 6 = 0 (In this exercise, it is not necessary to proceed past the substitution y = x+b/3.) 35. x 3 +1x +48x +64=0 36. x 3 6x +4x +31=0 37. x 3 +4x +1x +9=0 38. x 3 x +5x 10 = 0 Show that the equation in z is 79z 6 59z = 0, and that both real solutions for z 3 lead to x =. Now factor x from the cubic. 39. x 3 3x 1x 7 = 0 Show that the equation in z is 79z z = 0, and that both real solutions for z 3 lead to x = 4. Now factor x 4 from the cubic. 40. In this exercise we develop a procedure for solving quartic equations. Such equations can always be expressed in the form x 4 + bx 3 + cx + dx + e =0. (a) Show that this equation can be rewritten ( x + bx ) ( ) b = 4 c x dx e. (b) Verify that when (x + bx/)y + y /4 is added to both sides of the equation in (a), it can be expressed as ( x + bx + y ) ( ) ( ) ( ) b by y = 4 c + y x + d x + 4 e. (c) The right side of the equation in (b) is quadratic in x, and can always be factored. But because the left side is a perfect square, these factors must be identical. It follows that the discriminant must vanish. Show that this requires y to satisfy the cubic equation y 3 cy +(bd 4e)y +(4ce b e d )=0, called the resolvent equation. When y is a solution of the resolvent equation, corresponding values for x can be obtained by substituting into the equation in (b) and taking square roots. It can be shown that 6

7 all three solutions for y lead to the same four solutions of the quartic. Usually we would choose a real solution for y. In Exercises 41 45, use the procedure of Exercise 40 to solve the quartic equation. 41. x 4 16 = 0 (This is a very simple example.) 4. x 4 5x +4=0 43. x 4 +4x 3 +x 4x +1=0 44. x 4 +7x 3 +9x 1x 36 = 0 (y = 9 is a solution of the resolvent equation.) 45. x 4 3x 3 3x +11x 6=0 Answers /7 5. (x 3)(x + )(x 4) 6. (x ) (x + 3)(x 4) 7. (x +1) 3 (x 4) 8. (x 1)(x + 1)(x 3)(x +) 9. No 10. 3i, i, ( 3/) ± ( 19/)i 1. No , , , , (b) β 3 +3β +β +5=0 31. P (x) =(x a) k Q(x) where Q(a) 0 3. (n 4 6n 3 +3n 18n + 4)/ ,, of multiplicity , (7/) ± (5 3/)i 37. 1, ( 3/) ± (3 3/)i 38., ± 5i 39. 4, ( 1/) ± ( 11/)i 41. ±, ±i 4. ±1, ± ± both of muliplicity 44. 3, 4, ± of multiplicity,, 3 7

### SOLVING POLYNOMIAL EQUATIONS

C SOLVING POLYNOMIAL EQUATIONS We will assume in this appendix that you know how to divide polynomials using long division and synthetic division. If you need to review those techniques, refer to an algebra

### JUST THE MATHS UNIT NUMBER 1.8. ALGEBRA 8 (Polynomials) A.J.Hobson

JUST THE MATHS UNIT NUMBER 1.8 ALGEBRA 8 (Polynomials) by A.J.Hobson 1.8.1 The factor theorem 1.8.2 Application to quadratic and cubic expressions 1.8.3 Cubic equations 1.8.4 Long division of polynomials

### Zeros of Polynomial Functions

Review: Synthetic Division Find (x 2-5x - 5x 3 + x 4 ) (5 + x). Factor Theorem Solve 2x 3-5x 2 + x + 2 =0 given that 2 is a zero of f(x) = 2x 3-5x 2 + x + 2. Zeros of Polynomial Functions Introduction

### Zeros of a Polynomial Function

Zeros of a Polynomial Function An important consequence of the Factor Theorem is that finding the zeros of a polynomial is really the same thing as factoring it into linear factors. In this section we

### 6 EXTENDING ALGEBRA. 6.0 Introduction. 6.1 The cubic equation. Objectives

6 EXTENDING ALGEBRA Chapter 6 Extending Algebra Objectives After studying this chapter you should understand techniques whereby equations of cubic degree and higher can be solved; be able to factorise

### 0.4 FACTORING POLYNOMIALS

36_.qxd /3/5 :9 AM Page -9 SECTION. Factoring Polynomials -9. FACTORING POLYNOMIALS Use special products and factorization techniques to factor polynomials. Find the domains of radical expressions. Use

### Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any.

Algebra 2 - Chapter Prerequisites Vocabulary Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any. P1 p. 1 1. counting(natural) numbers - {1,2,3,4,...}

### CM2202: Scientific Computing and Multimedia Applications General Maths: 2. Algebra - Factorisation

CM2202: Scientific Computing and Multimedia Applications General Maths: 2. Algebra - Factorisation Prof. David Marshall School of Computer Science & Informatics Factorisation Factorisation is a way of

### Lagrange Interpolation is a method of fitting an equation to a set of points that functions well when there are few points given.

Polynomials (Ch.1) Study Guide by BS, JL, AZ, CC, SH, HL Lagrange Interpolation is a method of fitting an equation to a set of points that functions well when there are few points given. Sasha s method

### College Algebra - MAT 161 Page: 1 Copyright 2009 Killoran

College Algebra - MAT 6 Page: Copyright 2009 Killoran Zeros and Roots of Polynomial Functions Finding a Root (zero or x-intercept) of a polynomial is identical to the process of factoring a polynomial.

### March 29, 2011. 171S4.4 Theorems about Zeros of Polynomial Functions

MAT 171 Precalculus Algebra Dr. Claude Moore Cape Fear Community College CHAPTER 4: Polynomial and Rational Functions 4.1 Polynomial Functions and Models 4.2 Graphing Polynomial Functions 4.3 Polynomial

### 1.7. Partial Fractions. 1.7.1. Rational Functions and Partial Fractions. A rational function is a quotient of two polynomials: R(x) = P (x) Q(x).

.7. PRTIL FRCTIONS 3.7. Partial Fractions.7.. Rational Functions and Partial Fractions. rational function is a quotient of two polynomials: R(x) = P (x) Q(x). Here we discuss how to integrate rational

### 3.3. Solving Polynomial Equations. Introduction. Prerequisites. Learning Outcomes

Solving Polynomial Equations 3.3 Introduction Linear and quadratic equations, dealt within Sections 3.1 and 3.2, are members of a class of equations, called polynomial equations. These have the general

2.5 ZEROS OF POLYNOMIAL FUNCTIONS Copyright Cengage Learning. All rights reserved. What You Should Learn Use the Fundamental Theorem of Algebra to determine the number of zeros of polynomial functions.

### PUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include 2 + 5.

PUTNAM TRAINING POLYNOMIALS (Last updated: November 17, 2015) Remark. This is a list of exercises on polynomials. Miguel A. Lerma Exercises 1. Find a polynomial with integral coefficients whose zeros include

### Zeros of Polynomial Functions

Zeros of Polynomial Functions Objectives: 1.Use the Fundamental Theorem of Algebra to determine the number of zeros of polynomial functions 2.Find rational zeros of polynomial functions 3.Find conjugate

### 1.3 Algebraic Expressions

1.3 Algebraic Expressions A polynomial is an expression of the form: a n x n + a n 1 x n 1 +... + a 2 x 2 + a 1 x + a 0 The numbers a 1, a 2,..., a n are called coefficients. Each of the separate parts,

### Zero: If P is a polynomial and if c is a number such that P (c) = 0 then c is a zero of P.

MATH 11011 FINDING REAL ZEROS KSU OF A POLYNOMIAL Definitions: Polynomial: is a function of the form P (x) = a n x n + a n 1 x n 1 + + a x + a 1 x + a 0. The numbers a n, a n 1,..., a 1, a 0 are called

### Unit 6: Polynomials. 1 Polynomial Functions and End Behavior. 2 Polynomials and Linear Factors. 3 Dividing Polynomials

Date Period Unit 6: Polynomials DAY TOPIC 1 Polynomial Functions and End Behavior Polynomials and Linear Factors 3 Dividing Polynomials 4 Synthetic Division and the Remainder Theorem 5 Solving Polynomial

### The Method of Partial Fractions Math 121 Calculus II Spring 2015

Rational functions. as The Method of Partial Fractions Math 11 Calculus II Spring 015 Recall that a rational function is a quotient of two polynomials such f(x) g(x) = 3x5 + x 3 + 16x x 60. The method

### SECTION 0.6: POLYNOMIAL, RATIONAL, AND ALGEBRAIC EXPRESSIONS

(Section 0.6: Polynomial, Rational, and Algebraic Expressions) 0.6.1 SECTION 0.6: POLYNOMIAL, RATIONAL, AND ALGEBRAIC EXPRESSIONS LEARNING OBJECTIVES Be able to identify polynomial, rational, and algebraic

### 1 Lecture: Integration of rational functions by decomposition

Lecture: Integration of rational functions by decomposition into partial fractions Recognize and integrate basic rational functions, except when the denominator is a power of an irreducible quadratic.

### 3 1. Note that all cubes solve it; therefore, there are no more

Math 13 Problem set 5 Artin 11.4.7 Factor the following polynomials into irreducible factors in Q[x]: (a) x 3 3x (b) x 3 3x + (c) x 9 6x 6 + 9x 3 3 Solution: The first two polynomials are cubics, so if

### 9. POLYNOMIALS. Example 1: The expression a(x) = x 3 4x 2 + 7x 11 is a polynomial in x. The coefficients of a(x) are the numbers 1, 4, 7, 11.

9. POLYNOMIALS 9.1. Definition of a Polynomial A polynomial is an expression of the form: a(x) = a n x n + a n-1 x n-1 +... + a 1 x + a 0. The symbol x is called an indeterminate and simply plays the role

### Partial Fractions. (x 1)(x 2 + 1)

Partial Fractions Adding rational functions involves finding a common denominator, rewriting each fraction so that it has that denominator, then adding. For example, 3x x 1 3x(x 1) (x + 1)(x 1) + 1(x +

### POLYNOMIAL FUNCTIONS

POLYNOMIAL FUNCTIONS Polynomial Division.. 314 The Rational Zero Test.....317 Descarte s Rule of Signs... 319 The Remainder Theorem.....31 Finding all Zeros of a Polynomial Function.......33 Writing a

### Tim Kerins. Leaving Certificate Honours Maths - Algebra. Tim Kerins. the date

Leaving Certificate Honours Maths - Algebra the date Chapter 1 Algebra This is an important portion of the course. As well as generally accounting for 2 3 questions in examination it is the basis for many

### Solving Cubic Polynomials

Solving Cubic Polynomials 1.1 The general solution to the quadratic equation There are four steps to finding the zeroes of a quadratic polynomial. 1. First divide by the leading term, making the polynomial

### 1.5. Factorisation. Introduction. Prerequisites. Learning Outcomes. Learning Style

Factorisation 1.5 Introduction In Block 4 we showed the way in which brackets were removed from algebraic expressions. Factorisation, which can be considered as the reverse of this process, is dealt with

### Lecture Notes on Polynomials

Lecture Notes on Polynomials Arne Jensen Department of Mathematical Sciences Aalborg University c 008 Introduction These lecture notes give a very short introduction to polynomials with real and complex

### expression is written horizontally. The Last terms ((2)( 4)) because they are the last terms of the two polynomials. This is called the FOIL method.

A polynomial of degree n (in one variable, with real coefficients) is an expression of the form: a n x n + a n 1 x n 1 + a n 2 x n 2 + + a 2 x 2 + a 1 x + a 0 where a n, a n 1, a n 2, a 2, a 1, a 0 are

### NSM100 Introduction to Algebra Chapter 5 Notes Factoring

Section 5.1 Greatest Common Factor (GCF) and Factoring by Grouping Greatest Common Factor for a polynomial is the largest monomial that divides (is a factor of) each term of the polynomial. GCF is the

### Equations, Inequalities & Partial Fractions

Contents Equations, Inequalities & Partial Fractions.1 Solving Linear Equations 2.2 Solving Quadratic Equations 1. Solving Polynomial Equations 1.4 Solving Simultaneous Linear Equations 42.5 Solving Inequalities

### 7. Some irreducible polynomials

7. Some irreducible polynomials 7.1 Irreducibles over a finite field 7.2 Worked examples Linear factors x α of a polynomial P (x) with coefficients in a field k correspond precisely to roots α k [1] of

### calculating the result modulo 3, as follows: p(0) = 0 3 + 0 + 1 = 1 0,

Homework #02, due 1/27/10 = 9.4.1, 9.4.2, 9.4.5, 9.4.6, 9.4.7. Additional problems recommended for study: (9.4.3), 9.4.4, 9.4.9, 9.4.11, 9.4.13, (9.4.14), 9.4.17 9.4.1 Determine whether the following polynomials

### CHAPTER SIX IRREDUCIBILITY AND FACTORIZATION 1. BASIC DIVISIBILITY THEORY

January 10, 2010 CHAPTER SIX IRREDUCIBILITY AND FACTORIZATION 1. BASIC DIVISIBILITY THEORY The set of polynomials over a field F is a ring, whose structure shares with the ring of integers many characteristics.

### H/wk 13, Solutions to selected problems

H/wk 13, Solutions to selected problems Ch. 4.1, Problem 5 (a) Find the number of roots of x x in Z 4, Z Z, any integral domain, Z 6. (b) Find a commutative ring in which x x has infinitely many roots.

### Partial Fractions. Combining fractions over a common denominator is a familiar operation from algebra:

Partial Fractions Combining fractions over a common denominator is a familiar operation from algebra: From the standpoint of integration, the left side of Equation 1 would be much easier to work with than

### 3.6 The Real Zeros of a Polynomial Function

SECTION 3.6 The Real Zeros of a Polynomial Function 219 3.6 The Real Zeros of a Polynomial Function PREPARING FOR THIS SECTION Before getting started, review the following: Classification of Numbers (Appendix,

### Factoring Polynomials

Factoring Polynomials Hoste, Miller, Murieka September 12, 2011 1 Factoring In the previous section, we discussed how to determine the product of two or more terms. Consider, for instance, the equations

### UNCORRECTED PAGE PROOFS

number and and algebra TopIC 17 Polynomials 17.1 Overview Why learn this? Just as number is learned in stages, so too are graphs. You have been building your knowledge of graphs and functions over time.

### it is easy to see that α = a

21. Polynomial rings Let us now turn out attention to determining the prime elements of a polynomial ring, where the coefficient ring is a field. We already know that such a polynomial ring is a UF. Therefore

### PROBLEM SET 6: POLYNOMIALS

PROBLEM SET 6: POLYNOMIALS 1. introduction In this problem set we will consider polynomials with coefficients in K, where K is the real numbers R, the complex numbers C, the rational numbers Q or any other

### Factoring Polynomials

UNIT 11 Factoring Polynomials You can use polynomials to describe framing for art. 396 Unit 11 factoring polynomials A polynomial is an expression that has variables that represent numbers. A number can

### Modern Algebra Lecture Notes: Rings and fields set 4 (Revision 2)

Modern Algebra Lecture Notes: Rings and fields set 4 (Revision 2) Kevin Broughan University of Waikato, Hamilton, New Zealand May 13, 2010 Remainder and Factor Theorem 15 Definition of factor If f (x)

### Polynomial Expressions and Equations

Polynomial Expressions and Equations This is a really close-up picture of rain. Really. The picture represents falling water broken down into molecules, each with two hydrogen atoms connected to one oxygen

### RESULTANT AND DISCRIMINANT OF POLYNOMIALS

RESULTANT AND DISCRIMINANT OF POLYNOMIALS SVANTE JANSON Abstract. This is a collection of classical results about resultants and discriminants for polynomials, compiled mainly for my own use. All results

### Integrals of Rational Functions

Integrals of Rational Functions Scott R. Fulton Overview A rational function has the form where p and q are polynomials. For example, r(x) = p(x) q(x) f(x) = x2 3 x 4 + 3, g(t) = t6 + 4t 2 3, 7t 5 + 3t

### 3.2 The Factor Theorem and The Remainder Theorem

3. The Factor Theorem and The Remainder Theorem 57 3. The Factor Theorem and The Remainder Theorem Suppose we wish to find the zeros of f(x) = x 3 + 4x 5x 4. Setting f(x) = 0 results in the polynomial

### Zeros of Polynomial Functions

Zeros of Polynomial Functions The Rational Zero Theorem If f (x) = a n x n + a n-1 x n-1 + + a 1 x + a 0 has integer coefficients and p/q (where p/q is reduced) is a rational zero, then p is a factor of

### Quotient Rings and Field Extensions

Chapter 5 Quotient Rings and Field Extensions In this chapter we describe a method for producing field extension of a given field. If F is a field, then a field extension is a field K that contains F.

### Integer roots of quadratic and cubic polynomials with integer coefficients

Integer roots of quadratic and cubic polynomials with integer coefficients Konstantine Zelator Mathematics, Computer Science and Statistics 212 Ben Franklin Hall Bloomsburg University 400 East Second Street

### The Notebook Series. The solution of cubic and quartic equations. R.S. Johnson. Professor of Applied Mathematics

The Notebook Series The solution of cubic and quartic equations by R.S. Johnson Professor of Applied Mathematics School of Mathematics & Statistics University of Newcastle upon Tyne R.S.Johnson 006 CONTENTS

### PYTHAGOREAN TRIPLES KEITH CONRAD

PYTHAGOREAN TRIPLES KEITH CONRAD 1. Introduction A Pythagorean triple is a triple of positive integers (a, b, c) where a + b = c. Examples include (3, 4, 5), (5, 1, 13), and (8, 15, 17). Below is an ancient

### Algebra 1 Course Title

Algebra 1 Course Title Course- wide 1. What patterns and methods are being used? Course- wide 1. Students will be adept at solving and graphing linear and quadratic equations 2. Students will be adept

### Some Polynomial Theorems. John Kennedy Mathematics Department Santa Monica College 1900 Pico Blvd. Santa Monica, CA 90405 rkennedy@ix.netcom.

Some Polynomial Theorems by John Kennedy Mathematics Department Santa Monica College 1900 Pico Blvd. Santa Monica, CA 90405 rkennedy@ix.netcom.com This paper contains a collection of 31 theorems, lemmas,

### Factoring Polynomials and Solving Quadratic Equations

Factoring Polynomials and Solving Quadratic Equations Math Tutorial Lab Special Topic Factoring Factoring Binomials Remember that a binomial is just a polynomial with two terms. Some examples include 2x+3

### Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm.

Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm. We begin by defining the ring of polynomials with coefficients in a ring R. After some preliminary results, we specialize

### Partial Fractions. p(x) q(x)

Partial Fractions Introduction to Partial Fractions Given a rational function of the form p(x) q(x) where the degree of p(x) is less than the degree of q(x), the method of partial fractions seeks to break

### Math Review. for the Quantitative Reasoning Measure of the GRE revised General Test

Math Review for the Quantitative Reasoning Measure of the GRE revised General Test www.ets.org Overview This Math Review will familiarize you with the mathematical skills and concepts that are important

### Application. Outline. 3-1 Polynomial Functions 3-2 Finding Rational Zeros of. Polynomial. 3-3 Approximating Real Zeros of.

Polynomial and Rational Functions Outline 3-1 Polynomial Functions 3-2 Finding Rational Zeros of Polynomials 3-3 Approximating Real Zeros of Polynomials 3-4 Rational Functions Chapter 3 Group Activity:

### Higher Education Math Placement

Higher Education Math Placement Placement Assessment Problem Types 1. Whole Numbers, Fractions, and Decimals 1.1 Operations with Whole Numbers Addition with carry Subtraction with borrowing Multiplication

### Polynomial and Synthetic Division. Long Division of Polynomials. Example 1. 6x 2 7x 2 x 2) 19x 2 16x 4 6x3 12x 2 7x 2 16x 7x 2 14x. 2x 4.

_.qd /7/5 9: AM Page 5 Section.. Polynomial and Synthetic Division 5 Polynomial and Synthetic Division What you should learn Use long division to divide polynomials by other polynomials. Use synthetic

### Factoring Polynomials

Factoring Polynomials Factoring Factoring is the process of writing a polynomial as the product of two or more polynomials. The factors of 6x 2 x 2 are 2x + 1 and 3x 2. In this section, we will be factoring

### Roots of Polynomials

Roots of Polynomials (Com S 477/577 Notes) Yan-Bin Jia Sep 24, 2015 A direct corollary of the fundamental theorem of algebra is that p(x) can be factorized over the complex domain into a product a n (x

### 3.3. The Factor Theorem. Investigate Determining the Factors of a Polynomial. Reflect and Respond

3.3 The Factor Theorem Focus on... factoring polynomials explaining the relationship between the linear factors of a polynomial expression and the zeros of the corresponding function modelling and solving

### Algebra I Vocabulary Cards

Algebra I Vocabulary Cards Table of Contents Expressions and Operations Natural Numbers Whole Numbers Integers Rational Numbers Irrational Numbers Real Numbers Absolute Value Order of Operations Expression

### The Division Algorithm for Polynomials Handout Monday March 5, 2012

The Division Algorithm for Polynomials Handout Monday March 5, 0 Let F be a field (such as R, Q, C, or F p for some prime p. This will allow us to divide by any nonzero scalar. (For some of the following,

### 3.6. The factor theorem

3.6. The factor theorem Example 1. At the right we have drawn the graph of the polynomial y = x 4 9x 3 + 8x 36x + 16. Your problem is to write the polynomial in factored form. Does the geometry of the

### This is a square root. The number under the radical is 9. (An asterisk * means multiply.)

Page of Review of Radical Expressions and Equations Skills involving radicals can be divided into the following groups: Evaluate square roots or higher order roots. Simplify radical expressions. Rationalize

### Decomposing Rational Functions into Partial Fractions:

Prof. Keely's Math Online Lessons University of Phoenix Online & Clark College, Vancouver WA Copyright 2003 Sally J. Keely. All Rights Reserved. COLLEGE ALGEBRA Hi! Today's topic is highly structured and

### minimal polyonomial Example

Minimal Polynomials Definition Let α be an element in GF(p e ). We call the monic polynomial of smallest degree which has coefficients in GF(p) and α as a root, the minimal polyonomial of α. Example: We

### Vieta s Formulas and the Identity Theorem

Vieta s Formulas and the Identity Theorem This worksheet will work through the material from our class on 3/21/2013 with some examples that should help you with the homework The topic of our discussion

### The Factor Theorem and a corollary of the Fundamental Theorem of Algebra

Math 421 Fall 2010 The Factor Theorem and a corollary of the Fundamental Theorem of Algebra 27 August 2010 Copyright 2006 2010 by Murray Eisenberg. All rights reserved. Prerequisites Mathematica Aside

### FACTORISATION YEARS. A guide for teachers - Years 9 10 June 2011. The Improving Mathematics Education in Schools (TIMES) Project

9 10 YEARS The Improving Mathematics Education in Schools (TIMES) Project FACTORISATION NUMBER AND ALGEBRA Module 33 A guide for teachers - Years 9 10 June 2011 Factorisation (Number and Algebra : Module

### 2.4 Real Zeros of Polynomial Functions

SECTION 2.4 Real Zeros of Polynomial Functions 197 What you ll learn about Long Division and the Division Algorithm Remainder and Factor Theorems Synthetic Division Rational Zeros Theorem Upper and Lower

### 2.3. Finding polynomial functions. An Introduction:

2.3. Finding polynomial functions. An Introduction: As is usually the case when learning a new concept in mathematics, the new concept is the reverse of the previous one. Remember how you first learned

### 15. Symmetric polynomials

15. Symmetric polynomials 15.1 The theorem 15.2 First examples 15.3 A variant: discriminants 1. The theorem Let S n be the group of permutations of {1,, n}, also called the symmetric group on n things.

### MATH 21. College Algebra 1 Lecture Notes

MATH 21 College Algebra 1 Lecture Notes MATH 21 3.6 Factoring Review College Algebra 1 Factoring and Foiling 1. (a + b) 2 = a 2 + 2ab + b 2. 2. (a b) 2 = a 2 2ab + b 2. 3. (a + b)(a b) = a 2 b 2. 4. (a

### MATH 4552 Cubic equations and Cardano s formulae

MATH 455 Cubic equations and Cardano s formulae Consider a cubic equation with the unknown z and fixed complex coefficients a, b, c, d (where a 0): (1) az 3 + bz + cz + d = 0. To solve (1), it is convenient

### 1 = (a 0 + b 0 α) 2 + + (a m 1 + b m 1 α) 2. for certain elements a 0,..., a m 1, b 0,..., b m 1 of F. Multiplying out, we obtain

Notes on real-closed fields These notes develop the algebraic background needed to understand the model theory of real-closed fields. To understand these notes, a standard graduate course in algebra is

### Factoring Polynomials

Factoring Polynomials Sue Geller June 19, 2006 Factoring polynomials over the rational numbers, real numbers, and complex numbers has long been a standard topic of high school algebra. With the advent

### Basics of Polynomial Theory

3 Basics of Polynomial Theory 3.1 Polynomial Equations In geodesy and geoinformatics, most observations are related to unknowns parameters through equations of algebraic (polynomial) type. In cases where

### Partial Fractions Examples

Partial Fractions Examples Partial fractions is the name given to a technique of integration that may be used to integrate any ratio of polynomials. A ratio of polynomials is called a rational function.

### ALGEBRA 2 CRA 2 REVIEW - Chapters 1-6 Answer Section

ALGEBRA 2 CRA 2 REVIEW - Chapters 1-6 Answer Section MULTIPLE CHOICE 1. ANS: C 2. ANS: A 3. ANS: A OBJ: 5-3.1 Using Vertex Form SHORT ANSWER 4. ANS: (x + 6)(x 2 6x + 36) OBJ: 6-4.2 Solving Equations by

### 4.1. COMPLEX NUMBERS

4.1. COMPLEX NUMBERS What You Should Learn Use the imaginary unit i to write complex numbers. Add, subtract, and multiply complex numbers. Use complex conjugates to write the quotient of two complex numbers

### Answer Key for California State Standards: Algebra I

Algebra I: Symbolic reasoning and calculations with symbols are central in algebra. Through the study of algebra, a student develops an understanding of the symbolic language of mathematics and the sciences.

### Copyrighted Material. Chapter 1 DEGREE OF A CURVE

Chapter 1 DEGREE OF A CURVE Road Map The idea of degree is a fundamental concept, which will take us several chapters to explore in depth. We begin by explaining what an algebraic curve is, and offer two

### Indiana State Core Curriculum Standards updated 2009 Algebra I

Indiana State Core Curriculum Standards updated 2009 Algebra I Strand Description Boardworks High School Algebra presentations Operations With Real Numbers Linear Equations and A1.1 Students simplify and

### SECTION 1-6 Quadratic Equations and Applications

58 Equations and Inequalities Supply the reasons in the proofs for the theorems stated in Problems 65 and 66. 65. Theorem: The complex numbers are commutative under addition. Proof: Let a bi and c di be

### Sect 6.7 - Solving Equations Using the Zero Product Rule

Sect 6.7 - Solving Equations Using the Zero Product Rule 116 Concept #1: Definition of a Quadratic Equation A quadratic equation is an equation that can be written in the form ax 2 + bx + c = 0 (referred

### Algebra 1 If you are okay with that placement then you have no further action to take Algebra 1 Portion of the Math Placement Test

Dear Parents, Based on the results of the High School Placement Test (HSPT), your child should forecast to take Algebra 1 this fall. If you are okay with that placement then you have no further action

### CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA

We Can Early Learning Curriculum PreK Grades 8 12 INSIDE ALGEBRA, GRADES 8 12 CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA April 2016 www.voyagersopris.com Mathematical

### 7.2 Quadratic Equations

476 CHAPTER 7 Graphs, Equations, and Inequalities 7. Quadratic Equations Now Work the Are You Prepared? problems on page 48. OBJECTIVES 1 Solve Quadratic Equations by Factoring (p. 476) Solve Quadratic

### Alum Rock Elementary Union School District Algebra I Study Guide for Benchmark III

Alum Rock Elementary Union School District Algebra I Study Guide for Benchmark III Name Date Adding and Subtracting Polynomials Algebra Standard 10.0 A polynomial is a sum of one ore more monomials. Polynomial

### Applications of Fermat s Little Theorem and Congruences

Applications of Fermat s Little Theorem and Congruences Definition: Let m be a positive integer. Then integers a and b are congruent modulo m, denoted by a b mod m, if m (a b). Example: 3 1 mod 2, 6 4

### Winter Camp 2011 Polynomials Alexander Remorov. Polynomials. Alexander Remorov alexanderrem@gmail.com

Polynomials Alexander Remorov alexanderrem@gmail.com Warm-up Problem 1: Let f(x) be a quadratic polynomial. Prove that there exist quadratic polynomials g(x) and h(x) such that f(x)f(x + 1) = g(h(x)).

### MOP 2007 Black Group Integer Polynomials Yufei Zhao. Integer Polynomials. June 29, 2007 Yufei Zhao yufeiz@mit.edu

Integer Polynomials June 9, 007 Yufei Zhao yufeiz@mit.edu We will use Z[x] to denote the ring of polynomials with integer coefficients. We begin by summarizing some of the common approaches used in dealing